
To appear inScience of Computer Programming, 2002.

The Semantics and Execution of a Synchronous
Block-Diagram Language

Stephen A. Edwards1

Columbia University, 1214 Amsterdam Avenue, New York, NY, 10027, USA2

Edward A. Lee3

University of California, 518 Cory Hall, Berkeley, CA 94720, USA

Abstract

We present a new block diagram language for describing synchronous software. It coordi-
nates the execution of synchronous, concurrent software modules, allowing real-time sys-
tems to be assembled from precompiled blocks specified in other languages. The semantics
we present, based on fixed points, is deterministic even in the presence of instantaneous
feedback. The execution policy develops a static schedule—a fixed order in which to exe-
cute the blocks that makes the system execution predictable.

We present exact and heuristic algorithms for finding schedules that minimize system
execution time, and show that good schedules can be found quickly. The scheduling algo-
rithms are applicable to other problems where large systems of equations need to be solved.

Key words: Heterogeneity, Synchronous, Software Modules, Execution, Fixed points,
Embedded systems, Coordination Language, System of Equations, Relaxation, Chaotic
Iteration

1 Introduction

The need for new techniques for designing software in embedded systems con-
tinues to grow as hardware costs plummet. Software is coming to dominate these
systems, yet most of it is still written using ad hoc techniques in languages de-
signed for batch processing systems. Such techniques do not address concurrency
and real-time constraints, two of the more challenging aspects of much embedded

1 E-mail address:sedwards@cs.columbia.edu
2 This work was done while the author was at the University of California, Berkeley
3 E-mail address:eal@eecs.berkeley.edu

software. In this paper, we present a new coordination language better tuned to the
problem of assembling efficient, predictable software for these systems.

Most embedded systems operate in real time, sowhenthey perform a task is as
important as the task itself. Digital logic designers have long built clocked systems
to control when events occur, but only recently has this paradigm become available
to software designers in the form of the so-called synchronous languages [4,27],
which include Esterel [11], Argos [36,37], Lustre [19,28], and Signal [31]. These
provide powerful primitives for synchronizing parts of a system to external inputs.

This paper proposes a synchronous coordination language that allows systems to
be assembled from pieces specified in different languages. This allows each system
design problem to be solved using the language best-suited for it, and improves
reuse possibilities. Furthermore, the coordination language and its scheduling tech-
niques can be used as a foundation for designing other languages.

Our systems consist of synchronously communicating blocks. Like all synchronous
languages, it adopts a model of time like that used in synchronous digital circuits:
in each cycle of the global clock, the system examines inputs from the environ-
ment, evaluates the function of the system (which depends both on those inputs
and the system’s state), and produces outputs that are sent to the environment or
used to determine the state of the system in the next cycle. Within each cycle, the
blocks communicate instantaneously (i.e., information generated in a cycle can be
observed in the same cycle), and no restrictions are placed on their topology. In
particular, instantaneous feedback is allowed.

Each block must be able to both evaluate its outputs based on its inputs and
advance its state. Splitting these is necessary because a block may need to be eval-
uated more than once per cycle if it appears in a feedback loop. Blocks must not
make any assumptions about the number of times they are evaluated since it is an
unpredictable function of the whole system and the scheduling algorithm. In con-
trast, the state of each block is advanced exactly once per cycle after its outputs
have been determined. As mentioned earlier, this may make the block compute a
different function in each cycle.

The main contribution of this coordination language is the ability to execute
such systems without the compiler requiring information about the contents of the
blocks, allowing them to be described in different languages. Provided each block
uses the same communication protocol and behaves monotonically (never “changes
its mind” when presented with additional information), the systems are determinis-
tic, deadlock-free, and can be executed efficiently and predictably.

The remainder of the paper is divided into two parts. The first half formally de-
fines the semantics of these systems as the unique least fixed point of the function
of all the blocks, thus proving the language is deterministic. The second half in-
troduces techniques for scheduling and ultimately executing these systems in com-
pliance with the semantics. Experimental results and a discussion of future work
concludes the paper.

