
Chapter 2. The Interactive Graphical
Interface

Authors: Joseph T. Buck
Edwin E. Goei
Wei-Jen Huang
Alan Kamas
Edward A. Lee

Other Contributors: Andrea Cassotto
Wan-Teh Chang
Michael J. Chen
Brian L. Evans
David Harrison
Holly Heine
Christopher Hylands
Tom Lane
Phil Lapsley
David G. Messerschmitt
Rick Spickelmier
Matthew Tavis

2.1 Introduction
The Ptolemy interactive graphical interface (pigi) is a design editor for Ptolemy

applications. It is based on tools from the Berkeley CAD framework. Inpigi , Ptolemy appli-
cations are constructed graphically, by connecting icons. Hierarchy is used to manage com-
plexity, to abstract subsystem designs, and to mix domains (models of computation).

2.1.1 Setup

Ptolemy uses several environment variables (see page 2-51). In order for Ptolemy to
run properly, the following two environment variables must be set in your.cshrc file:

 • PTOLEMY is the full path name of the Ptolemy installation, and

 • PTARCH is the type of computer on which you are running Ptolemy.

Example settings for a.cshrc file follow, along with how to update your path vari-
able:

setenv PTOLEMY ~ptolemy
setenv PTARCH ‘$PTOLEMY/bin/ptarch‘
set path = ($PTOLEMY/bin $PTOLEMY/bin.$PTARCH $path)

When Ptolemy was installed, a fictitious user named ‘ptolemy ’ may have been cre-
ated whose home directory is the Ptolemy installation. If Ptolemy has been installed without

2-2 The Interactive Graphical Interface

U. C. Berkeley Department of EECS

creating a ‘ptolemy ’ user, then use the appropriate path name of the Ptolemy installation for
the value of the PTOLEMY environment variable, such as/usr/eesww/share/
ptolemy0.7 , for example. Once you make the appropriate changes to your.cshrc file, you
will need to reevaluate the file:

source ~/.cshrc

In the documentation, we will generally refer to the home directory of the Ptolemy
installation as$PTOLEMY, but sometimes we forget and use~ptolemy .

Pigi requires the MIT X Window System. If you are not familiar with this system, see
the appendix, “Introduction to the X Window System” on page B-1. Some X window manag-
ers are configured to require that you click in a window before the “focus” moves to that win-
dow. This means that the window will not respond to input just because you have placed the
mouse cursor inside it. You must first click a mouse button in the window. While it is possible
to usepigi with this configuration, it is extremely unpleasant. In fact, it will be rather
unpleasant to useany modern program that makes use of the window system. You will want to
change the mode of the window manager so that the focus follows the mouse. The precise
mechanism for doing this depends on the window manager. For the Motif window manager,
mwm, the appropriate line in the.Xdefaults file is:

Mwm*keyboardFocusPolicy: pointer

For the open-look window manager,olwm, the line is:

OpenWindows.SetInput: followmouse

Alternatively, you can invokeolwm with the option-follow . Typically, the window manager
is started in a file called.xinitrc in your home directory.

If you are running Sun’s OpenWindows, you may find that the Athena widgets have
not been installed;pigi will not run without them. See the installation instructions in the
appendix. For more information on usingpigi with OpenWindows, see “Introduction to the
X Window System” on page B-1.

2.2 Running the Ptolemy demos
A good way to start is by running a few of the Ptolemy demos. Any user can do this,

although average users are not permitted to change the demos. If you feel compelled to change
a demo, you can copy it to your own directory by usingcp -r (see the section below, “Copy-
ing objects” on page 2-44). You can modify the copied version.

2.2.1 Starting Ptolemy

In any terminal window, change to the master demo directory:

cd $PTOLEMY/demo

Start the Ptolemy graphical interface:

pigi &

You should get three windows: avem console window at the upper left of your screen, a pal-
ette with icons of demonstrations below that, and a message window identifying the version of
Ptolemy, as shown in figure 2-1. The borders on your windows may look different, since they
are determined by the window manager that you use. If you have problems starting pigi, see

The Almagest 2-3

Ptolemy Last updated: 12/1/97

“Problems starting pigi” on page A-16. A complete list of options that you can specify on the
command line is given in the section “Command-line options” on page 2-53. For example, if
you are only interested in running the instructional/demonstration version, which only con-
tains the Synchronous Dataflow and Discrete-Event Domains, then evaluate

FIGURE 2-1: If you start pigi in the directory $PTOLEMY, once the system is started you will see
these three windows. The upper left window is the vem console window. Below that is
a palette of icons representing demo directories. To the right is the Ptolemy welcome
window.

2-4 The Interactive Graphical Interface

U. C. Berkeley Department of EECS

pigi -ptiny &

Once you get all three windows, you have started two processes: the graphical editor,
vem, and a process namedpigiRpc that contains thepigi code and the Ptolemy kernel. The
vem window prints the textual commands corresponding to your selections with the mouse.
Watching thevem window is useful in diagnosing mistakes, such as drawing a box when you
meant to draw a line. Thevem console window also displays debugging messages, as well as
the error and warning messages that appear in popup windows.

Clicking any mouse button in the welcome window (the one with the picture of Mr.
Ptolemy) will dismiss it. Clicking the left mouse button on the “more information” button will
display copyright information. The remaining windows can be moved and resized using what-
ever mechanism your window manager supports. The windows can be closed by typing a con-
trol-d with the mouse cursor inside the window. Closing thevem console window will
terminate the entire program.

For reference, a summary of the pertinent terms is given in table 2-1 on page 2-4.
These will be discussed in more detail as we go.

The palette window contains icons. Five different types of icons are used inpigi , as
shown in figure 2-2. The ones in the palette window are of the first type; they represent other
palettes. If you have a color monitor, the outline on these icons is purple.

2.2.2 Exploring the menus

Place the mouse cursor on the icon labeled “SDF”. Get thepigi command menu by
holding the shift key and clicking the middle mouse button. This style of menu is called a
“walking menu.” Make sure you hold the shift button. The resulting command menu is shown

Category Term Definition

Programs Ptolemy The entire design environment

pigi The Ptolemy graphical interface, including bothpigiRpc andvem

vem A graphical editor for oct, upon whichpigi is built

pigiRpc A process (with remote procedure calls) attached tovem by pigi

Design
database

oct The design manager and database

facet A design object (a schematic or a palette)

schematic A block diagram

palette A facet that contains a library of icons rather than a schematic

Ptolemy
objects

Star Lowest level block in Ptolemy, with functionality defined in C++

Galaxy A block made up of connected sub-blocks, with inputs and/or outputs

Universe An outermost block representing a complete system that the user can run

Domain An object defining the model of computation, which defines the behavior of a net-
work of blocks. In code generation, a domain also corresponds to single target
language.

Wormhole A galaxy that does not have the same domain on the outside as the inside.

Tcl/Tk Tcl An interpreted language built in topigi

Tk An X window toolkit attached to Tcl

TABLE 2-1: Summary of terms defining software components.

The Almagest 2-5

Ptolemy Last updated: 12/1/97

below:

The names displayed in the left main menu are only headers. To see the individual commands
under each header, you must move the mouse to the arrows at the right of the menu. The sub-
menu that appears on the right contains commands. Clicking any mouse button with a com-
mand highlighted as shown on the right will execute that command. To remove the menu
without executing any command, simply click a mouse button anywhere outside the menu.

2.2.3 Traversing the hierarchy

Go to the “Window” sub-menu, and execute thelook-inside command, as shown above
on the right. A new palette will open, containing icons representing further palettes. Look
inside the first of these, labeled “Basic”. The icons inside contain application programs, called
“universes” in Ptolemy. The two palettes you have just opened are shown in figure 2-3. They
are both explained in further detail in “An overview of SDF demonstrations” on page 5-51.

Note in the Ptolemy menu that thelook-inside directive has an “i” next to it. This is a
“single key accelerator.” Without using the walking menu, you can look inside any icon by
simply placing the mouse cursor and hitting the “i” key on the keyboard. The single-key accel-
erators are extremely useful. In time, you will find that you use the menu only for commands
that have no accelerator, or for which you cannot remember the accelerator. The Ptolemy
commands obtained through the above menu are summarized in table 2-2. The few commands
you will need immediately are shaded in table 2-2.

Look inside the first demo on the third row, labeled “sinMod ”. You will see the sche-

FIGURE 2-2: Five different types of icons are used in pigi. From left to right, the icons represent pal-
ettes (windows containing more icons), universes (windows containing Ptolemy appli-
cations), galaxies (functional blocks defined using other functional blocks), and stars
(elementary or atomic functional blocks). The last icon on the right is the cursor, mark-
ing the position into which the next icon will be placed. On a color monitor, the borders
of the icons have the indicated colors. The designs inside the icons and their shape
are the default. They may be customized.

black border green border blue borderpurple border

��
��

galaxy

the next
icon goes

here
�
���

��
��
��
�
�
�
�

��
��
��
��

palette

�
�
�

��
��

universe star

pigiRpcShell@host

Edit ⇒
Window ⇒
Exec ⇒
Extend ⇒
Filter ⇒
Utilities ⇒
Other ⇒

pigiRpcShell@host

Edit ⇒
Window ⇒
Exec ⇒
Extend ⇒
Filter ⇒
Utilities ⇒
Other ⇒

O open-palette
F open-facet
I edit-icon
i look-inside
y Tycho

2-6 The Interactive Graphical Interface

U. C. Berkeley Department of EECS

matic shown in figure 2-4. Try looking inside any of the icons in this schematic. If you look
inside the icon labeled “modulator”, you will see the lower schematic in figure 2-4. If you
look inside the icon labeled “XMgraph”, this time, instead of graphics, you will see text that
defines the functionality of the block. The syntax of this text is explained in the programmer’s
manual, volume 3 of the Almagest. You can change the editor used to display the text by set-
ting an environment variablePT_DISPLAY (see “Environment variables” on page 2-51).

2.2.4 Running a Ptolemy application

To run thesinMod system using the walking menu, place the mouse cursor anywhere
in the window containing thesinMod schematic, i.e., your cursor should be in the window

dsp.pal

comm.pal

basic.pal

multirate.pal

image.pal

sound.pal

Fixed-
point

Demosfix.pal

TclTcl
init.pal

matrix.pal

MATLAB
matlab.pal

sdf.pal

script.pal

init.pal

Basic

Multirate

Communications

Signal Processing

Sound

Image Processing

Tcl/Tk Graphics Demos

MATLAB Demos

Higher-Order Functions

Matrix Demos

Scripted Runs

User Contributed Demos

Fixed-Point Demos

SDF Demos
Synchronous dataflow (SDF) is used
to model signal processing systems

with deterministic control flow.

FIGURE 2-3: The “SDF” and “basic” palettes. The SDF palette contains icons representing other
palettes containing a variety of demos in the synchronous dataflow domain. The
“basic” palette is one such palette of demos. The icons here represent universes.
These palettes are explained in more detail in “An overview of SDF demonstrations”
on page 5-51

freq
PhaseOffset

complex
Exponentialbutterfly

sinMod

integratorgaussian

quantize tbusmuxDeMux scramble

comparison delayTestchaoticNoise

Modulo

lmsFreqDetect

Basic demos illustrating
simple uses of Ptolemy and

the use of certain stars

The Almagest 2-7

Ptolemy Last updated: 12/1/97

TABLE 2-2: A summary of the Ptolemy commands in the pigi menu, which is obtained by holding
the shift button and clicking the middle mouse button. The single-key accelerators for
commands that have them are shown. The commands that are most useful for
exploring the Ptolemy demos are shaded.

Menu Heading Command Key Description

pigi Edit edit-params e change parameters of a star, galaxy, or universe

edit-domain d change the domain of a universe or galaxy

edit-target T specify a target to manage the execution

edit-comment ; add comment to a universe or descriptor to a galaxy

edit-pragmas a specify attributes of blocks

edit-seed # set the random number seed

find-name highlight a block with a specified name

clear-marks clear all icon highlighting

Window open-palette O open one of the standard palettes of blocks

open-facet F open an arbitrary palette, universe, or galaxy

edit-icon I modify the physical appearance of an icon

look-inside i look inside an icon for its definition

Tycho y invoke the Tycho language-sensitive editor

Exec run R run a universe

run-all-demos testing command - run everything in a palette

compile-facet testing command - translate oct to Ptolemy

display-schedule show the most recent static schedule, if any

Extend make-schem-icon @ make an icon to represent a facet

make-star * dynamically link a new star and make an icon

load-star L dynamically link a star that already has an icon

load-star-perm K link a star so that derived stars can link dynamically

Filter equiripple FIR < invoke a provisional filter design utility

window FIR > invoke another provisional filter design utility

Utilities plot signal ~ plot a signal read from a file

plot Cx signal - plot a complex signal read from a file

DFT ^ plot the DFT of a signal read from a file

DFT of Cx signal _ plot the DFT of a complex signal read from a file

Other facet number H testing command - display the Tcl facet handle

man M open a manual page corresponding to a star

profile , display a brief summary of the functionality of a star

print-facet cntr-P print a facet or generate a PostScript file

show-name n display the name of an icon and its master

options change various esoteric options

version display the version of Ptolemy that is running

exit-pigi quit Ptolemy without exiting vem

2-8 The Interactive Graphical Interface

U. C. Berkeley Department of EECS

that contains the following schematic:

Again holding the shift key, click the middle mouse button. Go to the “Exec” sub-menu, and
select “run” by clicking any button. Notice that typing an “R” would have had the same effect.

singen

��
��

���
���

modulator XMgraph

Modulation of a sine wave
by another sine wave

FIGURE 2-4: One of the synchronous dataflow demos. This Ptolemy application modulates a sine
wave with another sine wave. The upper diagram is the top level. The lower is the con-
tents of the “modulator” subsystem.

Mpy

����
����
����

singen

��
��

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

sinMod universe

modulator galaxy

singen

��
��

���
���

modulator XMgraph

Modulation of a sine wave
by another sine wave

The Almagest 2-9

Ptolemy Last updated: 12/1/97

The following control panel pops up:

If you click the left mouse button on the “GO” button (or hit “return”), Ptolemy will run this
application through 400 iterations. When the run is finished, a graph appears, as shown in fig-
ure 2-5. Try resizing and moving this display. Experiment in thispxgraph window by draw-
ing boxes; to draw a box, just drag any mouse button. This causes a new window to open with
a display of only the area that your box enclosed. Although the new window covers the old, if
you move it out of the way, you can see both at once. Any of the now numerous open windows
can be closed with a control-d.

