
Chapter 7.  DDF Domain

Authors: Soonhoi Ha
Edward A. Lee
Thomas M. Parks

Other Contributors: Joseph T. Buck

7.1  Introduction
The dynamic dataflow (DDF) domain in Ptolemy is a superset of the synchronous

dataflow (SDF) and Boolean dataflow (BDF) domains. In the SDF domain, a star consumes
and produces a fixed number of particles per invocation (or “firing”). This static information
(the number of particles produced or consumed for each star) makes possible compile-time
scheduling. In the BDF domain, some actors with data-dependent production or consumption
are allowed. The BDF schedulers attempt to construct a compile-time schedule; however, they
may fail to do so and fall back on a DDF scheduler. In the DDF domain, the schedulers make
no attempt to construct a compile-time schedule. For this reason, there are few constraints on
the production and consumption behavior of stars in this domain.

In DDF, a run-time scheduler detects which stars are runnable and fires them one by
one until no star is runnable (the system is deadlocked), or until a specified stopping condition
has been reached. A star is runnable if it has enough data on its inputs to satisfy its require-
ments. Thus, the only constraint on DDF stars is that they must specify on each firing how
much data they require on each input to be fired again later.

In practice, stars in the DDF domain are written in a slightly simpler way. They are
either SDF stars, in which case the number of particles required at each input is a constant, or
they are dynamic, in which case they always alert the scheduler before finishing a firing that to
be refired they expect some specific number of particles on one particular input. The input that
a star is waiting for data on is called thewaitPort.

Since the DDF domain is a superset of the SDF domain, all SDF stars can be used in
the DDF domain. Similarly for BDF stars. Besides the SDF stars, the DDF domain has some
DDF-specific stars that will be described in this chapter. The DDF-specific stars overcome the
main modeling limitation of the SDF domain in that they can model dynamic constructs such
asconditionals, data-dependent iteration, andrecursion. All of these except recursion are also
supported by the BDF domain. It is even possible, in principle, to dynamically modify a DDF
graph as it executes (the implementation of recursion does exactly this). The lower run-time
efficiency of dynamic scheduling is the cost that we have to pay for the enhanced modeling
power.

Run-time scheduling is expensive. In figure 7-1 we have plotted the execution time of
a simple example (setup and run, not including the pigi “compile” or the wrapup). The exam-
ple contains 17 stars, all simple, all homogeneous synchronous dataflow (producing or con-
suming a single sample at each port). The tests were run on a Sparc 10 using theptrim



7-2 DDF Domain

U. C. Berkeley Department of EECS

executable (on August 26, 1995). The default schedulers in the SDF and DDF domains were
used. Note that both schedulers took approximately 13ms at startup, and then exhibited a close
to linear increase in execution time. For the SDF scheduler, the slope is approximately 650µs
per iteration, while for the DDF scheduler, it is approximately 1,370µs per iteration. With 17
stars, this comes to about 38µs per firing for SDF and 81µs per firing for DDF. For multirate
systems, both of these schedulers will perform poorly compared to the loop scheduler in SDF.
Note that for this simple system, DDF is more than twice as expensive as SDF. For systems
that require DDF, Ptolemy allows us to regain much of this efficiency by grouping SDF stars
in a wormhole that contains an SDF domain. For critical systems that are executed for many
iterations, this can provide for considerably faster execution.

There are some subtleties, however, in DDF scheduling. Due to these subtleties, there
have been three DDF schedulers implemented, all accessible by setting appropriate target
parameters. In the next section, we explain these schedulers.

7.2  The DDF Schedulers
In Ptolemy, a scheduler determines the order of execution of blocks. This would seem

to be a simple task in the DDF domain, since there is nothing to do at setup time, and at run
time, the scheduler only needs to determine which blocks are runnable and then fire those
blocks. Experience dictates, however, that this simple-minded policy is not adequate. In par-
ticular, it may use more memory than is required (it may even require an unbounded amount
of memory when a bounded amount of memory would suffice). It may also be difficult for a
user to specify for how long an execution should proceed.

Run Times vs. Number of Iterations, Butterfly Demo

sdf

ddf

sec x 10-3

N

20.00

40.00

60.00

80.00

100.00

120.00

140.00

0.00 20.00 40.00 60.00 80.00 100.00

•• •
• •

•
•

•
• • •

•

••
•

•

•
•

•

•
•

•

•
•

FIGURE 7-1: Time (in milliseconds) vs. number of iterations for the default SDF and default DDF
schedulers for a 17 star, single-sample-rate example.



