
Chapter 16. VHDL Domain

Authors: Michael C. Williamson

Other Contributors: Christopher Hylands
Edward A. Lee
José Luis Pino
William Tsu

16.1 Introduction
The VHDL domain generates code in the VHDL (VHSIC Hardware Description Lan-

guage) programming language. This domain supports the synchronous dataflow model of
computation. This is in contrast to the VHDLB domain, which supports the general discrete-
event model of computation of the full VHDL language.

Since the VHDL domain is based on the SDF model, it is independent of any notion of
time. The VHDL domain is intended for modeling systems at the functional block level, as in
DSP functions for filtering and transforms, or in digital logic functions, independent of imple-
mentation issues.

The VHDL domain replaces the VHDLF domain. It is not, however, meant to be used
in the same way as the VHDLF domain: the VHDL domain is for generating code from func-
tional block diagrams with SDF semantics, while the VHDLF domain was intended to con-
trast with the VHDLB domain. It supported structural code generation using VHDL blocks
with no execution delay or timing behavior, just functionality. The semantics for the VHDLF
domain were not strictly defined, and quite a lot depended on how the underlying VHDL code
blocks associated with each VHDLF star were written.

Within the VHDL domain, there are a number of differentTarget s to choose from.
The default target,default-VHDL , generates sequential VHDL code in a single process
within a single entity, following the execution order from the SDF scheduler. This code is suit-
able for efficient simulation, since it does not generate events on signals. TheSimVSS-VHDL
target is derived fromdefault-VHDL , and provides facilities for simulation using the Synop-
sys VSS VHDL simulator. Communication actors and facilities in theSimVSS-VHDL target
support code synthesis and co-simulation of heterogeneous CG systems under theCompi-
leCGSubsystems target developed by José Pino. There is also aSimMT-VHDL target for use
with the Model Technology VHDL simulator. Thestruct-VHDL target generates VHDL
code in which individual actor firings are encapsulated in separate entities connected by
VHDL signals. This target generates code which is intended for circuit synthesis. TheSynth-
VHDL target, derived fromstruct-VHDL , provides facilities for synthesizing circuit represen-
tations from the structural code using the Synopsys Design Analyzer toolset. Each of these
targets is discussed in more detail in the next section.

Because the VHDL domain uses SDF semantics, it supports retargeting from other
domains with SDF semantics (SDF, CGC, etc.) provided that the stars in the original graph are

16-2 VHDL Domain

U. C. Berkeley Department of EECS

available in the VHDL domain. As this experimental domain evolves, more options for VHDL
code generation from dataflow graphs will be provided. These options will include varying
degrees of user control and automation depending on the target and the optimization goals of
the code generation, particularly in VHDL circuit synthesis.

16.1.1 Setting Environment Variables

In order to have the Synopsys simulation target work correctly, you should make sure
that the following environment variables and paths are set correctly. TheSYNOPSYS and
SIM_ARCH shell environment variables are settable within the Synopsys simulation target,
SimVSS-VHDL, as target parameters by using edit-target (shift-t).

Also, you may need to permanently add the following lines to your .cshrc file and
uncomment the ones you wish to take effect:

For VHDL Synopsys demos, uncomment the following:
setenv SYNOPSYS /usr/tools/synopsys
setenv SIM_ARCH sparcOS5
You need the last one of these (.../sge/bin) to run vhdldbx
since vhdldbx looks for “msgsvr”:
set path = ($path $SYNOPSYS/$SIM_ARCH/syn/bin $SYNOPSYS/$SIM_ARCH/
sim/bin $SYNOPSYS/$SIM_ARCH/sge/bin)
You need this to run vhdlsim, and since vhdldbx calls vhdlsim, you
need this to run vhdldbx also:
setenv LD_LIBRARY_PATH ${LD_LIBRARY_PATH}:${SYNOPSYS}/${SIM_ARCH}/
sim/lib
#
For Motorola S56x card demos on the Sparc, you will need something
like:
setenv S56DSP /users/ptdesign/vendors/s56dsp
setenv QCKMON qckMon5
setenv LD_LIBRARY_PATH ${LD_LIBRARY_PATH}:${S56DSP}/lib