2.2.5 Examining schematics more closely

Place the mouse cursor in any schematic or palette window, and click the middle
mouse button without holding the shift key. Thevem command menu, which is different from
the pigi command menu, appears. This menu is the same style of “walking menu” as the

FIGURE 2-5: The graph generated by the “sinMod” application in figure 2-4. The graph is displayed
by a program called “pxgraph,” based on xgraph by David Harrison.

2-10 The Interactive Graphical Interface

U. C. Berkeley Department of EECS

pigi menu, and is shown below:

Thevem menu is used for manipulating the graphical description of an application. The com-
mands obtained through this menu are summarized in table 2-3, and explained in full detail in
Chapter 19.

A few additional window manipulations will prove useful almost immediately. In any
of the vem windows, you can closely examine any part of the window by drawing a box
enclosing the area of interest and typing an “o”. Like in apxgraph window, this causes a
newwindow to open, showing only the enclosed area. Unlikepxgraph windows, typing the
“o” is necessary. In addition, you can enlarge a window using your window manager manipu-
lation, and type an “f” to fill the window with the schematic. You can also zoom-in (or mag-
nify) by typing a “z”, and zoom-out by typing a “Z” (see table 2-3 on page 2-11). These and
othervem commands are referenced again later, and documented completely in chapter 19.

2.2.6 Invoking on-line documentation for stars

You may wish to understand exactly how thissinMod example works. There are sev-
eral clues to the functionality of the stars. After a while, the icons themselves will be all you
will need. At this point, you can get several levels of detail about them. First, you will want to
know the name of each star. If you have closed thesinMod window, open it again. Notice the
names that appear on each of the icons. In more complicated schematics, when the icons are
much smaller, the names will not show. You can zoom-in on a region of the window to see the
names. Alternatively, you can place the mouse on any icon and issue the “show-name” com-
mand (in the “Other” menu), or type “n”.

Find thesingen block at the left of thesinMod schematic. To understand its func-
tion, place the mouse cursor on it, and execute the Other:profile command. Here “Other”
refers to the command category and “profile” to the command in the submenu (you may also
type “,”). This command invokes a window that summarizes the behavior of the block, as
shown below:

For some blocks, further information can be obtained with the Other:man1 (“M”) command,

schematic

System ⇒
Display ⇒
Options ⇒
Undo ⇒
Edit ⇒
Selection ⇒
Application ⇒

schematic

System ⇒
Display ⇒
Options ⇒
Undo ⇒
Edit ⇒
Selection ⇒
Application ⇒

p pan
z zoom-in
Z zoom-out
f show-all
= same-scale

The Almagest 2-11

Ptolemy Last updated: 12/1/97

which displays a formatted manual page. Try it on theXMgraph block at the right of the sche-
matic. The ultimate documentation for any block is, of course, its source code. For thesin-
gen block, the source is another schematic. Use the “look-inside” command (using the
accelerator key “i”) to see it. Recall that you can also look at the source code of the lowest
level blocks (calledstars) by looking inside them.

2.2.7 More extensive exploration of the demos

You can safely explore other demos in the palette by the same mechanism. Thebut-

1.The man command uses Tycho to display the HTML format star documentation that
is automatically generated by theptlang program.

TABLE 2-3: A summary of the Ptolemy commands in the vem menu, which is obtained by clicking
the middle mouse button without holding the shift button. The single-key accelerators
for commands that have them are shown. The commands that are most useful for
exploring the Ptolemy demos are shaded. More complete documentation can be
found in chapter 19, “Vem — The Graphical Editor for Oct” on page 19-1.

Menu Heading Command Key Description
vem none no command name cntr-h remove the last argument (point, box, etc.)

del remove the last argument (point, box, etc.)

cntr-u remove all arguments from the argument list

cntr-l (control lower case L) redraw the window

System open-window o open a new view into a facet

close-window cntr-d close a window

where ? find the position of the cursor in oct units

palette P open the color palette for editing icons

save-window S save a facet

bindings b display key bindings (single key accelerators)

re-read restore a facet to the last saved version

Display pan p move the view to be centered at a given spot

zoom-in z zoom in for a closer view of a facet

zoom-out Z zoom out

show-all f rescale the schematic to fit the window

same-scale = used to get two windows to use the same scale

Options window-options adjust snap, grid spacing, etc.

layer-display selectively display colors

toggle-grid g turn on or off the grid display

Undo undo U undo any number of previous changes

Edit create c create a line, icon, name, etc.

delete-objects D remove selected objects from an icon drawing

edit-label E modify a label in a schematic

Selection select-objects s add an object to the argument list for a command

select-net cntr-N select a wire (net) connecting blocks

unselect-objects u remove an object from the argument list

transform t rotate or reflect an object

move-objects m move an object in a schematic

copy-objects x copy one or more objects in a schematic

delete-objects D delete objects from a schematic

Application rpc-any r start a vem application (pigiRpc is one)

2-12 The Interactive Graphical Interface

U. C. Berkeley Department of EECS

terfly demo at the upper left of the “basic” palette in figure 2-3 is particularly worthwhile.
The demos in this and other palettes are briefly summarized in “An overview of SDF demon-
strations” on page 5-51.

The init.pal palette in figure 2-1 contains icons leading to a top-level demo direc-
tory for each domain distributed with Ptolemy. Some of these are labeled “experimental”.
These domains largely reflect research in progress and should be viewed as concept demon-
strations only. The mature domains have no such label, although even these domains contain
some experimental work. A quick tour of the basic capabilities can be had by looking inside
the icon labeled “quick tour” in the start-up palette shown in figure 2-1. Each time you
encounter a universe, run it.

2.2.8 What’s new

For readers familiar with previous versions of Ptolemy, you may wish to take a tour of
the new features only. The “What’s New” icon in theinit.pal palette in figure 2-1 leads to
such a tour. Look inside it and you will see an icon for each of the last several releases. Open
any one and explore the icons therein. Each time you encounter a universe, feel free to run it.

2.3 Dialog boxes
As you explore the demos, you will frequently encounter dialog boxes and control

panels. For example, the run command opens a control panel like the one shown above that,
among other things, allows you to specify how long the simulation should run. Most of the
control panels that you will encounter have been designed using an X window toolkit called
Tk, and every effort has been made to follow the Motif design style. Hopefully, this will look
familiar to most people.

2.3.1 Tk control panels

Most of the items in a control panel are self-explanatory. Consider the run control
panel shown on page 2-9. The button with the double relief (the GO button) is the default but-
ton. Hitting the return key has the same effect at clicking the mouse on this button. A different
type of button is the “check button”, labeled “Debug”. Clicking on this button expands the
control panel, as shown below, giving the user options that are sometimes useful in debugging
a complex application.

The “Animation” buttons show (textually or graphically) which blocks are running at any

The Almagest 2-13

Ptolemy Last updated: 12/1/97

given time. Graphical animation will dramatically slow down a simulation, so it is not advised
except for occasional use. It is often useful in combination with theSTEP button, which will
fire stars one a time.

The EARLY END button terminates the simulation as of the point currently reached, but
then it runs thewrapup methods of the stars, just as if the simulation had ended normally.
Thus, it is an invasive alteration of the behavior of the simulation. The results displayed dur-
ing wrapup may be subtly or wildly different from the results that would have been obtained
if the simulation had been allowed to proceed to its scheduled end time. Some of the demos
will in fact deliver incorrect, or at least unexpected, results if stopped early.

The EARLY END button differs from theABORT button in that theEARLY END button
calls thewrapup methods,ABORT does not. Thus, for example, signal plots that normally
appear at the end of a simulation will not appear whenABORT is used.

Clicking on theDebug button a second time will reduce the control panel to its previ-
ous form.

Many control panels have text widgets. In the control panel above, for example, the
box labeled “When to stop” is a text widget. To change the number, you must use Emacs-like
editing control characters. These are summarized in table 2-4. In addition, using the mouse,
you can position the cursor anywhere in the text to begin editing by clicking the left button.
For example, to enter a new number for “when to stop”, position the cursor in the number box
and type control-k followed by the new number. You can then push the GO button (or type
return) to run the application the specified number of iterations.

Many control panels have more than one text widget. The current field is the one with
the cursor, and anything you type will go into it. To change the current field to a different one,
move the mouse or use the “Tab” key to move to the next one.

2.3.2 Athena widget dialog boxes

Although we have been working hard to eliminate them, a few old-style dialog boxes
based on the Athena widgets from MIT still survive in the system. You will recognize these
immediately because they are much uglier and more difficult to work with than the Tk-based

Key Description

Delete, control-h Delete previous character.

control-a Move to beginning of line

control-b Move backward one character

control-d Delete next character

control-e Move to end of line

control-f Move forward one character

control-k Kill (delete) to end of line

TABLE 2-4: Summary of key bindings for Emacs-style text editing.

2-14 The Interactive Graphical Interface

U. C. Berkeley Department of EECS

widgets. Here is an example:

The text widgets in these dialog boxes also use Emacs-style commands. However, do not type
return; this adds a second line to the dialog entry, which for most commands is confusing at
best. If you accidentally type return, you can backspace sufficiently to get back to one line.
Meta-return is the standard way to invoke the “OK” button in these widgets.

2.4 Parameters and states
To see the parameter values of a star or galaxy, execute the Edit:edit-params command,

which has the accelerator key “e”. Thesingen star in thesinMod application has the fol-
lowing parameter screen:

Notice that thefrequencyparameter is given as an expression, “PI/100” (PI represents the con-
stantπ). This section describes the expression language for specifying parameter values.

The parameter screen can be kept open while you experiment with different values of
the parameters. Try changing the value “PI/100” to “PI/200”. Click “Apply” in the parameter
window, and then “GO” in the run control panel. How does this change the display? Clicking
“Cancel” in the parameter window will restore the parameter values to the last saved values
and dismiss the parameter window. Clicking “Close” will dismiss the parameter window with-
out restoring the parameter values.

2.4.1 A note on terminology

A State is a data-structure associated with a star and is used to remember data values
from one invocation to the next. For example, the gain of an automatic gain control is a state.
A state need not be dynamic since its value may not change during the course of a simulation.
Technically, aparameter is the initial value of a state.Pigi is responsible for defining param-
eter values and storing them in the design database.

The Almagest 2-15

Ptolemy Last updated: 12/1/97

2.4.2 Changing or setting parameters

Theedit-params command inpigi permits the user to set the initial value of a settable
state of any star (lowest level block) and to define and set parameters for a galaxy (composite
block) or universe (complete application).

Passing parameters through the hierarchy

Star parameters may be linked to the parameters of the galaxy or universe that contains
the star. The syntax for linking the values of the star parameters to values of galaxy or universe
parameters is simple. Consider again thesinMod application shown in figure 2-4. The param-
eter screen for themodulator block is shown below:

This block, however, is a galaxy, not a star. If you look inside (as has been done in figure 2-4),
and edit the parameters of thesingen block insidemodulator , you will see

Notice now that the value of thefrequency parameter is a symbolic expression, “freq”. This
refers to the galaxy parameter “freq”. Thus, parameter values can be passed down through the
hierarchy. These symbolic references can appear in expressions, which we discuss next.

Parameter expressions

Parameter values set throughpigi can be arithmetic expressions. This is particularly
useful for propagating values down from a universe parameter to star parameters somewhere
down in the hierarchy. An example of a valid parameter expression is:

PI/(2*order)

whereorder is a parameter defined in the galaxy or universe. The basic arithmetic operators
are addition (+), subtraction (-), multiplication (*), division (/), and exponentiation (^). These
operators work on integers and floating-point numbers. Currently all intermediate expressions
are converted to the type of the parameter being computed. Hence, it is necessary to be very
careful when, for example, using floating-point values to compute an integer parameter. In an
integer parameter specification, all intermediate expressions will be converted to integers.

2-16 The Interactive Graphical Interface

U. C. Berkeley Department of EECS

Complex-valued parameters

When defining complex values, the basic syntax is

(real, imag)

wherereal andimag evaluate to integers or floats.

Fixed-point parameters

Fixed-point parameters may be assigned a precision directly. To do this, the parameter
is given in the syntax “(value, precision)”, wherevalue is an ordinary number andprecision is
given by either of two syntaxes:

 • Syntax 1: As a string like “3.2”, or more generally “m.n”, wherem is the number of
integer bits (to the left of the binary point) andn is the number of fractional bits (to the
right of the binary point). Thus length ism+n.

 • Syntax 2: A string like “24/32” which means 24 fraction bits from a total length of 32.
This format is often more convenient because the word length often remains constant
while the number of fraction bits changes with the normalization being used.

In both cases, the sign bit counts as one of the integer bits, so this number must be at least one.

Thus, for example, a fixed-point parameter might be defined as “(0.8, 2/4).” This
means that a 4-bit word will be used with two fraction bits. Since the value “0.8” cannot be
represented precisely in this precision, the actual value of the parameter will be rounded to
“0.75”.

A fixed-point parameter can also be given a value without a precision. In this case, the
default precision is used. This has a total word length of 24 bits with the number of integer bits
set as required to store the value. For example, the number 1.0 creates a fixed-point object
with precision 2.22, and a value like 0.5 would create one with precision 1.23.

The precision of internal computations in a star is typically given by a parameter of
typeprecision . A precision parameter has a value specified using either of the two syntaxes
above.

2.4.3 Reading Parameter Values From Files

The values of most parameter types can be read from a file. This syntax for this is to
use the symbol< as in the following example:

< filename

First, any parameters appearing in thefilename in the form of{parameter} are
replaced with their values. Then, any references to environment variables or home directories
are substituted to generate a complete path name. Finally, the contents of the file are then read
and spliced into the parameter expression and reparsed. File inputs can be very useful for
array parameters which may require a large amount of data. Other expression may come
before or after the<filename syntax (any white space that appears after the< character is
ignored).

2.4.4 Inserting Comments in Parameters

Comments are also supported for non-string parameters. A comment is specified with

The Almagest 2-17

Ptolemy Last updated: 12/1/97

the# symbol. Everything after the# until the end of the line is discarded when the parameter
is evaluated. Comments are especially useful in combination with files as they can help
remind the user of which galaxy or star parameter the file was written.