The Almagest 7-3

Ptolemy Last updated: 12/1/97

In the SDF domain, aniteration is well-defined. It is the minimum number of firings
that brings the buffers back to their original state. In SDF, this can be found by a compile-time
scheduler by solving the balance equations. In both BDF and DDF, it turns out that it isunde-
cidable whether such a sequence of firings exists. This means that no algorithm can answer
the question for all graphs of a given size in finite time. This explains, in part, why the BDF
domain may fail to construct a compile-time schedule and fall back on the DDF schedulers.

We have three simple and obvious criteria that a DDF scheduler should satisfy:

a. The scheduler should be able to execute a graph forever if it is possible to execute
a graph forever. In particular, it should not stop prematurely if there are runnable
stars.

b. The scheduler should be able to execute a graph forever in bounded memory if it is
possible to execute the graph forever in bounded memory.

c. The scheduler should execute the graph in a sequence of well-defined and determi-
nate iterations so that the user can control the length of an execution by specifying
the number of iterations to execute.

Somewhat surprisingly, it turns out to be extremely difficult to satisfy all three criteria at once.
The first few versions of the DDF scheduler (up to and including release 0.5.2) did not satisfy
(b) or (c). The older scheduler is still available (set theuseFastScheduler target parameter to
YES), but its use is not recommended. Its behavior is somewhat unpredictable and sometimes
counterintuitive. For example, told to run a graph for one iteration, it may in fact run it forever.
Nonetheless, it is still available because it is significantly faster than the newer schedulers. We
have not found a way (yet) to combine its efficient and clever algorithm with the criteria
above.

The reason that these criteria are hard to satisfy is fundamental. We have already
pointed out that it is undecidable whether a sequence of firings exists that will return the graph
to its original state. This fact can be used to show that it is undecidable whether a graph can be
executed in bounded memory. Thus, no finite analysis can always guarantee (b). The trick is
that the DDF scheduler in fact has infinite time to run an infinite execution, so, remarkably, it
is still possible to guarantee condition (b). The new DDF schedulers do this.

Regarding condition (a), it is also undecidable whether a graph can be executed for-
ever. This question is equivalent to thehalting problem, and the DDF model of computation is
sufficiently rich that the halting problem cannot always be solved in finite time. Again, we are
fortunate that the scheduler has infinite time to carry out an infinite execution. This is really
what we mean by dynamic scheduling!

Condition (c) is more subtle and centers around the desire fordeterminate execution.
What we mean by this, intuitively, is that a user should be able to tell immediately what stars
will fire in one iteration, knowing the state of the graph. In other words, which stars fire should
not depend on arbitrary decisions made by the scheduler, like the order in which it examines
the stars.

To illustrate that this is a major issue, suppose we naively define an iteration to consist
of “firing all enabled stars at most once.” Consider the simple example in figure 7-2. Star A is
enabled, so we can fire it. Suppose this makes star B enabled. Should it be fired in the same



7-4 DDF Domain

U. C. Berkeley Department of EECS

iteration? Will the order in which we fire enabled stars or determine whether stars are enabled
impact the outcome?

We have implemented two policies in DDF. These are explained below.

7.2.1  The default scheduler

The default scheduler, realized in the classDDFSimpleSched , first scans all stars and
determines which are enabled. In a second pass, it then fires the enabled stars. Thus, the order
in which the stars fire has no impact on which ones fire in a given iteration.

Unfortunately, as stated, this simple policy still does not work. Suppose that star A in
figure 7-2 produces two particles each time it fires, and actor B consumes 1. Then our policy
will be to fire actor A in the first iteration and both A and B in all subsequent iterations. This
violates criterion (b), because it will not execute in bounded memory. More importantly, it is
counterintuitive. Thus, theDDFSimpleSched  class implements a more elaborate algorithm.

One iteration, by default, consists of firing all enabled and non-deferrable stars once. If
no stars fire, then one deferrable star is carefully chosen to be fired. Adeferrable star is one
with any output arc (except a self-loop) that has enough data to satisfy the destination actor. In
other words providing more data on that output arc will not help the downstream actor become
enabled; it either already has enough data, or it is waiting for data on another arc. If a deferra-
ble star is fired, it will be the one that has the smallest maximum output buffer sizes. The algo-
rithm is formally given in figure 7-3.