You will need to have a .synopsys_vss.setup file with the right library directive in it in
order to use the communication vhdl modules needed for the CompileCGSubsystems target.
This file in the root PTOLEMY directory has the correct directive defining the location of the
PTVHDLSIM library. Synopsys simulation only sees the file if it is in one of three places: the
current directory in which simulation is invoked, the configuration directory within the Synop-
sys installation tree, or the user’s home directory. Since working directories are frequently cre-
ated and destroyed, and since the Synopsys installation will vary from site to site, the user’s
home directory is the best place to put this file, but each user must do this if the root of their
personal Ptolemy tree is anything other than their home directory.

Here is the text in $PTOLEMY/.synopsys_vss.setup:
-- This is so communication code can be
-- compiled into the PTVHDLSIM library:
PTVHDLSIM: $PTOLEMY/obj.$PTARCH/utils/ptvhdlsim

NOTE: If you build your own tree and it includes your own$PTOLEMY/src/utils/
ptvhdlsim directory, then you will need to modify your .synopsys_vss.setup file to point to
this directory prior to building the new tree. During the build process, this file is needed so that

The Almagest 16-3

Ptolemy Last updated: 12/1/97

the ptvhdlsim executable can be correctly linked. If it is pointing to some other directory, then
you may experience problems linking ptvhdlsim.

16.2 VHDL Targets
The targets of the VHDL domain generate VHDL code from SDF graphs. The targets

differ from one another in the styles of VHDL code which they produce, or in the facilities
they provide for passing the generated code to VHDL simulation or circuit synthesis tools.
The graphs of VHDL actors in Ptolemy are meant to be retargetable in that one graph can be
used with multiple VHDL targets, depending on the circumstances. The available targets in
the VHDL domain are:default-VHDL , struct-VHDL , SimVSS-VHDL, SimMT-VHDL, and
Synth-VHDL . There is also support for usingSimVSS-VHDL as a child target ofCompi-
leCGSubsystems for heterogeneous code generation and co-simulation.

All of the VHDL targets share the following parameters, which are inherited from the
base classHLLTarget :

directory (STRING) Default =$HOME/PTOLEMY_SYSTEMS
The name of the directory into which generated code files and
supporting files are written. In derived targets, this is also the
directory in which compilation for simulation and synthesis are
performed.

Looping Level (INT) Default =0
The control for selecting the looping complexity of the SDF
scheduler which is used. Note that looping of code is not sup-
ported in the current implementation, except at the main itera-
tion loop on the outside. Therefore a looping level of zero
should be used with all loop schedulers or incorrect code may
result. In future releases, higher looping levels will be sup-
ported.

display? (INT) Default =TRUE
Option to display generated codefiles to the screen.

write schedule? (INT) Default =FALSE
Option to write the schedule to a file. The name of the file will
be<galaxy name>. sched.

16.2.1 The default-VHDL Target

The default-VHDL target generates VHDL code in a simple and straightforward
style which is designed to preserve the SDF scheduling order while incurring minimum
VHDL simulation overhead. The code is generated as a single VHDL entity containing a sin-
gle process of sequential statements. The sequential process reflects the order of execution
determined by the SDF scheduler. All data values are stored and communicated through inter-
nal variables so that the simulation overhead of VHDL signals and the VHDL discrete-event
scheduler can be avoided. No actual simulation is performed by thedefault-VHDL target. It
is left to derived targets to support VHDL simulation.

To generate the code, thedefault-VHDL target first invokes the SDF scheduler, and

16-4 VHDL Domain

U. C. Berkeley Department of EECS

then goes through the resulting schedule in order, firing each VHDL star in sequence. As each
VHDL star is fired, a block of VHDL sequential statements is generated.Porthole and
State references and values are resolved and any necessary VHDL variables are created and
placed in the list of declared variables. One VHDL star may be fired multiple times and each
firing will cause a new codeblock with new variables to be generated. The target manages the
communication of data from one VHDL star to the next through VHDL variables. The target
also manages state propagation from one firing to the next of the same VHDL star through
VHDL variables. State values and tokens remaining on arcs at the end of the schedule itera-
tion are also fed back through the correct variables so that the process can be looped repeat-
edly and function identically to the original SDF graph.