For example, a comment could be added to thefrequency parameter above:

freq # This is set to the Galaxy parameter

Comments are not supported for the String parameter or String Array parameter types.
In fact, when the image processing stars use String states to represent a filename, the# charac-
ter is used to denote the frame number of the image being processed.

2.4.5 Using Tcl Expressions in Parameters

Arbitrary Tcl expressions can be embedded in a parameter expression by preceding the
expression with the! character as in the following example:

! "expression"

First, parameters in the form of{parameter} appearing in the expression are
replaced by their values. Then, the string is sent to the pigiRpc Tcl interpreter for evaluation.
Finally, the result is spliced into the parameter expression and reparsed. The pigiRpc Tcl inter-
preter is the same interpreter that appears as a window whenpigi is started by usingpigi -
console .

This facility is general and supports both numeric and symbolic computing of expres-
sions. Through Tcl, one can access all of its math functions, which generally behave as the
ANSI C functions of the same name:abs , acos , asin , atan , atan2 , ceil , cos , cosh ,
double , exp , floor , fmod , hypot , int , log , log10 , pow, round , sin , sinh , sqrt , tan ,
andtanh . So, a parameter expression could be

! "expr sqrt(2.0 / {BitDuration})"

for the amplitude of the oscillators in a binary frequency shift keying system, in which
BitDuration is a parameter. Theexpr command is a Tcl command that treats its arguments
as a single mathematical expression that must evaluate to a number.

The Tcl mechanism can be used to return symbolic expressions:

! "join 2*gain1"

Becausegain1 is not surrounded by curly braces, its value is not substituted before
passing the expression to the Tcl interpreter. The Tcl interpreter will return2*gain1 which is
then evaluated by the parameter parser.

Note that whitespace between! and" is permitted in numeric parameters, but not in
string parameters: to get a Tcl call to be recognized in a string parameter you must write:

!"list /users/ptolemy/myfile"

There are several Tcl commands embedded inpigiRpc that help support parameter
calculations. They are:listApplyExpression , max, min , range , rangeApplyExpres-
sion , andsign . For example,

! "min [max 1 2 3] [sign -2]"

first evaluates tomin 3 -1 and then to-1 . The procedurerange returns a consecu-
tive sequence of numbers:

2-18 The Interactive Graphical Interface

U. C. Berkeley Department of EECS

! "range 0 5"

returns0 1 2 3 4 5 . The rangeApplyExpression procedure generates a
sequence of values by applying a consecutive sequence of numbers to a Tcl expression that is
a function ofi . For example, you can generate the taps of an FIR filter that is a sampled sinu-
soid by using

! "rangeApplyExpression { cos(2*{PI}*$i/5) } 0 4"

generates one period of sinusoidal function and returns

1.0 0.309042 -0.808986 -0.809064 0.308916

The listApplyExpression is similar torangeApplyExpression except that it
only takes two arguments: the second argument is a list of numbers to substitute fori in the
expression. The command

! "listApplyExpression { cos(2*{PI}*$i/5) } [range 0 4]"

is equivalent to the previous example of therangeApplyExpression function.

If you are running Tycho TclShell from withinpigi or pigi -console , you can
receive help on the new Tcl procedureslistApplyExpression , max, min , range , range-
ApplyExpression , andsign , by typing

help sign

at the prompt. To start Tycho from withinpigi , type ay while the mouse is over avem facet
or palette.

The Tycho TclShell and thepigiRpc console includes the Ptolemy interpreter (ptcl)
which defines the help mechanism. Help is available on all of the commands we have added to
the Tcl language.

2.4.6 Using Matlab and Mathematica to Compute Parameters

Since Tcl can be used to compute parameters as described in the previous section,
Ptolemy’s Tcl interface to Matlab [Han96] and Mathematica [Wol91][Bla92] can be used to
compute parameters. This allows even more expressiveness, but the drawback is that demon-
strations relying on Matlab and Mathematica will only work at sites that have Matlab and
Mathematica installed. For example, we can use Matlab to design an 32-order FIR half-band
filter using the Parks-McClellan optimal equiripple FIR filter design algorithm:

! "matlab getpairs c {c=remez(32, [0 0.4 0.6 1], [1 1 0 0])}"

Similarly, we can use Mathematica to derive formulas to be used as parameters:

! "mathematica get c {c=Integrate[A x, {x, 0, 1}]}"

This command returns the symbolic expressionA/2 which is reparsed by Ptolemy.
Matlab and Mathematica can be used to keep track of how parameter values are computed.
Mathematica can also be used to return symbolic expressions that can be used in conjunction
with higher-order functions to define scalable systems [Eva95].

The Ptolemy interface to Matlab and Mathematica can also be accessed from the
pigiRpc console window, and the Tycho editor offers console windows that mimic the Matlab
and Mathematica teletype (tty) interfaces. More information about the options of the Tcl com-
mandsmatlab andmathematica can be found by using the help facility described above.

The Almagest 2-19

Ptolemy Last updated: 12/1/97

2.4.7 Array parameters

When defining arrays of integers, floats, complex numbers, fixed-point numbers, or
strings, the basic syntax is a simple list separated by spaces. For example,

1 2 3 4 5

defines an integer array with five elements. The elements can be expressions if they are sur-
rounded by parentheses:

1 2 PI (2*PI)

Repetition can be indicated using the following syntax:

value[n]

wheren evaluates to an integer. An array or portion of an array can be input from a file using
the symbol< as in the following example:

1 2 < filename 3 4

Here the first two elements of the array will be 1 and 2, the next elements will be read from file
filename, and the last two elements will be 3 and 4. This latter capability can be used in
combination with theWaveForm star to read a signal from a file.

2.4.8 String Parameters

There is a bit of complication when one wishes to set a string parameter or string array
parameter equal to the value of a galaxy or universe parameter. This is because a distinction
must be made between a sequence of characters that give the name of a symbol and a
sequence of characters to be interpreted literally. The syntax to use is explained in the exam-
ple:

This string has the word {word} taken from another parameter

Here{word} represents the value of a string universe or galaxy parameter. This capability is
especially useful for constructing labels for output plots. When using string states to specify
options for a Unix command, as in the options parameter inXgraph stars, you can use either
double quotes or single quotes to include white space within a single word:

-0 ’original signal’ -1 ’estimated signal’

String arrays have a few more special restrictions. Each word (separated by white
space) is a separate entry in the array. To include white space in an element of the array, use
quotation marks. Thus, the following string array

first "the second element" third

has three elements in it. The string array

repeat[10]

has ten separate copies of the string “repeat” in 10 separate entries in the array. Curly braces
are used to substitute in values from galaxy parameters. Thus, in

{paramname}

paramname must be the name of either a string array or a scalar-valued parameter (an integer,
float or complex array, for example, is not permitted). If it is a string array, then each element
of paramname becomes an element of the parameter. If it is some other kind of parameter the
value becomes a single element of the string array.

2-20 The Interactive Graphical Interface

U. C. Berkeley Department of EECS

To use one of[,] , { , or } literally, quote them with double quotes. To turn off the spe-
cial meaning of a double quote, precede it with a backslash:\" . Similarly, use\\ to get a sin-
gle backslash.

String array values may also be read from files using the< symbol. For details on how
to use file references, see section 2.4.3 above. Note that for string arrays, the filename can be a
literal string such as

< $PTOLEMY/data/filename

as well as a string that refers to parameters such as

< $PTOLEMY/{data_dir}/data_file

in which case the value of the parameterdata_dir would be substituted. Ptolemy does not per-
form expansion of filenames such asfile.{1,2} into file1 file2 as a Unix shell might
do.

2.5 Particle types
The packets of data that pass from one star to another in Ptolemy are calledparticles.

So far, all particles have simply been floating-point numbers representing samples of signals.
However, several other data types are supported. Each star icon has a stem for each porthole.
In pigi , if you are using a color monitor, the color of the stem indicates the type of data that
the porthole consumes or produces, as summarized in table 2-5. A blue stem on an input or
output of a star icon indicates type “float”, a purple stem indicates type “fix” for fix-point par-
ticles, a white stem indicates type “complex”, an orange stem indicates type “int” for integer
particles, a green stem indicates “message”, a black stem indicates type “string”, a yellow
stem indicates type “file”, and a red stem indicates “anytype”. The “message” type is a user-
defined data type (see the programmer’s manual). A star that operates on “anytype” particles
is said to bepolymorphic. Polymorphic stars operate on multiple types of data. For example, a
Printer star can produce a textual representation of any type of particle. In addition, stars

TABLE 2-5: Data types supported by the Ptolemy kernel.

Type name Stem Color Description

ANYTYPE red any data type is accepted

FLOAT blue floating-point scalars

FLOAT_MATRIX_ENV blue (thick) floating-point matrices

COMPLEX white complex scalars

COMPLEX_MATRIX_ENV white (thick) complex matrix

INT orange integer scalar

INT_MATRIX_ENV orange (thick) integer matrix

FIX violet fixed-point scalar

FIX_MATRIX_ENV violet (thick) fixed-point matrices

MESSAGE green user-defined data type

STRING black string

FILE yellow filename

The Almagest 2-21

Ptolemy Last updated: 12/1/97

which input or output Matrix type particles have stems which are extra thick with colors corre-
sponding to the four main types, float, int, complex, and fix.

Ptolemy usually makes conversions between numeric particle types automatically. The
float to complex conversion does the obvious thing, putting the float value into the real part of
the complex number and setting the imaginary part to zero. The complex to float conversion
computes the magnitude of the complex number. Int to float is easy enough. Float to int
rounds to the nearest integer.

TheXscope star, and some other stars that generate output, accept “anytype” of input.
HoweverXscope isn’t completely polymorphic, because it converts all inputs to float inter-
nally. So for a complex input, the magnitude will be plotted. If you want to plot both the real
and imaginary parts you should use theComplexReal conversion star first.

In some situations automatic type conversions cannot be made. A common difficulty
involves several outputs of different types feeding aMerge star. Ptolemy must assign a spe-
cific type to theMerge star’s output, but in this case it will be unable to decide which type to
use, so it will complain that it “can’t determine DataType” for the output. The solution is to
insert one or more type conversion stars, so that all the values arriving at theMerge star have
the same type. (The type conversion stars can be found in the “conversion” palette of the
appropriate domain. It will be explained below how to find this.)

There are no automatic conversions between matrix particles and scalar particles; in
fact the matrix particle types do not support automatic type conversion at all. Conversion stars
need to be explicitly inserted between two stars that work on different Matrix types.

Some domains are more restrictive about particle type conversions than others.
Assignment of types to ANYTYPE portholes and resolution of type conflicts is discussed fur-
ther in section 4.6 of the Ptolemy Programmer’s Manual, and in the Ptolemy Kernel Manual.

2.6 The oct design database and its editor, vem
With the experience gained so far, it may be helpful to explain more clearly the soft-

ware architecture of the system.Pigi is built on top of existing CAD tools that are part of the
Berkeley CAD framework. An important component of this framework isoct , which serves
as the design database.Oct keeps track of block connections, parameter values, hierarchy, and
file structure, and hence moderates all accesses to designs stored on disk. The organization is
shown in figure 2-6.Vem is an interactive graphical editor foroct . Vem provides one of many
ways to examine and edit designs stored byoct . This chapter gives just enough information
aboutvem to use it with Ptolemy in simple ways. More complete documentation is contained
in chapter 19, “Vem — The Graphical Editor for Oct” on page 19-1.

In pigi , the Ptolemy kernel runs in a separate Unix process, calledpigiRpc ,
attached tovem. Users edit designs usingvem, store their designs usingoct , and execute their
application through the link to the Ptolemy kernel. The two Unix processes are shown in the
shaded boxes in figure 2-6. The user interacts with both processes but only the user interface
of thepigiRpc process has been upgraded to use Tcl/Tk, as explained above. With this soft-
ware architecture in mind, we can now define terms that we have been using informally.

Oct objects (which are stored on disk) are called facets. Afacet is the fundamental
unit that a user edits withvem. As an analogy, we can think of a facet as a text file in a com-

2-22 The Interactive Graphical Interface

U. C. Berkeley Department of EECS

puter system andvem as a text editor, such asvi or emacs. However, instead of calling sys-
tem routines to access the data stored in a text file likevi does,vem calls oct routines to
access the data stored in a facet. Thus,oct manages all data accesses to facets. Facets may
define a universe or a galaxy, for example. Thus, figure 2-4 on page 2-8 shows a facet that
defines a universe and a second one that defines a galaxy.

Facets may also define the physical appearance and formal terminals of icons that rep-
resent stars, galaxies, universes, and wormholes, e.g., the physical appearance of each icon in
figure 2-4 is defined in another facet called theinterface facet. A schematic that uses icons, by
contrast, is called acontents facet.The “edit-icon” command (“I”) will open the facet defining
an icon. Instructions for modifying the appearance of an icon are given in “Editing Icons” on
page 2-34.

A facet may also contain apalette, which is simply a collection of disconnected icons.
Palettes are directories of stars, galaxies, and universes in a library. Thus, for example, figure
2-3 on page 2-6 shows two palettes, both of which contain sets of icons. Note that facet
names, like file names in Unix, should not contain spaces.

2.7 Creating universes
If you are following this chapter sequentially, then you still have Ptolemy running

from previous sections. To see how Ptolemy will behave when started in your own directory,
exit pigi . Do this by typing a control-d character in thevem console window. A dialog box
may appear with a menu of facets thatvem thinks have been changed. Since all of these
belong to the user “ptolemy”, you do not want to save them. If it appears, do not select any of
them. Just click “OK”. A a warning window may then appear telling you that closing the con-
sole window will terminate the program. Just click “Yes”.

In this section, we will show how to create your own universes with a simple example
that is very similar to thesinMod demo explored above. First, be sure you are in a directory
where you have write permission, like your home directory.