This default iteration is defined to fire actors at most once. Sometimes, a user needs
several suchbasic iterations to be treated as a single iteration. For example, a user may wish
for a user iteration to include one firing of anXMgraph  star, so that each iteration results in

FIGURE 7-2: A simple example used to illustrate the notion of an iteration.

A B

At the start of the iteration compute {
E = enabled actors
D = deferrable actors

}

One default iteration consists of {
if (E-D != 0) fire stars in (E-D)
else if (D != 0) fire the minimax star in D
else deadlocked.

}
The minimax star is the one with the smallest
maximum number of tokens on its output paths.

FIGURE 7-3: The algorithm implementing one basic iteration in the DDFSimpleSched  class.



The Almagest 7-5

Ptolemy Last updated: 12/1/97

one point plotted. The basic iteration may not include one such firing. Another more critical
example is a wormhole that contains a DDF system but will be embedded in an SDF system.
In this case, it is necessary to ensure that one user iteration consists of enough firings to pro-
duce the expected number of output particles.

This larger notion of an iteration can be specified using the targetpragma mechanism
to identify particular stars that must fire some specific number of times (greater than or equal
to one) in each user iteration. To use this, make sure the domain is DDF and the target isDDF-
default . Then in pigi, place the mouse over the icon of the star in question, and issue the
edit-pragmas command (“a”). One pragma (the one understood by this target) will appear; it
is calledfiringsPerIteration. Set it to the desired value. This will then define what makes up an
iteration.

7.2.2  The clustering scheduler

If you set the target parameterrestructure to YES, you will get a scheduler that clus-
ters SDF actors when possible and invokes the SDF scheduler on them. The scheduler is
implemented in the classDDFClustSched . WARNING : As of this writing, this scheduler
will not work with wormholes, and will issue a warning. Nonetheless, it is an interesting
scheduler for two reasons, the first of which is its clustering behavior. The second is that it
uses a different definition of a basic iteration. In this definition, a basic iteration (loosely) con-
sists of as many firings as possible subject to the constraint that no actor fires more than once
and that deferrable actors are avoided if possible. The complete algorithm is given in figure 7-
4. Use of this scheduler is not advised at this time, however. For one thing, the implementation
of clustering adds enough overhead that this scheduler is invariably slower than the default
scheduler.

The following sets are updated every time a star fires:
E = enabled actors
D = deferrable actors
S = source actors
F = actors that have fired once already in this iteration

One default iteration consists of:
while (E-D-F != 0) {

fire actors in (E-D-F)
}
if (F == 0) {

// All enabled actors are deferrable.
// Try the non-sources first.
if (E-S != 0) {

fire (E-S);
} else {

fire (S);
}

}
if (F == 0) deadlock

FIGURE 7-4: A basic iteration of the DDFClustSched scheduler.



7-6 DDF Domain

U. C. Berkeley Department of EECS

7.2.3  The fast scheduler

In case the new definition of an iteration is inconvenient for legacy systems, we pre-
serve an older and faster scheduler that is not guaranteed to satisfy criteria (b) and (c) above.
The basic operation of the fast scheduler is to repeatedly scan the list of stars in the domain
and execute the runnable stars until no more stars are runnable, with certain constraints
imposed on the execution of sources. For the purpose of determining whether a star is runna-
ble, the stars are divided into three groups. The first group of the stars have input ports that
consume a fixed number of particles. All SDF stars, except those with no input ports, are
included in this group. For this group, the scheduler simply checks all inputs to determine
whether the star is runnable.

The second group consists of the DDF-specific stars where the number of particles
required on the input ports is unspecified. An example is theEndCase star (a multi-input ver-
sion of the BDFSelect  star). TheEndCase star has one control input and one multiport
input for data. The control input value specifies which data input port requires a particle. Stars
in this group must specify at run time how many input particles they require on each input
port. Stars specify a port with a call to a method calledwaitPort and the number of particles
needed with a call towaitNum. To determine whether a star is runnable, the scheduler checks
whether a specified input port has the specified number of particles.

For example, in theEndCase star, thewaitPort points to thecontrol input port at the
beginning. If thecontrol input has enough data (one particle), the star is fired. When it is fired,
it checks the value of the particle in thecontrol port, and changes thewaitPort pointer to the
input port on which it needs the next particle. The star will be fired again when it has enough
data on the input port pointed bywaitPort. This time, it collects the input particle and sends it
to the output port. See Figure 7-5.