16.2.2 The struct-VHDL Target

Thestruct-VHDL target generates VHDL code in a structural style, in which firings
of VHDL stars are individually encapsulated in VHDL entities. The entities are connected to
one another through VHDL signals, and the flow of data and state from one firing entity to the
next enforces the precedence relationships inherent in the dataflow graph and the resulting
schedule. The overall structure of the completed code description parallels the precedence
directed acyclic graph (DAG).

The procedure used by thestruct-VHDL target to generate the code begins similarly
to that of thedefault-VHDL target. First, the SDF scheduler is invoked and a valid schedule
is computed. Then the schedule is run, and as each VHDL star is fired, the target generates an
individual VHDL entity for each firing while keeping track of input and output references to
portholes and states. The target manages the references so that it can correctly instantiate each
VHDL entity and create VHDL signals to map to the VHDL ports for carrying data and state
from one firing to the next. Only firings which have actual dependencies will be connected in
the VHDL code representation. In this way, the code generated represents the maximum par-
allelism in the graph computation outside the granularity level of an individual firing.

The current version of thestruct-VHDL target also generates registers for latching
the values of states and remaining tokens at the end of an iteration. It feeds back the outputs of
these registers to the correct inputs at the beginning of the graph so that the structure can be
“clocked” by an input clock signal common to all such registers. This clock, on a positive
transition, represents the tick of one completed iteration of the dataflow graph. This clock
becomes an input to the entire top-level VHDL entity, and will presumably be supplied by an
outside source or signal driver during simulation. Similarly, there is an input created for a con-
trol signal which selects between the initial values of states or initial tokens and the succeed-
ing values which are passed from one iteration to the next.

16.2.3 The SimVSS-VHDL Target

The SimVSS-VHDL target is derived from thedefault-VHDL target. It generates
code in the same single-entity, single-process, sequential style as thedefault-VHDL target,
but it also provides facilities for simulation using the Synopsys VSS VHDL simulator.
Depending on the target parameters set when running this target, following the code genera-
tion phase this target can compile, elaborate, and execute interactively or non-interactively the
design specified by the generated VHDL code.

Communication actors and facilities in theSimVSS-VHDL target support code synthe-

The Almagest 16-5

Ptolemy Last updated: 12/1/97

sis and co-simulation of heterogeneous CG systems under theCompileCGSubsystems tar-
get developed by José Pino. This allows a user to manually partition a graph using hierarchy
so that multiple codefiles of different code generation domains can be generated. They are
then executable if run on host machines which provide all the needed simulators and support-
ing hardware resources that the individual child targets require. The communication between
the different code generation subsystems is automatically generated and correct synchroniza-
tion and deadlock avoidance are guaranteed. This capability is demonstrated with VHDL in a
number of demos included through the main VHDL demo palette.

The additional parameters of theSimVSS-VHDL target are as follows:

$SYNOPSYS (STRING) Default =/usr/tools/synopsys
Value of theSYNOPSYS environment variable. It points to the
root of the Synopsys tools installation on the host machine.

$ARCH (STRING) Default =sparcOS5
Value of theARCH environment variable. It indicates which
architecture/operating system the Synopsys tools will be run on.

$SIM_ARCH (STRING) Default =sparcOS5
Value of the SIM_ARCH environment variable. It indicates
which architecture/operating system the Synopsys VSS simula-
tor will be run on.

analyze (INT) Default =TRUE
If TRUE then attempt to analyze the VHDL code using thegvan
tool, checking for syntax errors.

startup (INT) Default =TRUE
If TRUE then attempt to startup the VHDL simulator (vhdldbx
if interactive = TRUE, elseptvhdlsim).

simulate (INT) Default =TRUE
Currently unused. Ifinteractive = FALSE, simulation under
ptvhdlsim will begin automatically following startup.

report (INT) Default =TRUE
Currently unused.

interactive (INT) Default =FALSE
If TRUE then when simulating, runvhdldbx . Otherwise, run
ptvhdlsim .