2

TO

PO

TI

PI

R G

TO

PO

TI

PI

R G

TO

PO

TI

PI

R G

(a)

PI
(Pass In)

PO
(Pass Out)

TI
(Token In)

TO
(Token Out)

G (Grant)R(Request)

(b)

⊥⊥⊥/⊥⊥

⊥⊥0/⊥00⊥⊥/⊥⊥⊥0⊥/⊥⊥⊥1⊥/⊥⊥1⊥⊥/⊥⊥⊥⊥1/0⊥

0⊥0/⊥0⊥00/⊥0⊥10/101⊥0/1000⊥/0001⊥/⊥⊥10⊥/⊥⊥11⊥/⊥⊥0⊥1/0⊥⊥01/0⊥⊥11/011⊥1/01

000/00010/10100/10110/10001/00011/01101/01111/01

TI PI R / PO G

(c)

Fig. 1. (a) A cyclic token-ring arbiter composed of three blocks. (b) The function within
each block. (c) A truth table for the function arranged according to the number of defined
inputs. A line indicates a single input becoming defined.

2 Synchronous Block Diagrams

Our block diagram language is based on ideas from traditional zero-delay three-
valued circuit simulation. Blocks compute a function of their inputs and communi-
cate through zero-delay “wires” that convey values such as 0, 1, or undefined (we
use⊥ to represent this unknown value). Time is divided into a sequence of clock
cycles, and in each cycle each block sets the values on its outputs depending on the
value it sees on its inputs and the state of the system. Wires communicate instanta-
neously, i.e., when a block sets the value of an output wire, all blocks connected to
that wire see the new value in the same clock cycle. The number and connectivity
of the blocks does not change while the system runs.

The cyclic token-ring arbiter in Fig. 1 is typical of the systems that can be de-
scribed with our block-diagram language.4 This system arbitrates fairly among
requests for exclusive access to a shared resource by marching a token around a
ring. In each cycle the arbiter grants access to the first requestor to the right of the
block with the token. Fig. 1b shows the function of each block, which passes the
token around the ring and either responds to a request or passes its opportunity to
its right neighbor. At all times, exactly one of the latches stores a 1; the rest contain
a 0.

4 Berry [9] attributes this example to Robert de Simone.

3

(a) (b)

Fig. 2. Semantic challenges: (a) An ambiguous system. (b) A paradoxical system.

It appears this system might deadlock since the PO output depends on the value
of PI, which comes from the PO output of the block to its left, and so on around the
ring. The presence of the “token”—actually a 1 value on one of the latches—breaks
this deadlock by setting to 1 the TI input of the block immediately to the right of the
token. The presence of this 1 establishes the output of the OR gate independently
of the value of PI, breaking the deadlock situation.

The way the cyclic arbiter breaks its deadlock is typical: the feedback loop con-
tains non-strict blocks that can be “short-circuited” to ignore inputs from the loop
when certain patterns are applied to their inputs, thus breaking the deadlock. For
a system to be deadlock-free it is necessary (but not sufficient) for each feedback
loop to contain at least one non-strict block—one that can produce a partially-
defined output in response to a partially-defined input. A three-valued OR gate is
typical of a non-strict block: if one of its inputs is 1, its output is 1 regardless of the
value on the other input. Similarly, AND gates, multiplexers, and delay elements
are all non-strict. Functions that always require all their inputs, such as inverters
and exclusive-OR gates, are strict. A feedback loop containing only exclusive-OR
gates will always deadlock.

The main objective of our block-diagram language is to handle systems like the
cyclic arbiter that may appear to deadlock but do not because of behavioral de-
tails. Specifically, we are able to define the semantics of and simulate such systems
without detailed knowledge of the functions computed by each block. This is use-
ful in software systems linked together from pieces that are compiled separately or
whose blocks are specified using different languages. We used a circuit diagram to
define the function of the blocks in this example, but could just have easily used a
synchronous language such as Esterel.