The third group of stars comprises sources. Sources are always runnable. Source stars
introduce a significant complication into the DDF domain. In particular, since they are always
runnable, it is difficult to ensure that they are not invoked too often. This scheduler has a rea-
sonable but not foolproof policy for dealing with this. Recall that the DDF domain is a super-
set of the SDF domain. The definition of one iteration for this scheduler tries to obtain the
same results as the SDF scheduler when only SDF stars are used. In the SDF domain, the
number of firings of each source star, relative to other stars, is determined by solving the bal-
ance equations. However, in the DDF domain, the balance equations do not apply in the same

EndCase.input=2 EndCase.input=2 EndCase.input=2

W

W

EndCase.input=2 EndCase.input=2

0
(a) (b) (c) (d) (e)

FIGURE 7-5: (a) The EndCase star waits on the control port. (b) The star fires when data
arrives on the control port (the value of the data is 0). (c) Now the star waits
for input to arrive on input port 0. (d) The star fires again when data arrives on
input port 0. (e) The data that arrived on input port 0 is transmitted by the out-
put port of the EndCase star.



The Almagest 7-7

Ptolemy Last updated: 12/1/97

form1. The technique we use instead islazy-evaluation.

Lazy evaluation

At the beginning of each iteration of a DDF application, we fire all source stars exactly
once, and temporarily declare them “not runnable.” We also fire all stars that have enoughini-
tial tokens on their inputs. After that, the scheduler starts scanning the list of stars in the
domain. If a star has some particles on some input arcs, but is not runnable yet, then the star
initiates the (lazy) evaluation of those stars that are connected to the input ports requiring
more data. This evaluation is “lazy” because it occurs only if the data it produces are actually
needed. The lazy-evaluation technique ensures that the relative number of firings of source
stars is the same under the DDF scheduler as it would be under the SDF scheduler.

We can now define what is meant byone iterationin DDF. An iteration consists of one
firing of each source star, followed by as many lazy-evaluation passes as possible, until the
system deadlocks. One way to view this (loosely) is that enough stars are fired to consume all
of the data produced in the first pass, where the source stars were each fired once. This may
involve repeatedly firing some of the source stars. However, a lazy-evaluation is only initiated
if a star in need of inputs already has at least one input with enough tokens to fire. Because of
this, in some circumstances, the firings that make up an iteration may not be exactly what is
expected. In particular, when there is more than one sink star in the system, and the sink stars
fire at different rates, the ones firing at higher rates may not be fired as many times as
expected. It is also possible for one iteration to never terminate.

When a DDF wormhole is invoked, it will execute one iteration of the DDF system
contained in it. This is a serious problem in many applications, since the user may need more
control over what constitutes one firing of the wormhole.

7.3  Inconsistency in DDF
So far, we have assumed an error-free program. In the SDF domain, compile-time

analysis detects errors due to inconsistent rates of production and consumption of tokens
because the balance equations cannot be solved. In DDF, however, such inconsistencies are
harder to detect. Our strategy is to detect them at run time, an approach that has two disadvan-
tages. First, it is costly, as will be explained shortly. Second, it is not easy to isolate the sources
of errors.

We call a dataflow graphconsistent if on each arc, in the long run, the same number of
particles are consumed as produced [Lee91a]. One source of inconsistency is the sample-rate
mismatch that is common to the SDF domain. The DDF domain has more subtle error
sources, however, due to the dynamic behavior of DDF stars. In an inconsistent graph, an arc
may queue an unbounded number of tokens in the long run. To prevent this, we examine the
number of tokens on each arc to detect whether the number is greater than a certain limit (the
default is 1024). If we find an arc with too many tokens, we consider it an error and halt the
execution. We can modify the limit by setting the target parameter namedmaxBufferSize. The
two new schedulers will interpret a negative number here to be infinite capacity. An inconsis-
tent system will run until your computer runs out of memory.

1. Note that the BDF domain adapts the balance equations to the dynamic dataflow case.



7-8 DDF Domain

U. C. Berkeley Department of EECS

The value of themaxBufferSize parameter will be the maximum allowed buffer size.
Since the source of inconsistency is not unique, isolating the source of the error is usually not
possible. We can just point out which arc has a large number of tokens. Of course, if the limit
is set too high, some errors will take very long to detect. Note however that there exist per-
fectly correct DDF systems (which are consistent) that nonetheless cannot execute in bounded
memory. It is for this reason that the new schedulers support infinite capacity.