FIGURE 2-6: The software architecture of the Ptolemy design environment running under pigi, the
graphical interface. The user interacts with two Unix processes, pigiRpc and vem.

file

oc
t

oc
t

Tcl/Tk

pigiRpc

vem

Ptolemy kernel

Athena widgets

Ptolemy user

remote
procedure
calls

Ptolemy domains
system

X window system

The Almagest 2-23

Ptolemy Last updated: 12/1/97

 • Create a new work area:

mkdir example
cd example

 • Startpigi :

pigi

You will see the message:

creating initial facet "init.pal"

Wait until the welcome window with the picture of Ptolemy appears. We are now ready to
learn about the basics of usingvem.

2.7.1 Opening working windows

Now we are ready to create a simple universe. Let’s create a simulation that generates
a sine wave and displays it.

 • Open a new facet: The facet that is already open, called “init.pal ”, is special
becausepigi always opens a facet by this name in the directory in which it starts.
Convention in Ptolemy dictates that “init.pal ” should be used to store icons repre-
senting complete applications, so instead of using this facet, we will create a new one.

 - Place the cursor in window labeled “init.pal:schematic”.

 - Select theopen-facet command from the “Window”pigi menu (shift-middle-
button). Alternatively, type an “F”. You will get a directory browser that looks
like this:

 - Replace the name “init.pal” in the text widget with “wave” and click the “OK”
button (or hit the return key). A quick way to delete the “init.pal” is using con-
trol-u. A new blank window will appear.

2-24 The Interactive Graphical Interface

U. C. Berkeley Department of EECS

 • Open a palette:

 - Place the cursor in either blank window.

 - Select theopen-palette command from the “Window”pigi menu. Alterna-
tively, type an “O”.

 - Pigi will present a palette menu. Select the “sdf” palette by clicking the left
button in the box next to “$PTOLEMY/src/domains/sdf/icons/main.pal” (the
first entry) and then click on “OK”.

 - The palette that opens is shown on the left of figure 2-7. This palette shows the
basic categories of synchronous dataflow stars that are available. There are too
many stars to put in just one palette. You can use the Window:look-inside (“i”)
command to open any of the palettes. At this point you should look inside the
“Signal Sources”, “Nonlinear Functions”, and “Signal Sinks”. Arrange these
palettes on the screen so that you can see the blank window labeled “wave”.
The stars and palettes are summarized in “An overview of SDF stars” on
page 5-4.

2.7.2 Some basic vem commands

At this time, it is worth exploring some basicvem commands for manipulating win-
dow displays.Vem uses post-fix commands. This means that the user enters the arguments to a
command before the command name itself. Arguments appear in thevem console window as
the user enters them. Note that although the text of what the user enters is displayed in the
console window, the cursor should be in one of the facet windows.

There are several types of arguments. Each argument type is entered in a different way.
All graphics arguments are created with the left mouse button. The five types of arguments are
listed below:

Point: Position the cursor, click the left mouse button.

Box: Position the cursor, drag1 the left mouse button.

Line: Make a point, position the cursor on the point, and drag the left mouse button.

Object: Useselect-objects andunselect-objects commands (explained later).

Text: Enclose text in double quotes.

Arguments can be removed from the command line by typing the delete key, backspace key,
or “control-u”, which deletes all the current arguments. There are three ways to enter com-
mands:

Menus: Click the middle-button forvem commands, shift-middle-but-

1. “Drag” means to press down on a mouse button, move the mouse while holding it down, and then
release the button.

The Almagest 2-25

Ptolemy Last updated: 12/1/97

ton forpigi commands. Menus are of the “walking” variety, as
explained before.

Key bindings: Commands can be bound to single keys and activated by just
pressing the key. Key bindings are also called “single-key accel-
erators”, and are case sensitive. The key bindings are summa-
rized in table 2-2 on page 2-7 and table 2-3 on page 2-11.

FIGURE 2-7: The master palette for the stars in the SDF domain (left) and one of the sub-palettes
(right). The subpalette shows “sources” (signal generators). The palettes are
explained in more detail in “An overview of SDF stars” on page 5-4.

comm.pal

sources.pal

sinks.pal

arithmetic.pal

nonlinear.pal

control.pal

conversion.pal

dsp.pal

image.pal

logic.pal

matrix.pal

matlab.pal
Matlab HOF

hof.pal

test
contrib.pal

spectral.pal

telecomm.pal

sdfvis.pal

dmm.pal

radar.pal

neural.pal

Signal Sources

Signal Sinks

Arithmetic

Nonlinear Functions

Control

Conversion

Spectral Analysis

Design Flow Management

Telecommunications

Logic

Matlab Functions Higher Order Functions

Spatial Array Processing

User Contributions

Matrix Functions

Signal Processing

Communications

UltraSparc Native DSP

Neural Networks

Image and Video Processing

Synchronous Dataflow (SDF) Stars

expgen

Const

Const

Impulse

Rect

Ramp

WaveFormCx

RampInt

WaveForm

IIDUniformIIDGaussian

ReadFile

bus

singen

RampFix RectFix

TkSlider TkButtons TkButtons

Const

TclTcl
TclScript

TclTcl
TclScript

Window

Matrix CxMatrix FixMatrixIntMatrix

Identity_M
0

0

IdentityInt_M
0

0

IdentityCx_M
0

0

IdentityFix_M
0

0

11010
bits

Var
Read

Matlab
Matlab_M

Matlab
MatlabCx_M

Const

DTMFGenerator

RectCxPCMReadInt

RanConst

Signal Sources

Matrix Sources:

Floating-Point Sources

(Interactive)

Integer Sources

Complex SourcesFixed-Point Sources

2-26 The Interactive Graphical Interface

U. C. Berkeley Department of EECS

Type-in: Type a colon followed by the command name. This is rarely
used by Ptolemy users, butvem experts use it occasionally.

Let’s try a few examples, some of which should be familiar by now. Place the cursor in one of
the palette windows (containing library stars) and:

 • Type “shift-Z” (capital Z) forzoom-out. This makes everything smaller.

 • Type “z” (lower-case z) forzoom-in. This makes everything bigger. If you zoom in
sufficiently, labels will appear below each icon giving the name of the star.Vem does
not display these labels if they would be too small.

 • Try “p” for pan. Pan moves the spot under the cursor to the center of the window.

 • Thevem pan command can also take as an argument a point which will indicate the
new center of the window. Recall that the argument must be entered first. Place a point
somewhere in the palette window by clicking the left button, and type “p”. The loca-
tion of your point became the center of the window.

 • Thevem open-window command can take a box as an argument. Draw a box in the
palette window by dragging the left mouse button and then type “o”, or find theopen-
window command in thevem menu.

 • Try placing points in the new window. Notice that they also appear in the original pal-
ette window. Also notice that you are only permitted to place points at certain loca-
tions. Vem has an implicitgrid to which pointssnap. The default snap resolution is
suitable for making Ptolemy universes.

 • You can get rid of your point (or any argument list) by typing “control-u”. You can
delete arguments one-at-a-time by typing “control-h”. Try placing several points and
then deleting them one by one.

 • You can close the new window (or anyvem window) with “control-d”.

 • A particularly useful command at this time isshow-all, or “f”. This rescales and
recenters the display so that everything in the facet is visible. Try this command in the
palette window that you have been working with.

 • You can also resize a window, using whatever X Window bindings you have installed,
and then type “f” to rescale the display to fill the window.

2.7.3 Building an example

 • Create an instance of the star called “Ramp”. This star is at the upper right of the
sources palette. Its icon has an orange triangle. To do this:

 - Put the cursor in the window “wave:schematic”.

 - Create a point anywhere in the window by clicking the left button.

 - Move the cursor over the “Ramp” icon in the palette and press the “c” key. This
is a key binding that executes thevem “create” command.

The Almagest 2-27

Ptolemy Last updated: 12/1/97

 - You have just created aninstance of the “Ramp” icon. The actual data that
describes how the “Ramp” icon should be drawn is stored in another facet (an
“interface facet”). Aninstance of the “Ramp” icon points to this facet.

 • Delete and select instances: Sometimes in the process of editing your schematic, you
may need to delete objects. As an example, let’s create anotherRamp instance and then
delete it.

 - Create anotherRamp instance next to the first one: place a point near the origi-
nal Ramp, place the cursor over theRamp icon in the palette and press “c”.
Actually, you don’t have to use the icon in the palette — you could also put the
cursor over the already existingRamp icon to achieve the same effect.

 - Place the cursor over the newRamp icon and executeselect-objects by typing
“s”. This creates an object argument on thevem command line. This is neces-
sary because thevem delete-objects command takes arguments of type
“object”. Theselect-objects command takes point, box, and/or line arguments
and turns the items underneath them into object arguments. Theunselect-
objects command (“u”) does the reverse ofselect-objects.

 - Executedelete-objects by typing “D” (upper-case!). This deletes the objects
we selected previously.

 - You could also have deleted the newly created Ramp with theundo command
(“U”). This is an infinite undo, so you can backtrack through all changes you
have made since starting thevem session by repeatedly executing the undo
command.

 - Occasionally when you use the select and unselect commands, the objects are
not redrawn correctly. When this happens, use thevem redraw-window com-
mand, “control-l” (lower case L), to redraw.

 • Create the remaining instances in our example:

 - Create an instance of the “Sin ” icon to the right of the Ramp. “Sin ” is in the
“nonlinear” palette, where icons are arranged alphabetically by name. Make
sure it does not overlap with the Ramp icon. If it overlaps, you can delete it and
create a new one.

 - Create an “XMgraph ” instance to the right of theSin icon. “XMgraph ” is the
first icon in the first row of the “sinks” palette.

We now have three icons: aRamp, aSin , and anXMgraph . Your facet should look something

2-28 The Interactive Graphical Interface

U. C. Berkeley Department of EECS

like this:

Next, we will connect them together.

 • Connect theRamp output to theSin input using the following steps:

 - With the mouse cursor in the “wave” window, type “f” to show all. This will
rescale your system, and make it easier to make connections.

 - Draw a line between the output of theRamp and the input of theSin : put the
cursor over theRamp output, double-click on the left mouse button, drag the
cursor to theSin input, and then let up on the mouse button. If the two termi-
nals are not on a horizontal line, you can bend the line by momentarily releas-
ing the mouse button while dragging it.

 - Type “c” (forcreate) to create a wire. Notice that thecreate command creates
wires or instances depending on the type of arguments it is called with.

 - If you need to delete a wire, you can draw a box around it (click and drag with
the mouse), select it (press “s”), and then delete it (“D”).

 • Connect theSin output to theXMgraph input in a similar way.

 • Run the universe: We now have a complete universe that we can simulate.

 - Execute therun command from thepigi “Exec” menu, or type an “R”.

 - Enter “100” for “When to stop”. Do this by typing “control-u” to remove the
default entry in the text widget and typing 100. This specifies that the system
should be run through 100 “iterations”. What constitutes an iteration is
explained in chapter 5, “SDF Domain” on page 5-1. For this simple system, it
is just the number of samples processed.

 - Clicking on the GO button or typing a return character will run the system.

A new window with a graph of a rough sine wave should appear. The system generates the
sine wave by taking the sine of a sequence of increasing numbers generated by theRamp star.
The execution of theXMgraph star created this new window to show the output of our simula-
tion. To remove this window, click on the “Close” button or press “control-d” in it.

 • Save the facet by typing “S” (upper-case) with the cursor in the “wave” window. This

Ramp
����
����
����
����

Sin

XMgraph

The Almagest 2-29

Ptolemy Last updated: 12/1/97

executes thevem save-window command. It is wise to periodically save your work in
case the editor or computer system fails unexpectedly.

 • Change parameters: If we look at the output, the sine wave appears jagged. This is
because theRamp star has a set of default parameters which cause it to generate output
values with an increment that is too large. We can change the parameters of as follows:

 - Place the cursor over theRamp icon and executeedit-params in thepigi menu
(or type “e”). A dialog box will appear that shows the current parameters.

 - Replace the value ofstepwith “PI/50”. (You can use “control-u” to erase the
old value.) Finally, click the “OK” button to store the new parameters. This is
an example of Ptolemy’s parameter expression syntax, explained above.

 • Run the simulation again using 100 iterations. This time the output should look like
one cycle of a reasonably smooth sine wave.

 • Usesave-window again to save the new parameters.

To be able to conveniently access this example again, you should create an icon for it. We will
do this with thepigi command “Extend:make-schem-icon”, or “@”.

 • Place the mouse cursor in the “wave” facet window, and hit the “@” key. A dialog box
appears asking for the name of the palette in which you would like to put the icon. By
convention, we put universe icons in palettes called “init.pal”. So replace the default
entry (which should be “./user.pal”) with “init.pal”. When the icon is made, find the
“init.pal” window that first opened when you started the system, and type “f” to show
all. It should look like this:

Looking inside this icon (“i”) will get you your “wave” facet. The second item in the
palette is a marker indicating where the next icon that you create will go. Henceforth,
anytime you startpigi in this same directory, the first window you will see will be
this “init.pal” window.

 • Our example is now complete. To exit:

 - Close all pxgraph windows with “control-d”.

 - Type “control-d” in thevem console window. If nothing needed to be saved,
the program exits immediately. Otherwise, a dialog box appears asking you to
choose buffers to be saved. Unfortunately, as of this writing, some of the buff-
ers listed may have already been saved and do not need to be saved again. The
program is overly cautious. To indicate which of the listed buffers you wish to

the next
icon goes

here

�
�
�

�

wave

2-30 The Interactive Graphical Interface

U. C. Berkeley Department of EECS

save, click on the box to the left of each name. Then click on the “OK” button.

 - A final warning appears telling you that closing the console window will termi-
nate the program. Click on “Yes”.

2.8 Using galaxies
In this section we will explain how to create galaxies. Galaxies allow you to use hierar-

chy to partition your design into more manageable pieces and to re-use designs as components
in other designs.

2.8.1 Creating a galaxy

Use the schematic we created in the last example to make a sine wave generator galaxy.

 • Instead of modifying our previous example, we will make a copy of it. In your “exam-
ple” directory, type:

cp -r wave singen

The recursive copy,cp -r , is necessary becauseoct stores data using a hierarchical directory
structure. Of course, if the facetsingen exists already, you must remove it withrm -r first
before copying.

 • Startpigi .

 • Useopen-palette (or “O”) to open the “$PTOLEMY/lib/colors/ptolemy/system” pal-
ette (the last one in the list of palettes). The system palette contains input and output
ports which can be instantiated into schematics just like stars. The contents of the pal-
ette are shown below:

 • Useopen-facet (or “F”) to open the “singen” you created using “cp -r ”. You can use
the file browser shown on page 2-23; just double click on the name “singen” in the
lower window of the browser.