Systems with paradoxes and ambiguity, such those in Fig. 2 have a natural inter-
pretation in this framework: the undefined value⊥ appears on wires participating in
unbroken feedback loops. For example, the system with the single buffer in Fig. 2a
appears to be satisfied with any value on its single wire, but our deterministic se-
mantics declare the undefined value⊥ to be the only correct solution. Similarly,
the paradoxical system in Fig. 2b seems to have no satisfying assignment. How-
ever, since the inverter must produce⊥ in response to a⊥ input, our semantics say
both wires take the value⊥.

In the remainder of this section, we put the semantics of our language on firm
mathematical ground by defining it as the least fixed point (LFP) of the function
of all the blocks and using a well-known fixed point theorem to show that this is
unique. The second half of the paper discusses how to efficiently evaluate this LFP.

4

2.1 Semantics

We base the semantics of our systems on three main concepts. First, the values
passed through wires are taken from a complete partial order—a set whose ele-
ments are ordered by how much “information” each contains. Second, the blocks
are restricted to compute functions that are monotonic with respect to this order, so
they never decrease or change existing information when presented with additional
information. Finally, a well-known theorem guarantees that such monotonic func-
tions have a unique least fixed point, which we define as the behavior of the system
in each clock cycle.

Our coordination language permits the unknown value, written⊥, on a wire,
which is used to represent wires in feedback loops with ambiguous or contradictory
values. Formally, each wire takes a value from a partially-ordered setV with a
binary relationv that is reflexive (xv x), antisymmetric (ifxv y andyv x then
x = y), and transitive (ifxv y andyv z thenxv z). We construct such sets by
“lifting” a set. Starting with a setV ′ of defined values such as{0,1} or the integers,
lifting V ′ adds the undefined element⊥ (i.e.,V = {⊥}∪V ′) and imposes the order
⊥v⊥,⊥v v′, andv′ v v′ for all v′ ∈V ′. This order leaves distinct members of the
setV ′ incomparable, e.g., neither0v 1 nor1v 0.

Thev relation naturally extends to vectors ((a1, . . . ,an) v (b1, . . . ,bn) iff a1 v
b1,a2v b2, . . . , andanv bn) and imposes an information ordering in the sense that
if av b, then there are only two possibilities for corresponding elements ofa and
b: they can be identical, orak =⊥ andbk ∈V ′.

To ensure deterministic semantics, we require that each block compute a mono-
tonic function of its inputs (i.e., a functionF for whichxv y impliesF(x)v F(y)).
This has a natural interpretation: presenting a block with a more-defined input al-
ways produces a more-defined output or the same value.

Fig. 1c is an oddly-drawn truth table for the function of an arbiter block that
shows it is monotonic. Input/output pairs are separated by a slash and arranged
such that following a line upward always leads to a more defined input. Careful
inspection of the diagram will show that the outputs also always become more
defined along an upward path, implying the function is monotonic. For example,
the rightmost path is the sequence⊥⊥⊥/⊥⊥→⊥⊥0/⊥0→ 0⊥0/⊥0→ 000/00.

The fixed-point theorem operates on a totally-ordered sequence called a chain,
i.e., a setC⊆V such thatxv y or yv x for all x,y∈C. The maximum length of
these chains is important, so we define theheightof a partially-ordered setV as the
size of the longest chain inV. A lifted set that represents the value on a single wire
has height two, since the longest chains all look like{⊥,v′} for somev′ ∈V ′. The
height of ann-valued vector of elements ofV is n+1 (vectors in the longest chain
have between0 andn⊥ elements).

The fixed-point theorem we use also applies to sets with infinite-height chains,
but this requires chains and functions to stay bounded. An upper boundb∈V of a
setS⊆V satisfiessv b for all s∈S. The least upper bound, if it exists, is the unique
elementlubSsuch thatlubSv b for all upper boundsb. A complete partial order
(bounded on infinite chains) is a setV that is partially ordered, has a distinguished

5

A
B

C

1
2

3

45

6

7

1

2 3

4

5

6

7 1

35

6

7

(a) (b) (c)

Fig. 3. (a) A system, (b) its dependency graph (each output is a node, an arc is drawn from
each output driving an input on the block, self-loops are omitted), and (c) the dependency
graph after removing nodes 2 and 4. Each node corresponds to an output and each arc
represents a functional dependence.

bottom element⊥ such that⊥v v for all v∈V, and all chainsC⊆V have a least
upper bound. A functionF : V → V is continuous (bounded on infinite chains) if
for all chainsC⊆V, F(lubC) = lub{F(c) : c∈C}.