7.4  The default-DDF target
The DDF domain only has one target. The parameters of the target are:

maxBufferSize (INT ) Default =1024
The capacity of an arc (in particles). This is used for the run-
time detection of inconsistencies, as explained above. If any arc
exceeds this capacity, an error is flagged and the simulation
halts. A negative number is interpreted as infinite capacity
(unlessuseFastScheduler is YES). The value of this parameter
does not specify how much memory is allocated for the buffers,
since the memory is allocated dynamically.

schedulePeriod (FLOAT) Default =0.0
This defines the amount of time taken by one iteration (defined
above) of the DDF schedule. This is used only for interface with
timed domains, such as DE. Note that if you want the count
given in the debug panel of the run control panel to indicate the
number of iterations, you should set this parameter to one.

runUntilDeadlock (INT ) Default =NO
UnlessuseFastScheduler is set, this modifies the definition of a
single iteration to invoke all stars as many times as possible,
until the system halts. It is risky to use this because the system
may not halt. But in wormholes it is sometimes useful.

restructure (INT ) Default =NO
This specifies that the experimental schedulerDDFClustSched
should be used. This scheduler attempts to form SDF clusters
for more efficient execution. Its use is not advised at this time,
however, since it does not work properly with wormholes and is
slower than the default scheduler.

useFastScheduler (INT ) Default =NO
This specifies that the older and faster DDF scheduler (from
version 0.5.2) should be used. It is difficult, however, to control
the length of a run with this scheduler.

numOverlapped (INT ) Default =1
For the fast scheduler only, this gives the number of iteration
cycles that can be overlapped for execution. When a DDF sys-
tem starts up, it normally begins by firing each source star once,
as explained above. It then goes into a lazy evaluation mode.



The Almagest 7-9

Ptolemy Last updated: 12/1/97

Setting this parameter to an integerN larger than one allows the
scheduler to begin withN firings of the source stars instead of
just one. This can make execution more efficient, because stars
downstream from the sources will be able to fire multiple times
in each pass through the graph. The default value of this param-
eter is 1.

logFile (STRING) Default =
The default is the empty string. If non-empty, this gives the
name of a file to be used for recording scheduler information.

7.5  An overview of DDF stars
The “open-palette” command in pigi (“O”) will open a checkbox window that you can

use to open the standard palettes in all of the installed domains. For the DDF domain, the star
library is small enough that it is contained entirely in one palette, shown in figure 7-6.

Case (Three icons.) Route an input particle to one of the outputs
depending on the control particle. The control particle should be
between zero andN − 1, inclusive, whereN is the number of
outputs.

EndCase (Three icons.) Depending on the control particle, consume a
particle from one of the data inputs and send it to the output.
The control particle should have value between zero andN − 1,
inclusive, whereN is the number of inputs.

DownCounter Given an integer input with valueN, produce a sequence of out-
put integers with values (N − 1), (N − 2), ... 1, 0.

LastOfN Given a control input with integer valueN, consumeN particles
from the data input and produce only the last of these at the out-
put.

FIGURE 7-6: The palette of stars for the DDF domain.

Case

DownCounter

EndCase

Last

LastOfN Repeater

SelfSelf Self Self Self

Case EndCaseCase EndCase

HOF
hof.pal

Token routing

Higher
Order

Functions

Recursion

Upsample/Downsample



7-10 DDF Domain

U. C. Berkeley Department of EECS

Repeater Given a control input with integer valueN, and a single input
data particle, produceN copies of the data particle on the out-
put.

The Higher Order Functions icon leads to the HOF palette that contains HOF stars that
can be used within DDF.

Self (Five icons.) This is a first exploration of recursion and higher-
order functions in dataflow. It is still experimental, so do not
expect it to be either efficient or bug-free.

The star “represents” the galaxy given by the parameterrecur-
Gal, which must be above it in the hierarchy. That is, when the
Self  star fires, it actually invokes the galaxy that it represents.
Since that galaxy is above theSelf  star in the hierarchy, it con-
tains theSelf  star somewhere within it. Thus, this star imple-
ments recursion. Since theSelf  star takes an argument
(recurGal) that specifies the function to invoke, it is itself a
higher-order function.

The instance of therecurGal galaxy is not created until it is
actually needed, so the number of instances (the depth of the
recursion) does not need to be knowna priori. If the parameter
reinitialize is NO or FALSE, then the instance of the galaxy is
created the first time it fires and reused on subsequent firings. If
reinitialize is YES or TRUE, then the galaxy is created on every
firing and destroyed after the firing. Inputs are sent to the
instance of the galaxy and outputs are retrieved from it. The
inputs of the named galaxy must be named “input#?” and the
outputs must be named “output#?”, where “?” is replaced with
an integer starting with zero. This allows the inputs and outputs
of this star to be matched unambiguously with the inputs and
outputs of the referenced galaxy.