16.2.4 The SimMT-VHDL Target

TheSimMT-VHDL target is derived from thedefault-VHDL target. It generates code
in the same single-entity, single-process, sequential style as thedefault-VHDL target, and
also provides facilities for simulation using the Model Technology VHDL simulator. Depend-
ing on the target parameters set when running this target, following the code generation phase
this target can compile, elaborate, and execute interactively or non-interactively the design
specified by the generated VHDL code.

The additional parameters of theSimMT-VHDL target are as follows:

16-6 VHDL Domain

U. C. Berkeley Department of EECS

analyze (INT) Default =TRUE
If TRUE then attempt to analyze the VHDL code using thevcom
tool, checking for syntax errors.

startup (INT) Default =TRUE
If TRUE then attempt to startup thevsim VHDL simulator

simulate (INT) Default =TRUE
Currently unused. Ifstartup = TRUE and interactive = FALSE,
simulation undervsim will begin automatically following star-
tup. If startup = TRUE andinteractive = TRUE, vsim will startup
but wait for user input.

report (INT) Default =TRUE
Currently unused.

interactive (INT) Default =FALSE
If TRUE, then when simulating, start upvsim and wait for user
input. If FALSE, then when simulating, runvsim in the back-
ground.

16.2.5 The Synth-VHDL Target

TheSynth-VHDL target is derived from thestruct-VHDL target. It generates code
in the same structural style as thestruct-VHDL target, but it also provides facilities for syn-
thesis and optimization using the Synopsys Design Analyzer toolset.

Not every design which can be specified as an SDF graph using the VHDL stars avail-
able in the main star palettes will be synthesizable. Some stars generate code which is not syn-
thesizable under the rules required by the Synopsys Design Analyzer.

There is conceptually more than one way to generate synthesizable VHDL for a given
dataflow graph. Just as the sequential VHDL of thedefault-VHDL target differs from the
structural VHDL of thestruct-VHDL target, so there are also multiple ways in which the
structural VHDL could be generated. Thestruct-VHDL target as is only generates one par-
ticular style. A programmer with some experience could modify this target or create a new or
derived target to generate the code in a different structural style to suit different needs. Future
releases of Ptolemy may include additional structural VHDL targets for synthesis and/or a
modified version of the ones included in the 0.7 release.

The additional parameters of theSynth-VHDL target are as follows:

analyze (INT) Default =TRUE
If TRUE then attempt to analyze the VHDL code using the
design_analyzer tool, checking for syntax errors.

elaborate (INT) Default =TRUE
If TRUE then attempt to elaborate the analyzed design into a
netlist form.

compile (INT) Default =TRUE
If TRUE then attempt to compile the elaborated design into an
optimized netlist.

The Almagest 16-7

Ptolemy Last updated: 12/1/97

report (INT) Default =TRUE
If TRUE then generate reports on the compile-optimized designs
for area and timing.

16.2.6 Cadence Leapfrog Ptolemy Interface

Xavier Warzee of Thomson-CSF and Michael C. Williamson created an interface for
the Cadence Leapfrog VHDL Simulator.

$PTOLEMY/src/domains/vhdl/targets contains the Cadence Leapfrog VHDL
Target. This target,SimLF-VHDL , allows simulation of generated VHDL code with the Leap-
frog simulator from Cadence. This target is analogous to theSimVSS-VHDL target, which sup-
ports simulation with the Synopsys VHDL System Simulator.

Setup

To use the Leapfrog you need to have the following setup. Locally, our Cadence instal-
lation is at/usr/eesww/cadence , so your.cshrc would contain:

setenv PATH /usr/eesww/cadence/9504/tools/leapfrog/bin:$PATH
setenv CDS_LIB /usr/eesww/cadence/9504/tools/leapfrog
setenv CDS_INST_DIR /usr/eesww/cadence/9504

You also need to set up some files.