Since all the chains in our domains (i.e., finite vectors of lifted sets) are finite, our
partial orders are complete because finite chains always have a least upper bound.
Furthermore, it is not difficult to show that our monotonic functions, since they are
defined on sets with only finite chains, are also continuous.

We define the semantics of our systems as the least fixed point of a function.
A fixed point of a functionF is simply a valuex satisfyingF(x) = x. For block
diagrams, this corresponds to the case where the output of each block produces
matching inputs. In short, the inputs and outputs of each block are consistent. A
function may have many fixed points, but we are interested in the least-defined
fixed pointlfp F , which by definition satisfiesF(lfp F) = lfp F andlfp F v x for all
fixed pointsx of F . A fixed point is attractive as a definition of behavior because it
corresponds to the intuitive notion of a consistent state of the system. Furthermore,
the least fixed point can be reached purely through deductive reasoning (i.e., it is
unnecessary to make and test hypotheses to compute the least fixed point, which is
not the case with other fixed points), and it is unique, making systems deterministic.

The key theorem that defines the semantics and guarantees determinism is a folk
theorem variously attributed to Knaster, Tarski, and Kleene [30].

Theorem 1 The least fixed point of a continuous functionF on a complete partial
order is unique and equal to the least upper bound of the chain{⊥,F(⊥),F2(⊥), . . .}.

Finally we are in a position to define the semantics of our systems. The function
for the system is derived from the functions of the blocks and their connectivity.

6

Consider the system in Fig. 3a. The functions of its three blocks are

A : I ×S×V2→V2

B : I ×S×V4→V2

C : I ×S×V4→V3

whereI is the set of all possible inputs to the system andS is the set of all possible
states of the system. Although block A is drawn with three inputs, theA function is
only defined onV2 because only two of its inputs are connected to internal wires.
The effect of the external input is felt throughA’s dependence onI ; B andC are
probably independent ofI . This very abstract model of both inputs and system state
is sufficient for our purposes. The semantics treats environment inputs and system
state equivalently: they simply select the functions computed by the blocks. The
only requirement is thatA, B, andC be monotonic with respect to outputs.

The function of this systemG : I ×S×V7 → V7 maps the input, state, and 7
current output values to a new set of 7 output values. We will define the semantics
as the least fixed point of this function.

Each component of the vector-valuedG function is an output of one of the blocks
and is a component of one of the block functions. For example,G1 is the function
for output1, which is the first output of block A. The two non-external inputs of
block A are driven by outputs 3 and 7, so

G1(i,s,v1, . . . ,v7) = A1(i,s,v3,v7)

whereA1 is the function for the first output of blockA.
The other component of theG function are defined similarly:

G2(i,s,v1, . . . ,v7) = A2(i,s,v3,v7)

G3(i,s,v1, . . . ,v7) = B1(i,s,v1,v2,v5,v6)

G4(i,s,v1, . . . ,v7) = B2(i,s,v1,v2,v5,v6)

G5(i,s,v1, . . . ,v7) = C1(i,s,v5,v2,v4,v7)

G6(i,s,v1, . . . ,v7) = C2(i,s,v5,v2,v4,v7)

G7(i,s,v1, . . . ,v7) = C3(i,s,v5,v2,v4,v7)

In general, ann-output system implies a system functionG : I ×S×Vn → Vn

constructed in this way. The behavior of the system in a cycle in states∈ S with
inputsi ∈ I is the least vectorx∈Vn that satisfies

G(i,s,x) = x, (1)

Theorem 2 There is always a unique leastx that satisfies (1), so these systems are
deterministic.