7.6  An overview of DDF demos
The demos with icons shown in figure 7-7 illustrate dynamic dataflow principles.

eratosthenes The sieve of Eratosthenes is a recursive algorithm for comput-
ing prime numbers. This demo illustrates the implementation of
recursion in the DDF domain. This is a concept demonstration
only.

errorDemo An example of an inconsistent DDF system. An inconsistent
DDF program is one where the long term average number of
particles produced on an arc is not the same as the average long
term number of particles consumed. This error is detected by
bounding the buffer sizes and detecting overflow.

ifThenElse This demo illustrates the use of an SDF wormhole to implement



The Almagest 7-11

Ptolemy Last updated: 12/1/97

a dynamically scheduled construct using the DDF domain. An
if-then-else is such a dynamically scheduled construct. The top
level schematic represents an SDF system, while the inside
schematic represents a DDF system (implementing an if-then-
else).

fibonnacci Generate the Fibonnacci sequence using a rather inefficient
recursive algorithm that is nonetheless a good example of how
to realize recursion.

loop This demo illustrates data-dependent iteration. Input integers
are repeatedly multiplied by 0.5 until the product is less than
0.5. Turn on animation to see the iteration.

picture Construct a two-dimensional random walk using a hierarchy of
nested wormholes. The outermost SDF domain has a wormhole
called “drawline” which internally uses the DDF domain. That
wormhole, in turn, has a wormhole called “display” which
internally uses the SDF domain.

repeat This simple demo shows the effect of running a DDF scheduler
on an SDF system. ThefiringsPerIteration pragma is used to
control the meaning of an iteration.

repeater This is a simple illustration of theRepeater  star, used in an
SDF wormhole (DDF inside SDF).

router This is a simple illustration of theEndCase star.

SDFinDDF This rather trivial demo illustrates the use of a DDF wormhole
whose inside domain is SDF. The top-level system (in the DDF
domain) has an if-then-else overall structure, implemented of a
matching pair ofCase andEndCase stars. The inside system

FIGURE 7-7: The DDF demos.

router

ifThenElse

repeater SDFinDDF

fibonnacci

picture

timing

errorDemo

Primes

eratosthenes

test

loop

threshtest

repeat



7-12 DDF Domain

U. C. Berkeley Department of EECS

(in the SDF domain) multiplies the data value by a ramp.

threshtest This demo shows that Karp & Miller style thresholds are sup-
ported in DDF. TheThresh  star is a dummy that implements a
settable threshold.

timing This demo illustrates the use of the DDF domain to implement
asynchronous signal processing systems. In this case, the sys-
tem performs baud-rate timing recovery using an approximate
minimum mean-square-error (MMSE) technique.

7.7 Mixing DDF with other domains
The mixture of the DDF domain with other domains requires a conversion between

different computational models. In particular, some domains associate atime stamp with each
particle, and other domains do not. Thus, a common function at theEventHorizon  is the
addition of time stamps, the stripping off of time stamps, interpolation between time stamps,
or removal of redundant repetitions of identical particles. In this section, DDF-specific fea-
tures on the domain interface will be discussed.

A galaxy or universe implemented using DDF may have a wormhole which contains a
subsystem implemented in another domain. The DDF wormhole looks exactly like a DDF star
from the outside. However, there are certain technical restrictions. In particular, it cannot have
dynamic input portholes, meaning the number of particles consumed by the wormhole inputs
is a compile-time constant. The wormhole is therefore fired when all input ports have new par-
ticles. When it is fired, it consumes the input data, invokes the scheduler of the inner domain,
and retrieves the output particles. Thus, in all respects except one, the DDF wormhole behaves
like an SDF wormhole (see “Wormholes” on page 12-4 for more information). The one excep-
tion is that the DDF wormhole need not consistently produce outputs.

When a DDF system is embedded within another domain, you may need to explicitly
control what constitutes a firing of the subsystem. Specifically, by setting thefiringsPerItera-
tion pragma of a star in the DDF subsystem, you control how many firings of that star are
required to complete an iteration. Zero means “don’t care.”

Note that some work has been done with a CGDDF target which recognizes and
implements certain commonly used programming constructs [Sha92]. See “CG Domain” on
page 13-1 for more information.