 • In the “singen” window, delete theXMgraph star and the wire attached to it. The easi-
est way to do this is draw a box (click-drag) around the star and its input wire, press
“s” to select these objects, and then press “D” to delete them. (You may want to
enlarge your window to make it easier to work.)

 • Place an output port where theXMgraph star used to be and connect it to the output of
the Sin star. The output port is the icon in the system palette with an arrowhead (an
input port, by contrast, has a fish tail), as shown above.

 • Name the output port “out”:

 - Position the cursor over the black box on the new output port.

�������
�������
�������
�������
�������
�������

������
������
������
������
������
������

bus			
			
			
			

The Almagest 2-31

Ptolemy Last updated: 12/1/97

 - Type “out” as a text argument, including quotation marks.

 - Type “c” forcreate. Again, note that thecreate command has a different action
than before. It names input or output terminals when given a text argument.

We now have a galaxy. The fact that a schematic has input or output ports distinguishes it as a
galaxy. This galaxy that you just created is similar to the “singen” galaxy in the “Signal
Sources” palette. Find it, and look inside, to make the comparison.

2.8.2 Using a galaxy

We have just created a galaxy that we would like to use in another design. In order to
do this, we need to create an icon for this galaxy that we will then instantiate in our other
design.

 • Create an icon:

 - Place cursor in “singen:schematic” window.

 - Executemake-schem-icon in thepigi “Extend” menu (“@”).

 - The dialog box should contain:
Palette: ./user.pal

This specifies the name of the palette that will contain your icon. By conven-
tion, we usually put galaxy icons in the palette called “user.pal” in the current
directory. Hence, this is the default name.

 - Since you had already created an icon for the “wave” universe, and that icon
was copied by yourcp -r , vem asks whether it is OK to overwrite the icon.
Click “OK”. Wait until make-schem-icon is done.Vem informs you that it is
done with a message in thevem console window, which may be buried by now.

 • Open the palette called “user.pal ” usingopen-palette (“O”). The newly created gal-
axy icon should appear in this palette along with the same special icon we saw before,
called acursor. A cursor distinguishes a palette from other types of facets and it
determines where the next icon will be placed.

 • At this point, we have an icon for our sine wave generator galaxy. It is this icon facet
that is instantiated in the “user.pal ” palette. We can now use our sine generator gal-
axy simply by instantiating our icon into another schematic.

 • Useopen-facet to create a new facet with the name “modulation ”.

 • In the “modulation” window, create a universe that takes two “singen” galaxies, multi-
plies their outputs together, and then plots the result using “XMgraph ”. The
“XMgraph ” star can be found again in the “Signal Sinks” subpalette of the SDF pal-
ette. The multiplier star, calledMpy, is in the “Arithmetic” subpalette.

Hint : If you place the icons so that their terminals fall on top of one another, then a connection

2-32 The Interactive Graphical Interface

U. C. Berkeley Department of EECS

gets made without having to draw a wire.

 • Now run the universe with “when to stop” set to 100. The output should appear as a
squared sine wave, which is just a sine wave of twice the frequency shifted up by 1/2.

So far, we have created a galaxy and used it in another universe. But we could also have used
our galaxy within another galaxy. In this way, large systems can be broken up into smaller
more manageable pieces.

2.8.3 Galaxy and universe parameters

One of the problems with the “singen” galaxy that we just created is that it generates
sine waves with a fixed frequency. We would like to make the frequency of the generator
parameterizable. That way, we could set the two “singen” galaxies in our “modulation” uni-
verse to two different frequencies.

To make a galaxy parameterizable, we createformal parameters in the galaxy and
then link the formal parameters to theactual parameters of the instances contained in the
galaxy. The terms, “formal” and “actual” parameters, are analogous to formal and actual
parameters in any procedural programming language. An example will make this clear.

 • Create formal parameters:

 - Place the cursor in the “singen” window but away from any instance, i.e., in the
grey background of the facet.

 - Executeedit-params (“e”). An empty parameter window will appear, looking
like this:

To add parameters to the galaxy, click on the “Add parameter” button. A win-
dow appears looking like this:

Fill in the dialog as follows:

The Almagest 2-33

Ptolemy Last updated: 12/1/97

name: freq
type: float
value: PI/50

The value will be thedefault value. Then click on “OK”. Recall that you can
use “tab” to move from one field to the next of the dialog box and “Return”
instead of “OK”. Hence, the dialog can be managed from the keyboard without
requiring the mouse.

We just created a new formal parameter called “freq” with a default value of “PI/50”.
Additional parameters may be added or old ones changed. The default value of a formal
parameter can always be changed by executingedit-params in the background of the galaxy.
Executing edit-params on the icon representing the galaxy changes the parameter values only
for the instance represented by the icon. It overrides the default value specified in the back-
ground of the galaxy definition. The possible types for parameters are listed in table 2-6. The
syntax for specifying values for parameters is described above in “Changing or setting param-
eters” on page 2-15. Exactly the same procedure can be used to attach formal parameters to a
universe. This allows you to parameterize a complete Ptolemy application.

 • Link formal parameters to actual parameters:

 - Place the cursor over theRamp icon in thesingen window.

 - Executeedit-params and fill in the dialog as follows:
step: freq
value: 0.0

This allows thefreq parameter of a singen instance to control the increment of
the internal ramp star, thus controlling the output frequency.

 • Change the frequency of one of thesingen instances to “PI/5” by usingedit-params.
This singen will be ten times the frequency of the other.

 • Run the universe with an iteration of 100. The output should show the product of two
sine waves with different frequencies. Don’t forget to save the facets we just created. It

TABLE 2-6: Parameter types supported in Ptolemy

Type name Description Example

float floating-point number 0.2/PI

int integer 10

complex pair specified as (real-part, imag-part) (1.0, 2.0)

string string this is a string

floatarray array of floating-point numbers 0.0 [10] 1.0 0.0 [10]

intarray array of integers 1 2 3 4 5 6 7

complexarray array of complex numbers (0.1, 0.2) (0.3, 0.4) (0.5, 0.6)

stringarray array of strings this string array “has five” elements

file filename /tmp/input.test

2-34 The Interactive Graphical Interface

U. C. Berkeley Department of EECS

would also be a good idea to create an icon formodulation and put it ininit.pal .

2.9 Editing Icons
Pigi automatically generates icons for stars and galaxies, respectively, when you

invoke themake-star or make-schem-icon command from the Extend menu.Pigi puts the
new icon in a user-specified palette, which by default is user.pal in the directory in which you
startedpigi . More or less anyvem manipulations can be performed on this icon, but some
guidelines should be followed. These icons have a generic symbol, shown in figure 2-2 on
page 2-5. To change it, place the cursor over the icon and execute theedit-icon (“I”) command
in thepigi menu.1 A new window containing the icon facet will appear.

Recall from section 2.6 on page 2-21 that icons are stored ininterface facets and that
the icons that appear incontents facets are really instances of icons. These instances merely
refer to the actual icon facet. Theedit-icon command opens a window into the actual icon.
Any changes made in this window will affect the appearance of all instances referring to the
icon.

Recall also that icon facets store a different kind of data from other facets. Icon facets
contain information that tellsvem how to draw objects. Hence, a different set of commands
must be used to edit icons. Whenever you edit an icon,vem switches to a different mode
called “physical editing style.” In this mode, we create objects such as lines, boxes, and poly-
gons. This is in contrast to “schematic editing style” which we used before to create instances
and connect them together with wires. Physical editing style shares many commands with
schematic editing style. For example,select-objects is active in both modes. A list of useful
physical editing style commands and their key bindings is given in table 2-7.

The commands that create geometry expect a layer argument. The layer of an object
determines its color and its fill pattern. To specify a layer, place the cursor over an object
attached to the desired layer before executing a command. You can open a palette of layers
with thepalette (“P”) command. The palette is shown in figure 2-8.

The layer palette contains several columns of solid and outline colors, with the name
of the color at the top of the column. Colors at the top of each icon will be layered on top of
colors below them in the columns. A set of special layers are arranged at the bottom of the pal-
ette. The layers for icon stems are explained below. The layers for icon bodies define the icon
background and optional icon shadow.

A few simple notes will help greatly. First note that when the icon window is opened,
the snap is automatically set to 5 “oct units”. This is because the default snap for schematic
windows, normally 25 units, is far too coarse for most icon editing functions. A reasonable
compromise is 5 units, unless you are going to try to create a very elaborate icon, in which
case 1 unit is probably what you want. Thevem Options:window-options command allows
you to change the snap.

When editing an icon, thevem menu is slightly different than when you are editing a
schematic. Invem terminology, this is because you are working with thephysical view of a
facet. The commands are shown in table 2-7. Most icons can be created by experimenting with
the following operations:

1. You must have write permission on the facet to change the icon.

The Almagest 2-35

Ptolemy Last updated: 12/1/97

 • Select the default symbol within the icon that Ptolemy created when it created the icon

TABLE 2-7: A summary of the Ptolemy commands in the vem menu in icon editing mode. These
commands are obtained by clicking the middle mouse button without holding the shift
button when your mouse cursor is in an icon window. The single-key accelerators for
commands that have them are shown. More complete documentation can be found in
chapter 19, “Vem — The Graphical Editor for Oct” on page 19-1. The command that
differ significantly from those in table 2-3 are shaded.

Menu Heading Command Key Description

vem none no command name cntr-h remove the last argument (point, box, etc.)

del remove the last argument (point, box, etc.)

cntr-u remove all arguments from the argument list

cntr-l (control lower case L) redraw the window

System open-window o open a new view into a facet

close-window cntr-d close a window

where ? find the position of the cursor in oct units

palette P open the color palette for editing icons

save-window S save a facet

bindings b display key bindings (single key accelerators)

re-read restore a facet to the last saved version

Display pan p move the view to be centered at a given spot

zoom-in z zoom in for a closer view of a facet

zoom-out Z zoom out

show-all f rescale the schematic to fit the window

same-scale = used to get two windows to use the same scale

Options window-options adjust snap, grid spacing, etc.

layer-display selectively display colors

toggle-grid g turn on or off the grid display

Undo undo U undo any number of previous changes

Edit create-geometry c create a line, box, circle, etc.

alter-geometry a replace an object with one on the argument list

change-layer l change the color of an object

set-path-width w change the width of lines

create-circle C draw a filled or empty circle

edit-label E specify or modify a label

delete-physical D remove the specified object

Selection select-objects s add an object to the argument list for a command

unselect-objects u remove an object from the argument list

move-physical m move an object

copy-physical x copy one or more objects in a schematic

transform t rotate or reflect an object

select-terms cntr-t select terminals

delete-physical D delete objects

Application rpc-any r start a vem application (pigiRpc is one)

2-36 The Interactive Graphical Interface

U. C. Berkeley Department of EECS

(a star, galaxy, cluster of galaxies, or palette symbol, as shown in figure 2-2 on page 2-
5). You can do this by drawing a box (drag the left mouse button) and typing “s” (or
using Selection:select-objects in the menu). You can unselect with “u” or control-u.
An alternative selection method is to place a point and type “s”. This usually provokes
a dialog box to resolve ambiguities. Delete whatever parts of the icon you don’t want
using “D” or Selection:delete-objects. WARNING: Do not delete terminals! If you
accidentally delete a terminal, the easiest action is begin again from scratch, asking
pigi to create a new icon.

 • Bring up thevem color palette by typing “P” (or System:palette in the menu). You will
get the window shown in figure 2-8.

 • Draw a line by clicking the left button to place a point, and pushing and dragging the
mouse button from the same point. Then move the mouse to desired color in the color
palette and type “c” (or Edit:create-geometry from the menu). A line may consist of
multiple line segments by just repeatedly pushing and dragging the mouse button.

 • To create filled polygons, place points at the vertices, then type “c” on the appropriate
solid color in the palette.

 • To create a circle, place a point at the center, a point on periphery, and type “C” on the
appropriate color. To create a filled circle, use a line segment instead of a pair of
points.

 • Objects can be moved by selecting them, dragging the mouse (using the right button)
to produce an image of the object in the desired place, and typing “m”.

 • You may change (or delete) the label thatpigi automatically puts at the bottom of the
icon. To change it, select it and type “E” (Edit:edit-label in the menu). The resulting

FIGURE 2-8: The palette of colors and layers that can be used to create icons. This palette is
invoked by the “palette” vem command (“P”). Each color has a column of boxes. The
higher the box you use, the closer to the front an object will be. The colors at the bot-
tom are special, in that they are associated with particular data types.

The Almagest 2-37

Ptolemy Last updated: 12/1/97

dialog box is self explanatory. The standard Emacs-like editing commands apply.

 • BE SURE TO SAVE YOUR ICON. This can be done by typing “S” (System:save-
window in thevem menu). You can close your window with control-d. Note thatvem
buffers the data in the window. You can close it and reopen it without saving it, as long
as the session has not been interrupted.

By convention, the data types supported by a terminal are indicated by the color of the stem
that connects the terminal to the body of the icon. The following colors are currently in use:

ANYTYPE: red
FLOAT: blue
INT: brown
FIX: purple
COMPLEX: white

PACKET: green
FILE: yellow
STRING: black

The color is currently set automatically by the icon generator by using layers defined specifi-
cally for this purpose, calledanytypeColor , floatColor , intColor , fixColor , com-
plexColor , packetColor , stringColor andfileColor . These colors are shown at the
bottom of the color palette in figure 2-8.

You can change the color of an object manually, if you wish. To do this, select the
object, type “"xxxx"”, where xxxx is replaced by the color name (the quotation marks are nec-
essary), and then type the single character “l” (an el — or Edit:change-layer in the menu). Be
sure not to change the color of a terminal! Again, be sure to save the window.

One final editing operation is a little trickier: moving terminals.Pigi places terminals
rather arbitrarily, since it knows nothing of their function. You may wish to have a smaller
icon than the default, in which case you have to move the input terminals closer to the output
terminals. Or may wish to change the order of the terminals, or you may want to have termi-
nals on the top or bottom of the icon rather than right or left. All of these can be done, but the
following cautions must be observed:

 • Do not move terminals of icons that have already been used in applications. Unfortu-
nately, if you do this, the block will become disconnected in all applications where it is
used. If you are tempted to move terminals in a commonly used block, consider the
tedium of finding all applications (belonging to all users) and reconnecting the block.
ONLY MOVE TERMINALS ON BRAND NEW ICONS.