In the directory where the VHDL code is generated, for example
~/PTOLEMY_SYSTEMS/VHDL, the following two files must be provided:

cds.lib contains
softinclude $CDS_VHDL/files/cds.lib
define leapfrog ./LEAPFROG
define alt_syn $CDS_INST_DIR/lib/alt_syn

hdl.var contains:

DEFINE WORK leapfrog include $CDS_VHDL/files/hdl.var

and the directory~/PTOLEMY_SYSTEMS/VHDL/LEAPFROG must exist

16.3 An Overview of VHDL Stars
The figure below shows the top-level palette of VHDL stars. The stars are divided into

categories: sources, sinks, arithmetic functions, nonlinear functions, control, conversion, sig-
nal processing, and higher order functions. The higher order function stars are the same ones
that are common to all domains and they are not particular to VHDL. Icons fordelay , bus ,
and BlackHole appear in most palettes for easy access. Most of the stars in the VHDL
domain have equivalent counterparts in the SDF domain. See “An overview of SDF stars” on

16-8 VHDL Domain

U. C. Berkeley Department of EECS

page 5-4 for brief descriptions of these stars.

FIGURE 16-1: Top-level palette of stars in the VHDL domain.

16.3.1 Source Stars

Source stars have no inputs and produce data on their outputs. The figure below shows
the palette of VHDL source stars. All of these are equivalent to the SDF stars of the same

HOF
hof.pal

sources.pal

sinks.pal

arithmetic.pal

nonlinear.pal

control.pal

conversion.pal

dsp.pal

VHDL Stars

Signal Sources

Signal Sinks

Arithmetic

Nonlinear Functions

Control

Conversion

Signal Processing

Higher Order Functions

The Almagest 16-9

Ptolemy Last updated: 12/1/97

name.

FIGURE 16-2: Source stars in the VHDL domain.

16.3.2 Sink Stars

Sink stars have no outputs and consume data on their inputs. The figure below shows
the palette of VHDL sink stars. All of these are equivalent to the SDF stars of the same name.

FIGURE 16-3: Sink stars in the VHDL domain.

16.3.3 Arithmetic Stars

Arithmetic stars perform simple functions such as addition and multiplication. The fig-
ure below shows the palette of VHDL arithmetic stars. All of the stars are equivalent to the

Const
Ramp

RampInt

singen

Const

Rect

Impulse

Const

WaveForm

expgen

Window

Floating-Point Sources

Integer Sources

Complex Sources

XYgraphXMgraphXMgraph

Batch Plotting Facilities

16-10 VHDL Domain

U. C. Berkeley Department of EECS

SDF stars of the same name.

FIGURE 16-4: Arithmetic stars in the VHDL domain.

16.3.4 Nonlinear Stars

Nonlinear stars perform simple functions. The figure below shows the palette of
VHDL nonlinear stars. All of these are equivalent to the SDF stars of the same name.

FIGURE 16-5: Nonlinear stars in the VHDL domain.

16.3.5 Control Stars

Control stars are used for routing data and other control functions. The figure below
shows the palette of VHDL control stars. All of these are equivalent to the SDF stars of the

Add Mpy Mpy GainAdd

AddIntAddInt MpyInt MpyInt GainInt

IntegratorAverageSub

SubInt

AddCxAddCx MpyCx MpyCx

Floating-point

Integer

Complex

Quant

Cos Sin Exp

expjx

Quantizers

Math Functions

The Almagest 16-11

Ptolemy Last updated: 12/1/97

same name.

FIGURE 16-6: Control stars in the VHDL domain.

16.3.6 Conversion Stars

Conversion stars are used to convert between different data types. The figure below
shows the palette of VHDL conversion stars. All of the stars are equivalent to the SDF stars of
the same name.

FIGURE 16-7: Type-conversion stars in the VHDL domain.

16.3.7 Signal Processing Stars

The figure below shows the palette of VHDL signal processing stars. All of the stars
are equivalent to the SDF stars of the same name (see “Signal processing stars” on page 5-30).