 • You must respect the default snap of 25 for schematic windows, and move terminals to
a point that falls on a multiple of 25 units. Otherwise, connecting to the terminal will
be very difficult. Normally, when the icon window opens, the grid lines are 10 units
apart. So you can place terminals any multiple of 2.5 grid lines away from the center.

 • To orient terminals so they are aiming up or down, select the terminal, type “t” (or
Selection:transform in the menu), then type “m” to move it. Repeatedly typing “t” will
continue to transform (rotate) the terminal.

A little more detail on theoct internals may be useful if you explore the files that are created
by these operations. For make-schem-icon, if the schematic is calledxxx, then the icon itself is

2-38 The Interactive Graphical Interface

U. C. Berkeley Department of EECS

stored in “xxx/schematic/interface;”. The semicolon is part of the filename (this creates some
interesting challenges when manipulating this file in Unix, since the Unix shell interprets the
semicolon as a command delimiter). The standard stars that are normally part of the Ptolemy
distribution are stored in “$PTOLEMY/src/domains/ dom”, wheredom is the domain name
such assdf or de. The icons for the stars are stored in a subdirectory calledicons , the icons
for demo systems in a subdirectory calleddemo, and the source code for the stars are stored in
a subdirectory calledstars . Feel free to explore these directories.

Changing the number of terminals in galaxy icons

Whenever the contents of a galaxy are changed so that the new definition has different
I/O ports, the icon must be updated as well. You can do this by callingmake-schem-icon again
to replace the old icon with a new one.Vem will not allow you to overwrite the old icon if you
have instances of the old icon in any open window (regardless of whether the window is icon-
ified). Hence, you must either close those windows with “control-d” or delete the offending
icon before replacing it with a new icon. Note that changing number of terminals will also
change their layout, so that connections in existing schematics may no longer be valid.

2.10 Sounds
On some workstations (currently only SGI Indigos, HP 700s and HP 800s and Sun

SparcStations,), Ptolemy can play sounds over the workstation speaker. Below we discuss var-
ious details about playing sounds on various workstations.

2.10.1 Workstation Audio Internet Resources

Below we list several workstation audio resources on the Internet.

ftp://ftp.cwi.nl/pub/audio
Home of the audio file format FAQ.

http://orbit.cs.engr.latech.edu/AF
The AF program is an audio server similar to the X server
which allows remote machine to play audio on the local
machine. The user starts the AF program in the background and
then uses theaplay program to play sounds. AF is not directly
supported by Ptolemy, but is nonetheless useful.

http://www.spies.com/Sox/
Thesox program converts files between various formats.

ftp://ftp.hyperion.com/WorkMan
The workman program can play audio CDs on Sun SparcSta-
tions.

2.10.2 Solaris

Sun workstations running Solaris2.x can play 8kHz mu law sounds directly through
/dev/audio . The Solaris2.x/usr/openwin/bin/audiotool program can be used to
control the record and play volume and the input and output sources. In Ptolemy 0.7 and later,
the SDF Play star writes the appropriate.au file header.

The Almagest 2-39

Ptolemy Last updated: 12/1/97

Most Sun workstations can only play 8 bit u-law audio at 8khz. Sun UltraSparcs can
play a range of audio formats: 8 bit u-law, 8 bit A-law and 16 bit linear. UltraSparcs can also
play a range of sample rates, including CD (44.1khz) and DAT (48khz).

The Solaris/usr/demo/SOUND contains sample sounds and programs. See/usr/
demo/SOUND/bin/soundtool for a graphical sound program with a slightly different inter-
face. For further information about audio on Sun workstations, see the man pages in/usr/
demo/SOUND/man, and the man pages foraudioamd , audiocs , dbri , sbpro , audio , and
cdio .

SparcStation CD-ROM

Theworkman program can play audio CD’s via the Sun SparcStation CD-ROM drive.
workman can be configured to use the Solarisvolmgt program so that when an audio CD is
inserted into the drive it is automatically played. Only the Sparc5 and a few obscure Sparc10s
can get audio from the CD directly.Most other Sparcs can use a mini jump plug from the head-
phone jack on the CD-ROM to the line in on the back of the machine. You can then use
audiotool to control the inputs and outputs. Look under theVolume menu button for the
proper controls. It may take a few minutes to adjust the levels appropriately. Theworkman
program can be used as an audio source with the CGC Tycho demos (see “Tycho Demos” on
page 14-27) to demonstrate the various audio effects.

2.10.3 HPUX

Under HPUX10.x, the/opt/audio/bin/audio_editor program can play sounds.
Under HPXU9.x, use/usr/audio/bin/audio_editor .

2.10.4 Playing Audio over the Network

If you use Ptolemy to create audio files, then you may want to share them with others
over the network.There are several ways to play audio over the network, we discuss them
below.

Via the Web

Audio files can be placed on HTML pages and played by many HTML browsers over
the network. There are many proprietary commercial server packages that allow users to listen
to audio via their browser, we do not cover those packages here, instead we discuss two com-
mon formats:.au and .wav . In general, SparcStations can directly play only.au files and
Windows and Macintosh machines can play both.au and.wav files. If you use Ptolemy to
generate a.au file, the file must have a proper header. The SDFPlay star will generate that
header for you.

Under Solaris, you can use thexplaygizmo and AudioFileaplay programs to play
audio files via a browser. To set this up, place the following in the.mailcap file in your
home directory and restart your browser.

audio/*; xplaygizmo -p -q /usr/sww/AF/bin/aplay; stream-buffer-
size=2000

On the Macintosh to play the.au files under Netscape, you may need to install a
sound program. If you are using the “Berkeley Internet Kit”, then you probably already have
installed a programSoundApp that can play the Sun audio files. However, Netscape may not

2-40 The Interactive Graphical Interface

U. C. Berkeley Department of EECS

be configured to use it. You can change this by selectingGeneral Preferences from the
Options menu, and selecting theHelpers page within that. UnderULAW audio , you
should set the file type toULAW and the application program toSoundApp .

Java

Java can play.au files over the net, but again, these files must have a proper header.

AF

The AudioFile programAF is a audio server that allows a user to listen to a sound gen-
erated on a remote machine. See the link above for more information.

2.10.5 Ptolemy Sounds

You can try playing sounds with the universe you just created. Replace theXMgraph
star inwaveform window with an instance of thePlay star (second row of the sinks palette,
right of center, with a stylized loudspeaker as an icon). Edit the parameters of thePlay star
entering 16000 for thegain parameter. (To see details about thePlay star, execute the “pro-
file” command in the “Other” menu, or type a comma (“,”) with the mouse on thePlay icon).
The SPARCstation’s speaker is driven by a codec that operates at an 8 kHz sample rate. So
running this universe for 40000 samples will produce about 5 seconds of sound. The sound
produced by the current parameters is not particularly attractive. Experiment with different
parameter values. Try PI/1000 in place of the PI/50.

An interesting variant of this system modulates a chirp instead of a pure sinusoid with
a low frequency sinusoid. A chirp is a sinusoid that sweeps over a frequency range. You could
replace one of yoursinegen instances with something that generates a chirp, and again
experiment with parameters.

A chirp can be created with three stars: aRamp, anIntegrator and aSin , connected
in series. Thestep parameter of theRamp should be very small, such as 0.0001. With this
value, you will hear some aliasing if you create five seconds of sound. TheIntegrator is in
the “arithmetic” palette, furthest on the right, and its default parameter values are fine for this
purpose. Use the “profile” command (“,”) to read about it. Note that a fourth star, aConst
(second star in “sources” palette) is needed to set theIntegrator reset input to zero.

In the SDF domain, sound output is collected into a file, and then played out in real
time. Another alternative, available in the CGC domain, is to generate the output in real-time.
Since the CGC stars have not been optimized for real-time performance, only simple signals
can be generated at this time.

This is a good time to try out your own examples. In general, when you create new gal-
axies and universes that depend on each other, it is a good idea to keep them together in one
directory. For example, all of the facets we have created so far are in the “example” directory.
You can use the extensive Ptolemy demos as models.

2.11 Hardcopy
There are several options for printing graphs and schematics developed under Ptolemy.

The first option generates a PostScript1 description and routes it to a printer or file. The second
uses the screen capture capability of the X Window system.

The Almagest 2-41

Ptolemy Last updated: 12/1/97

2.11.1 Printing oct facets

A block diagram underpigi is stored as anoct facet. To print it to a PostScript
printer, first save the facet. Do this by moving the mouse to the facet and press the “S” key to
save. The facet must be saved. Then, keeping the mouse in the facet, invoke the “print facet”
command from the “Other”pigi menu. You will get a dialog box that looks like this:

Most entries are self-explanatory. The default printer is determined by your environment vari-
able PRINTER, which you can set by putting the following line in your .cshrc file:

setenv PRINTER printername

You will have to restartpigi for this change to be registered.

If you select the option “To file only”, then PostScript code suitable for importing into
other applications will be generated. The image will be positioned at the lower left of the
page. The facets displayed in this document were generated this way and imported into
FrameMaker. See chapter 18, “Creating Documentation” on page 18-1 for more information.

The “EPSI” option will create Encapsulated Postscript output. Note that you need to
have GNU ghostscript installed to generate EPSI. See “Other useful software packages” on
page A-14 for further information about GNU ghostscript.

2.11.2 Capturing a screen image

Under the X window system and compatible systems, there are facilities for capturing
screen images. These can be used directly with Ptolemy. However, colors that work well on
the screen are not always ideal for hardcopy. For this reason, two sets of alternative colors
have been devised for use with black and white printers, these color sets are selected at startup
with the pigi command line option-bw or -cp . For black and white printers, use the-bw
command line option when starting Ptolemy, as in:

1. PostScript is a registered trademark of Adobe Systems Inc.

2-42 The Interactive Graphical Interface

U. C. Berkeley Department of EECS

pigi -bw

The screen capture command can be used effectively. For example, under the X Window sys-
tem, the following command will print a window on a black and white PostScript printer:

xwd | xpr -width 4 -portrait -device ps -gray 4 | lpr

If you wish to grab the window manager frame, then you can use:

xwd -frame > myfile.xwd

Other alternatives include a program calledxgrabsc or some equivalent that may be avail-
able on your windowing system. A simple use of this is to generate an encapsulated PostScript
image using the following command

xgrabsc -eps -page 4x2 -o mySchematic.ps

where “mySchematic.ps” is the name of the file into which you would like to store the EPS
image. Then with the left mouse button, draw a box around the desired portion of the screen.
This command will then save an encapsulated PostScript file four inches by two inches called
mySchematic.ps. This file can then be used an a wide variety of document processing systems.
To grab an entire window, including whatever borders your window manager provides, use the
xgrabsc -click option.

Importing an image as PostScript

For example, to include this PostScript in a TeX document, include the command
\include{psfig}

in the TeX file and use the commands
\begin{figure}

\centerline{
\psfig{figure=mySchematic.ps,width=4in,height=2in}}
\caption{Ptolemy Schematic}

\end{figure}

To display the PostScript as a figure within a FrameMaker document.

The “print-facet” command can optionally generate a PostScript file suitable for inclu-
sion in a FrameMaker document. Once you have generated this file, the preferred way to
include it is as follows. First, create an anchored frame by using the "Anchored Frame" menu
choice under the "Special" menu. The anchored frame will contain two disconnected text col-
umns, one for the figure, the other for the figure paragraph that describes the figure. Create the
first disconnected text column using the graphics tools. Then, put in the text box a#include
line. For example, the text box might contain the following line:

#include /users/ptolemy/doc/users_man/figures/butterfly.ps

Unfortunately, the file must be specified using an absolute path, unless you always start
FrameMaker from the same directory. With the cursor in the newly created text column, issue
the command “Customize Text Frame” from the “Customize Layout” submenu in the “For-
mat” menu, and select “PostScript code.” When you print the document, you will get the fol-

The Almagest 2-43

Ptolemy Last updated: 12/1/97

lowing graphic:

The graphic will be anchored at the lower left of the text column you created.

The second disconnected text column is created in a similar fashion with the Graphics
tool, but text is entered into the text column rather than the include directive.

It is possible, instead of using the#include line as above, to directly import the Post-
Script file into FrameMaker. However, this makes the text document very large, and the
FrameMaker process appears to grow in size uncontrollably. Unfortunately, as of this writing,
it does not appear possible to convert these PostScript files to encapsulated PostScript, which
would have the advantage of displaying a semblance of the image.

Importing an Image as a X bitmap (XBM)

FrameMaker and some other text processing systems can import and print ordinary
color X window dumps. To have these displayed in color on the screen, the following lines
may need to appear in your X resources file:

Maker.colorImages: True
Maker.colorDocs: True

One can use various programs, such as the FrameMaker 3.1 utilityfmcolor and the Poskan-
zer Bitmap (PBM) tools to reduce a color window dump to a black and white window dump.
This will save space and avoid any dithered imitations of color. However, sincefmcolor
applies a threshold based on color intensity to the image, some foreground colors may get
mapped to white instead of black. To prevent this, use the-cp (cp stands for color printer)
command line option when startingpigi , as in

pigi -cp

Then color window dumps can be converted to black and white window dumps using the fol-
lowing FrameMaker 3.1 command:

fmcolor -i 90 filein fileout

A useful hint when using such a document editor is to turn off the labels inpigi before cap-
turing the image, and then to use the document editor itself to annotate the image. The fonts
then will be printer fonts rather than screen fonts. To turn off the labels, execute thevem com-
mand “layer-display” under thevem “Options” menu.

Gain
���
���

Gain���
���
���

Gain
��
��

Add
���
���

Mpy��
��
��

Mpy���
���
���

Mpy���
���
���

Ramp
��
��
��

PolarToRect
��
��
��
��

Sin

Cos

Cos

Exp

XYgraph

The Butterfly Curve
(T. Fay, American Mathematical

Monthly, 96(5), 1989)

2-44 The Interactive Graphical Interface

U. C. Berkeley Department of EECS

2.12 Other useful information
In this section we cover additional information which may be useful. More advanced

topics will be covered in following chapters.

2.12.1 Plotting signals and Fourier transforms

The Ptolemy menu has a submenu calledUtilities that invokes some useful, frequently
used, predefined universes. For example, the “plot-signal” (“~”) command will plot a signal.
The signal can be read from a file or specified using the syntax for specifying the value of a
floatarray parameter inpigi . For example, if the value of thesignal parameter is:

1 [10] -1 [10]

then the “plot-signal” command will plot ten points with value 1.0 and ten points with value
-1.0. Theoptions parameter can accept any options understood by the pxgraph program (see
the pxgraph section of theAlmagest). To plot a signal stored in a file, simply use the following
syntax for thesignal parameter:

< filename

You may need to specify the full path name for the file.

Another usefulUtilities command isDFT (“^”), which reads a signal just as above and
plots the magnitude and phase of the discrete-time Fourier transform of the signal. These are
plotted as a function of frequency normalized to the sampling rate, from to . The sam-
pling frequency is assumed to be . A simple phase unwrapping algorithm is used to give
more meaningful phase plots. A radix-2 FFT is used, so the order (the number of points) of the
fast Fourier transform must be a power of two. That is, the user actually specifies

. The order can be longer than the signal, in which case, zero-padding will
occur.

2.12.2 Moving objects

Sometimes you may want to move objects around within your schematic. Use thevem
commandmove-objects (“m”) in the Selection menu to do this. You can move objects as fol-
lows:

 • Select the objects that you want to move.

 • Using the right mouse button, drag the objects to the desired location.

 • Executemove-objects, “m”.

2.12.3 Copying objects

You can create a new instance of any object in a facet by placing a point where you
want the new instance, moving the mouse to the object you wish to copy, and executing “cre-
ate” (“c”). However, this does not copy the parameter values. If you wish to create a new
instance of a star or galaxy that has exactly the same parameter values as an existing instance,
you should use thecopy-objects (“x”) command in thevem “Selection” menu. To do this, first
select the object or objects you wish to copy. Then place a point in the center of the object.
Then place a second point in the location where you would like the new object, and type “x”.
The new object starts life selected, so you can immediately move it, or type “control-u” to
unselect it. As of this writing,vem unfortunately does not allow you to copy objects from one

π– π
2π

log2 order()

The Almagest 2-45

Ptolemy Last updated: 12/1/97

facet to another.

2.12.4 Labeling a design

It is often useful to annotate a block diagram with titles and comments. Thevem edit-
label (“E”) command in the “Edit” menu will do this. It takes two arguments: a point specify-
ing the position of the label, and the name of alayer, which determines the color of the label.
Place a point where you would like the label, and then type a layer name, such as “blackSolid”
(with the quotation marks). Then type “E”. An Athena widget dialog box like that on page 2-
14 will appear, offering various options. Type the text for your label in the “Label” box. It can
contain carriage returns to get more than one line of text. To select a text height (font size) you
can move the slider to the right of the “Text Height” box. The middle button moves the slider
by large amounts, and the left and right buttons are used for fine tuning. The initial default is
40, in releases earlier than Ptolemy 0.6, the default was 100, which was too big for all but the
loudest titles. Sizes 60 and 40 work well with the overall scaling of Ptolemy facets. You can
also change the justification by clicking the left button to the right of each justification box. A
pop-up menu lists the options. The colors recommended for labels are:

blackSolid
blueSolid
brownSolid
greenSolid
orangeSolid
redSolid
violetSolid
whiteSolid
yellowSolid

2.12.5 Icon orientation

Most Ptolemy icons have inputs coming in from the left and outputs going out to the
right. To get better looking diagrams, you may sometimes wish to reorient the icons. This can
be done with thevem command “transform” (“t”). Select the icon you wish to transform and
type “t” as many times as necessary to get the desired orientation. Each time, you get a 90
degree rotation. Then execute the move-object “m” to commit the change. Notice that a 180
degree rotation results in an upside down icon. To avoid this, reflect the icon rather than rotat-
ing it. To reflect it in the vertical direction (exchanging what’s on top for what’s on the bot-
tom), select the object, type “my” (include the quotation marks), type “t” to transform, and
“m” to move. To reflect along the horizontal direction, use “mx” instead of “my”. In sum-
mary:

To reflect an object horizontally, select it, and type:

"mx" t m

To reflect it vertically, type:

"my" t m

2.12.6 Finding the names of terminals

Some stars have several terminals, each with a different function. The documentation
may refer to these terminals only by name. Unfortunately, the name of a terminal is not nor-

2-46 The Interactive Graphical Interface

U. C. Berkeley Department of EECS

mally visible when an icon is viewed with normal scaling. However, zooming in will eventu-
ally reveal the name. The easiest way to do this is to draw a box around the terminal and open
a new window with the “o” command. Then you can zoom in if necessary. Future versions of
Ptolemy will hopefully have a better mechanism.

2.12.7 Multiple inputs and outputs

Ptolemy supports star definitions that do not specify how many inputs or outputs there
are. TheAdd andFork stars are defined this way, for instance. Consider the following two
icons, found in the “arithmetic” palette of the SDF domain:

They both represent exactly the same star, as you can verify with the “look-inside” command.
The icon on the right, however, has a peculiar double arrow at its input. This is a “multiple
input” terminal that allows you to connect any number of signals to it. All the signals will be
added. The icon on the left has two ordinary input terminals. It can add only two signals. Why
have both kinds?

Sometimes, multiple input terminals are not convenient. A rather technical reason is
given below, in the section “Auto-forking” on page 2-48. A more mundane reason is simply
that schematics often look better with two-input adders.

There are three ways to work with a star that has a multiple-input or multiple-output
connection (technically, a “multiporthole”).

First, you can just draw multiple connections to or from the double-arrow porthole
icon. This is easy, but it has some limitations. You can’t control what order the connections
will actually be made in. That doesn’t matter for anAdd star, but for some star types it’s
important to know which connection corresponds to which element of the multiporthole.
Also, the connected portholes can’t be connected to any other stars, nor can you use delay
icons, becausevem will get confused (see “Auto-forking” on page 2-48).

Second, you can attach a “bus create” or “bus break out” icon to the multiporthole ter-
minal, choosing one that provides the right number of terminals for your schematic. (These
icons are available in the “Higher order functions” section of the domain’s palette.) This
solves both of the problems with multiple connections to a single terminal. It may not make
for a very pretty schematic, however.

Third, you can make a custom icon for the star that replaces the double-arrow terminal
with the right number of simple terminals. This is what the two-inputAdd icon actually
is.This method takes the most work but may be worth it to make the nicest-looking schematic.

Let’s go through an example of how to create a star icon that has multiple input termi-
nals based on an existing Ptolemy star that supports multiple inputs. Suppose you need an icon
for an adder with eight inputs. As of this writing, unfortunately, you need to have write per-
mission in the directory in which Ptolemy icons are stored to create this new icon. Alterna-
tively, you can create your own version of the star in your own directory (see the
programmer’s manual). If you have write permission in the directory where the icons are

Add
iiii
iiii
iiii
iiii
iiii

Add
����
����
����
����
����

The Almagest 2-47

Ptolemy Last updated: 12/1/97

stored, then you can create a new icon with eight inputs as follows.

In any facet, execute thepigi command “Extend:make-star” (“*”). A dialog box
appears. Enter “Add.input=8” for the star name, “SDF” for the domain, and “$PTOLEMY/src/
domains/sdf/stars” for the star src directory (assuming this is where the source code is stored).
Note that “input” is the name of the particular multiple input that we want to specify. If you do
not know where the source code is stored, then just look-inside (“i”) an existing instance of
the star. Thevem console window and the header of the editing window that open both tell
where the star source code is. A second dialog box appears asking you where you would like
the icon put. Accept the default, “./user.pal”. Then open user.pal using “O” to see the new
eight-input adder icon. You may edit this icon, as explained in “Editing Icons” on page 2-34.

2.12.8 Using delays

In several domains, delays can be placed on arcs. A delay is not a star, but rather is a
property of the arc connecting two stars. The interpretation of the delay in the dataflow
domains (SDF, DDF, BDF, and most code generation domains) is as an initial particle on the
arc. An initial particle for the scalar data types is one whose value is zero. When the arc passes
particles containing “message” type data, a delay on the arc will create an “empty” message.
Most often, the destination star of the arc must be able to interpret such “empty” messages
explicitly in context of the user-defined type because a “zero” might have different meanings
depending on the type. Any feedback loop in the SDF domain must have a delay, or the com-
putation in the loop would not be able to begin.

To use these delays inpigi , the user places a delay icon on top of the wire connecting
two instances. The delay icon is a white diamond with a green border in the SDF and system
palettes. You can specify the number of delays by executingedit-params with the cursor on
top of the delay icon.

Other domains (besides dataflow) also use delays, but the meaning can be quite differ-
ent. See the appropriate chapter describing the domain.

A new feature added to Ptolemy releases greater than 0.5 is the support of initializable
delays for simulation domains. These delays use a different icon from the old white diamond
with green borders. The new delays use an icon that is a green diamond with a white border
and has an “I” in the middle of the diamond to signify that it is initializable. We have kept
around the old delays for backward compatibility, but the syntax for the two is quite different
and the user should probably use just one type to prevent confusion.

The syntax for the new delays is that the arguments to the delay are the initial value
themselves. There is no value in the argument that signifies the number of delay particles.
Instead, a count of the number of values in the delay arguments is the number of delay parti-
cles that will be added to the buffer of the arc corresponding to the delay. These arguments are
specified as a string and are parsed according to the data type associated to the arc. For exam-
ple, an initializable delay with parameter “1 0 1” on an arc passing float particles will have a
buffer with three initial particles. The three particles will have the values 1.0, 0.0, and 1.0
respectively. If the arc was working on complex particles instead, an error would be given
since complex numbers must be specified using a pair of numbers. A proper argument list for
the delay in that case would be “(1,0) (0,0) (1,1)”. The shorthand for declaring multiple values
in the argument list is valid, just as in the arraystate case. For example, an argument list of “2

2-48 The Interactive Graphical Interface

U. C. Berkeley Department of EECS

[5]” would specify five initial particles with value 2.

Initializable delays also work on arcs which handle matrix particles. The argument
string in this case is parsed differently than above. The first two values in the last specify the
number of rows and columns in the initial matrix, respectively. For example, an initializable
delay with parameter “1 2 3 [2]” on an arc passing integer matrices would place one matrix
with dimension one row by two columns, whose entries all have the value three, in the buffer
for that arc. For the case where multiple initial matrices are desired, simply give enough
entries in the delay argument string to fill multiple numbers of initial matrices of the given
size. For example, an initializable delay with parameter “1 2 3 3 4 4 5 5” on an arc passing
integer matrices would create three matrices, all of dimension one row by two columns, such
that the first initial matrix on the buffer has all entries equal to three, the second has all entries
equal to four, and the last matrix has all entries equal to five.

2.12.9 Auto-forking

In pigi , a single output can be connected to any number of inputs, as one would
expect. The interpretation in most domains is that the one output is broadcast to all the inputs.
There are several point-to-point connections, therefore, represented by the net.

However, there are restrictions. To understand these restrictions, it is worth explaining
that vem stores connectivity information in the form of netlists, simply listing all terminals
that are connected together. If a delay appears somewhere on a net, and that net has more than
one point-to-point connection, then it is not easy to determine for which connection(s) the
delay is intended. Consequently, at the time of this writing, delays are disallowed on nets with
more than one connection. If you attempt to put a delay on such a net, then when you try to
run the system, an error message will be issued, and the offending net will be highlighted. To
get rid of the highlighting, execute thepigi command “Edit:clear-marks”. To fix the prob-
lem, delete the offending net, and replace it with one or morefork stars and a set of point-to-
point connections. An incorrect and correct example are shown below:

This example also illustrates the use of a delay on a feedback loop. The delay is required here,
assuming we are in the SDF domain, because without it, deadlock would ensue. This is due to
the fact that thefork star cannot fire until theadd star does, but theadd star cannot fire until
the fork star produces its output.

A second restriction is that forks must be explicit when connected directly to input or

Add
iii
iii
iii

�����
�����
�����
�����
�����

����
����
����
����
����

		
		
		

Add
iii
iii
iii

����
����
����
����
����

�����
�����
�����
�����
�����

		
		
		

fork

Incorrect Correct

The Almagest 2-49

Ptolemy Last updated: 12/1/97

output terminals of a galaxy. An incorrect and correct example are shown below:

There is also a more subtle restriction. Suppose two outputs are connected to a single
multiple-input terminal. Then neither of these outputs can also be connected to some other
input terminal. If they are, Ptolemy will issue the error message “multiple output ports found
on the same node.” The reason this happens is simple.Vem knows nothing about multiple
inputs, so it sees a net with more than one output and more than one input. Ptolemy is not
given enough information to reconcile this and figure out which outputs should be connected
to which inputs. To avoid this problem, it is again necessary to use explicit fork stars, as
shown below:

Another solution, which may look nicer than inserting an explicit fork star, is to
replace the multiple-input terminal with several simple terminals. You can do that by inserting
a “bus create” icon or by using a different icon for the multiple-input star, as was explained in
“Multiple inputs and outputs” on page 2-46.

All of the above restrictions may be eliminated in future versions.

2.12.10 Dealing with errors

Ptolemy is composed of several components, as shown in figure 2-6 on page 2-22.
When errors occur, it helps to know which component detected the error so that it can be cor-
rected.

When errors occur invem, vem prints the error in the console window. For example, if
you enter a point argument and executecreate when the cursor is not over an instance, then
vem displays the message “Can’t find any instance under spot.” Usually,vem errors are easy to
fix. In this case,vem expects the user to specify the instance to be created.