FIGURE 16-8: Signal processing stars in the VHDL domain.

Fork

DownSample UpSample Distributor

Fork

Single-Rate Operations

Multirate Operations

PolarToRect

magnitude

phase

x

y

RectToPolar

x

y

magnitude

phase

CxToFloat FloatToCx

RectToCx CxToRect

Complex data type formats

FIR FIRInt LMS

Filtering operations

16-12 VHDL Domain

U. C. Berkeley Department of EECS

16.4 An Overview of VHDL Demos
The figure below shows the top-level palette of VHDL demos. The demos are divided

into categories: code generation, simulation, synthesis, and cosimulation. Some of the demos
in the VHDL domain have equivalent counterparts in the SDF or CGC domains. See “An
overview of SDF demonstrations” on page 5-51 for brief descriptions of these demos. Brief
descriptions of the demos unique to the VHDL domain are given in the sections that follow.

FIGURE 16-9: Top-level palette of demos in the VHDL domain.

init.pal

codegen.pal

simulation.pal

synthesis.pal

VHDL Demos

VHSIC Hardware Description
Language (VHDL) for modeling
digital systems and subsystems

Simulation Demos

Code Generation Demos

Synthesis Demos

CGC, S-56X & VHDL Demos

The Almagest 16-13

Ptolemy Last updated: 12/1/97

16.4.1 Code Generation Demos

Figures below show demos that do nothing but generate code.

The sequential demos use thedefault-VHDL target. The structural demos use the
struct-VHDL target. They are essentially the same systems being run, but with two different
targets producing two different styles of VHDL code. These demos provide a direct compari-
son of these two basic styles of VHDL code generation.

16.4.2 Simulation Demos

FIGURE 16-12: Demos using the Synopsys VSS Simulator.

These demos use theSimVSS-VHDL target. Each one generates VHDL code which is
functionally equivalent to the SDF graph specification, and then the code is executed on the
Synopsys VSS Simulator. Graphical monitoring blocks provide output analysis of the results
of running these systems.

butterfly
complex
Exponential sinMod tbus

Demos Generating Sequential VHDL Code

FIGURE 16-10: Sequential Code Generation Demos.

butterfly
complex
Exponential sinMod tbus

Demos Generating Structural VHDL Code

FIGURE 16-11: Structural Code Generation Demos.

butterfly
complex
Exponential sinMod tbus ch8_aVHDL_sVHDL_dC

phased_array

16-14 VHDL Domain

U. C. Berkeley Department of EECS

16.4.3 Synthesis Demos

FIGURE 16-13: Demos using the Synopsys Design Analyzer for synthesis.

These demos use theSynth-VHDL target. Each one generates structural VHDL code
which is equivalent to the SDF specification. One difference is that the data types are con-
verted to simple 4-bit integers to speed up the synthesis process. Once the code is generated,
the netlist is synthesized through the Synopsys Design Analyzer. Following that, the netlist is
optimized and then control of the Design Analyzer is returned to the user for further explora-
tion and inspection.

16.4.4 Cosimulation Demos

FIGURE 16-14: Demos mixing simulation in VHDL, C, and Motorola DSP56000 code.

These demos use theCompileCGSubsystems target which uses the SimVSS-VHDL
target as a child target for the VHDL portions of the systems. The first three demos generate
stand-alone heterogeneous programs which run in C, Motorola DSP56000 assembly, and
VHDL. They produce analysis and synthesis filterbanks for perfect reconstruction using pro-
gressively more complex structures. The fourth demo also generates a Tcl/Tk user interface
for selecting one of three waveform inputs to the system. The fifth and final demo generates
the filterbank system, but instead of doing it as a standalone program, it incorporates the sys-
tem into a wormhole inside a top-level SDF system. This way the subsystem can be executed
in code which is potentially faster than SDF simulation, and it can be reused without having to
recompile the subsystem each time the top-level system is executed.

ramp rampFir

ch4

filterBank2 filterBank4 filterBank8

Tk

filterBank8Tk

Stand-alone Applications

Simulation-SDF Wormholes