����
����
����
����

����
����
����
����

����
����
����
����
����

Gain����
����
����
����

Gain
����
����
����

�����
�����
�����
�����

�����
�����
�����
�����

�����
�����
�����
�����
�����

Gain����
����
����
����

Gain
����
����
����

fork

Incorrect Correct

����
����
����
����

����
����
����
����

����
����
����
����

Gain
���
���
���

Gain���
���
���

����
����
����
����

Add
���
���
���

Gain���
���
���

����
����
����
����

�����
�����
�����
�����

�����
�����
�����
�����
�����

Gain
���
���
���

Gain���
���
���

����
����
����
����

Add
��
��
��

Gain����
����
����

fork

Incorrect Correct

2-50 The Interactive Graphical Interface

U. C. Berkeley Department of EECS

Errors in thepigiRpc process can occur when any of thepigi commands are
invoked. The error messages, in this case, are displayed in a popup window, which is much
more helpful. Error messages may also be displayed in the xterm window in whichpigi was
started. In addition,pigi often highlights in red the object in the schematic associated with
the error. When this happens, you can execute theclear-marks command to clear the high-
lighting. If such an error occurs and the reason for the error is not obvious, try deleting the
indicated objects and redrawing them.

2.12.11 Copying and moving designs

In one of our examples, we usedcp -r to make a copy of a facet. In general, however,
copying entire designs this way does not work. For it to work in the general case, you must
also change some data in the facets that you copy. In particular, each facet has pointers to the
icons it uses. If you move a galaxy, for example, then any pointer to the icon for that galaxy
becomes invalid (or “inconsistent” inoct terminology).

A utility program calledmasters has been provided for this purpose. This replaces
the program from theocttools distribution, calledoctmvlib , that was used with earlier
versions of Ptolemy.

Palettes, star icons, galaxies, and universes are stored asoct facets. Special care is
required when moving or copyingoct facets. First, as emphasized before, everyoct facet is
stored as a directory tree, so a copy should usecp -r . Next, keep in mind that there may be
pointers to the moved object in other facets. If you know where all these pointers might be,
then moving facets is easy. If you do not know where all the pointers are, then your only prac-
tical choice is to leave a symbolic link in place of the old location pointing to the new.

Moving facets

Suppose you have developed a fantastic new galaxy calledalphaCentaur , and you
wish to install it in a directory that is available for general use. Since you have developed the
galaxy, you know where it is used. The galaxy icon itself is stored in two facets:

alphaCentaur/schematic/contents;

alphaCentaur/schematic/interface;

The first of these stores the schematic, the second stores the icon. The peculiar semicolon at
the end is actually part of the file name. First move the icon:

mv alphaCentaur destinationDirectory

This moves the entire directory tree. You must now change all references to the icon so that
they reflect the new location. Suppose you have a test universe calledalphaTest . This
should be modified by running themasters program as follows:

% masters alphaTest
Running masters on wave
Pathname to replace (? for a listing):

User input is shown in bold type; program output is shown in regular (not bold) type. Enter a
question mark to get a list of all icons referenced in the facet:

The Almagest 2-51

Ptolemy Last updated: 12/1/97

Pathname to replace (? for a listing): ?
Pathnames currently found in the facet:

~yourname/oldDirectory/alphaCentaur
$PTOLEMY/src/domains/sdf/icons/Ramp
$PTOLEMY/src/domains/sdf/icons/Sin
$PTOLEMY/src/domains/sdf/icons/XMgraph

Pathname to replace (? for help):

The last three items are pointers to official Ptolemy icons. There is no need to change these.
You should now enter the string you need to replace and the replacement value:

Pathname to replace (? for help): ~yourname/oldDirectory
New pathname: ~yourname/destinationDirectory

Next, usemasters the same way to modify any palettes that reference the moved icon. For
instance, the “user.pal” palette in the directory in which you developedAlphaCentaur is a
likely candidate. If you miss a reference,oct will issue an error message when it tries to open
the offending palette, indicating that it is inconsistent.

2.12.12 Environment variables

The following environment variables can be set to customize certain behavior. These should
be set (normally) in the user’s.cshrc file.

PIGIBW This variable tells Ptolemy to display all of its windows in black and
white.

PIGIRPC Specifies an alternative executable file for Ptolemy. Ptolemy is an
extensible, modifiable system. Many users will wish to create their own
versions to incorporate their own extensions. Details on how to write
extensions are given in the programmer’s manual, volume 3 of the
Almagest. Once you (or someone else) has created a customized ver-
sion, you can invoke it by specifying the precise name of the executable
(complete with its full path, or path relative to an environment variable
or user’s name). The default executable is$PTOLEMY/bin.$PTARCH/
pigiRpc . An alternative specification might be:

setenv PIGIRPC ~myname/Ptolemy/bin.sol2.5/pigiRpc

PT_DISPLAY Determines the text editor used to display text files. This determines
how text files will be displayed to the user. The value of this variable is
a printf format string with one%s in it. That%s is replaced with the
name of the file to be viewed. In the default, thePT_DISPLAY variable
is not set, and the Tycho editor is used.For example, to view files in a
new xterm window with thevi editor, put the following line in your
.cshrc file

2-52 The Interactive Graphical Interface

U. C. Berkeley Department of EECS

setenv PT_DISPLAY "xterm -e vi %s"

and source the file before startingpigi .

PTARCH This variable specifies the computer architecture you are using such as
sol2.5 . The architecture setting is returned by the$PTOLEMY/bin/
ptarch script.

PT_DEBUG If set, this specifies the script to execute when starting pigi in debug
mode (using the-debug option). An example of a suitable script is
ptgdb , located in$PTOLEMY/bin . This script invokesgdb , the Gnu
debugger, insideemacs.

PTMATLAB_REMOTE_HOST
This variable, if set, specifies the name of a remote machine on which
to run Matlab if Ptolemy ever invokes Matlab.

PTOLEMY This variable points to the root directory of where Ptolemy is installed.

PTOLEMY_SYM_TABLE
This variable is an internal symbol that is used during dynamic linking.

PTPWD This variable gives the command to print the current working directory,
which is usually pwd.

TYCHO This variable points to the root directory of where Tycho is installed.

Ptolemy is based on Tcl and [incr Tcl]. These packages set the following environment
variables: TCL_LIBRARY, TK_LIBRARY, ITCL_LIBRARY , ITK_LIBRARY , and
IWIDGETS_LIBRARY. See$PTOLEMY/bin/ptsetup.csh .

Below we discuss a few Unix system environment variables that affect how Ptolemy
functions.

DISPLAY Specifies what X11 Display Ptolemy should start up on. If you are
unfamiliar with $DISPLAY, then see “Introduction to the X Window
System” on page B-1.

GCC_EXEC_PREFIX
C_INCLUDE_PATH
CPLUS_INCLUDE_PATH
LIBRARY_PATH
These variables are used by the Gnu compilers to find components of
the compilers, see “Gnu Installation” on page A-7.

HOME This variable points to the root directory of the user’s account. This
variable must be set foritclsh and the software that usesitclsh
(ptcl andtycho) to work properly.

LD_LIBRARY_PATH
This variable is used by the run time linker to find shared libraries. If
you are using prebuilt binaries, and your Ptolemy installation is not at

The Almagest 2-53

Ptolemy Last updated: 12/1/97

/users/ptolemy , then you may need to set this variable, see “pigi
fails to start up, giving shared library messages” on page A-17. See also
your Unix ld man page, and “Shared Libraries” on page D-1.

PATH This variable contains a list of directories of executable programs. The
order of the directories listed is very important. See$PTOLEMY/
.cshrc for guidelines on the proper order.

PRINTER Determines the default printer used for hardcopy output. This is used to
determine the default printer when printingvem facets. If you use the
provided makefile to print Ptolemy documentation, then this environ-
ment variable will determine the printer used. In$PTOLEMY/.cshrc
the pertinent line reads:

setenv PRINTER lw

You should replacelw with whatever printer name you are using.

SHLIB_PATH Hewlett-Packard systems use SHLIB_PATH instead of
LD_LIBRARY_PATH to find shared libraries. See the
LD_LIBRARY_PATH description above for details.

USER This variable gives the name of the user running Ptolemy. This variable
is set by every shell. In your.cshrc file, add the following line:

if (! $?USER) setenv USER $LOGNAME

Many of Ptolemy’s domains rely on additional environment variables. The CG56
domain relies onS56DSP to indicate the path name where the tools for the S56X Motorola
56000 board are installed andQCKMON to indicate the path name where the QCK Monitor
tools are installed. The VHDL domain relies onSYNOPSYS to indicate the root directory for
the installation of Synopsys tools andSIM_ARCH to be set to the computer architecture you
are using for the Synopsys tools.

2.12.13 Command-line options

The pigi program is actually acsh script, located in$PTOLEMY/bin . That script
starts two processes:vem andpigiRpc . The usage is

pigi [options] [facet-name]

The optional facet name specifies avem facet that should be opened upon starting the system.
The command-line options are:

-bw Use black and white, even on a color monitor. This is useful for generating
readable hardcopy from X Window dumps.

-cp Fine tune the colors to improve the quality of hardcopy made on a color printer
from X Window dumps.

-console Open a command console through which the user can issue Tcl commands.

-debug Invoke Ptolemy running undergdb , a symbolic debugger. If a version of the
pigiRpc executable with debug symbols can be found, the script will it. If

2-54 The Interactive Graphical Interface

U. C. Berkeley Department of EECS

$PIGIRPC is set then that binary is used. If$PIGIRPC is not set, then the pro-
gram first looks for

$PTOLEMY/bin.$PTARCH/pigiRpc.debug
If that is not found, then the program looks for

$PTOLEMY/obj.$PTARCH/pigiRpc/pigiRpc.debug
If that is not found, then

$PTOLEMY/bin.$PTARCH/pigiRpc
is used. If thePT_DEBUG environment variable is set, then its value is the name
of a script used to invoke the debugger. For example, the scriptptgdb , located
in $PTOLEMY/bin , invokesgdb underemacs.

-ptiny Invoke the smallest version of Ptolemy, if it can be found. The executable that
is used is calledpigiRpc.ptiny . This version contains only the SDF and DE
domains, but without the image processing stars and the user-contributed stars.

-ptrim Invoke an intermediate-sized version of Ptolemy, if it can be found. The exe-
cutable used is calledpigiRpc.ptrim . This version contains only SDF, BDF,
DDF, DE, and CGC domains, but without the parallel targets.

-display display-name
Specify an alternative display to use. If this option is missing, then theDIS-
PLAY environment variable is used.

-help print out the usage information

-rpc ptolemy-executable
Specify an alternative Ptolemy executable to use. The default is$PTOLEMY/
bin.$PTARCH/pigiRpc .

-xres X-resource-filename
Specify an X resource file to merge before running Ptolemy. The standard X
programxrdb is used with the-merge option.

2.13 X Resources
A large number of X window resources can be set by a user to customize various

aspects of the user interface. The best way to explore these is to examine the file$PTOLEMY/
lib/pigiXRes9 for the defaults. These defaults can typically be overridden in the
user’s.Xdefaults file, and incorporated into the X environment using the programxrdb . For
example,

Vem*font: *-times-medium-r-normal--*-120-*

changes the font in thevem console window, menus, dialog boxes, etc., to something smaller
than the default. Also,

Vem*background: antiqueWhite

changes the background in thevem console window and dialog boxes to the color “antique-
White.”

The Almagest 2-55

Ptolemy Last updated: 12/1/97

2.14 Tk options
In Tycho, many of the user interface features are controlled through the preferences

manager, which is available under the TychoHelp menu. In the older non-Tycho Tk windows,
a number of user interface options are specified through Tk options rather than directly
through X resources. These are defined in the file$PTOLEMY/lib/tcl/ptkOptions.tcl .
One way to override these is to start pigi with a console window:

pigi -console

and in the console window, change the options. For example, the command

option add Pigi*background gray98

changes the dialog box backgrounds to a very light gray. This option was used to create the X
window dumps used in this manual.

2.15 Multi-domain universes
The domain of a facet is set using thepigi “Edit:edit-domain” or “d” command. This

command causes a checklist to appear listing all domains currently linked into the system. All
examples in the SDF Demo palette are one-domain applications, using only SDF. Several
examples of multi-domain applications can be found in the DDF and DE Demo palettes. It is
instructive to explore these applications, using the edit-domain command at all levels of the
hierarchy to see what domains are used. In addition, the section “Wormholes” on page 12-4 in
the DE chapter contains a useful discussion on mixing the DE domain with other domains in
Ptolemy.

Recall that aWormhole in Ptolemy is a block that has a different domain on the out-
side than on the inside. Inpigi , wormholes look exactly like galaxies -- in fact, they are both
just facets with ports. The only difference is that the domain is different on the inside than on
the outside. Thus, whether a particular facet compiles into a plain galaxy or a wormhole
depends on whether it is referenced from an outer facet of the same domain or a different
domain. You get a wormhole if the domains are different.

To build multi-domain applications, it is necessary to understand the models of com-
putation in each domain, to ensure that application will behave consistently at the domain
boundaries. For this, it is necessary to refer to the domain chapters in this user’s manual.

In some domains, it is possible to select one of several targets, which manage the exe-
cution of the domain in different ways. The target for a facet is set using thepigi “Edit:edit-
target” or “T” command. This command causes a checklist to appear listing all targets avail-
able for the current domain. If a target is selected (rather than pushing “Cancel”), another dia-
log box appears containing whatever parameters the selected target may have. Both the
current target selection and the parameters for it are recorded with the facet when you execute
“save-window”.

If “edit-target” is executed in a galaxy facet (not a universe facet), then it offers a
choice labeled<parent> in addition to the target(s) for the facet’s domain. This choice sim-
ply means “use the outer facet’s target selection and target parameters”. If you select this
choice, then no target parameter dialog box appears.

The<parent> target choice is extremely important, because . If you choose anything
other than<parent> , then your galaxy will always be compiled into a wormhole, so that it

2-56 The Interactive Graphical Interface

U. C. Berkeley Department of EECS

can have a separate target from the outer galaxy or universe. A wormhole will be created even
if you have in fact selected the same domain, same target and same target parameters as in the
outer facet ---pigi doesn’t check. Thus, if you accidentally set the target choice to something
besides<parent> , you’ll end up with wormholes rather than plain galaxies. This can cause
unexpected behavior, because the semantics of an XXX-in-XXX wormhole aren’t necessarily
the same as just embedding a galaxy into another galaxy. (DE domain, in particular, has some
oddities with DE-in-DE wormholes as of this writing.) Even if the semantics are unaffected, a
wormhole will be slower than a plain galaxy. So be careful to use<parent> in galaxies,
unless you really intend to create a wormhole having a different target. In most cases, you
only want to make specific target selections in universe facets.