7

Proof. This follows from Theorem 1 becauseVn is a complete partial order and
G(i,s,x) is continuous w.r.t.x because it is a vector-valued combination of the
monotonic (and hence continuous because chains inV are finite) block functions.

3 Execution

In each cycle, the semantics of our block diagram language requires us to find
the least fixed point ofG, the monotonic function describing the composition of all
the blocks in the system. We compute this fixed point by evaluating the functions
of the blocks in a particular order—a schedule—that guarantees that the final result
is the least fixed point.

We obtain these schedules through a divide-and-conquer approach. The “con-
quer” part comes from the iteration in Theorem 1, which says the LFP of a function
Gcan be computed by taking the least upper bound of the chain{⊥,G(⊥),G2(⊥), . . .}.
Because chains in our domain (the vector of all block outputs) are finite, this re-
duces to evaluatingG until a fixed point is reached. Specifically, ann-output system
has chains of heightn+1, so we are guaranteed to reach the LFP aftern evaluations
of G.

The “divide” part of our divide-and-conquer algorithm comes from Bekić’s The-
orem [3]:

Theorem 3 (Bekíc) Let X : Vm×Vn →Vm andY : Vm×Vn →Vn be continuous
functions on a complete partial order. Then the least fixed point ofX×Y : Vm×
Vn→Vm×Vn is (x̂, ŷ), where

x̂= lfpxX(x, lfpyY(x,y)), (2)

ŷ= lfpyY(x̂,y), (3)

and lfpx f (x,y) is a function ofy, sayg(y), that is the least function that satisfies
f (g(y),y) = g(y).

This provides a mechanism for evaluating the least fixed point of a vector-valued
function by breaking it into two, evaluating the least fixed point of the first half,
then using the result to evaluate the second half. At first glance, this is not helpful
since evaluating the LFP of the first half requires evaluating the LFP of the second
half along the way. However, the computation does become substantially simpler
whenX does not depend on its second argument:

Corollary 1 If X(x,y) does not depend ony, then the least fixed point ofX×Y is
(x̂, ŷ) wherex̂ = lfpxX(x,z), ŷ = lfpyY(x̂,y), andz is an arbitrary vector inVn.

This implies that the LFP of a system with no feedback can be evaluated by
calculating the LFP of the blocks in topological order, i.e., by evaluating the blocks
that depend only on external inputs first, then by evaluating blocks that only depend
on that set of blocks, and so forth.

To illustrate our scheduling and execution procedure, consider the three-block

8

1

2

3

4

5

6

7

1

2

3

4

5

6

7

1

2

3

4

5

6
7

(a) (b) (c)

Fig. 4. Decomposing the dependency graph in Fig. 3b using Bekić’s theorem. (a) A
brute-force evaluation using Theorem 1 involves evaluating a feedback loop with seven
wires. Cost:72 = 49 (b) Splitting it two using Bekíc’s theorem (theX function contains
nodes 2 and 4, the others are part of theY function) transforms the graph into an inner
feedback loop with five wires and an outer loop with two. Cost:22 + (2+ 1)52 = 79 (c)
Further decomposing theY function transforms the five-element feedback loop into two
loops (5 and 7, 3 and 1) of one wire each. Cost:22 +(2+1)(3+1+3) = 25

system in Fig. 3a. We represent its communication dependencies with the graph
in Fig. 3b, whose nodes represent outputs. An arc is drawn from nodex to nodey
if output y is on a block with an input connected to outputx, e.g., there is an arc
from node 5 to node 3 because output 5 drives block B, which produces output 3.
Self-loops are omitted because they do not affect how rapidly a least-fixed-point
computation converges. Specifically, if an output is⊥ when the input is⊥, the
output is consistent. If the output is not⊥ when the input is⊥, the output must
remain at that non-⊥ value when the feedback is taken into account because the
functions are monotonic.

One way to evaluate the LFP of the system is to directly apply the iteration of
Theorem 1. If we assume evaluating a single block output has a cost of 1 (which
we do throughout this paper), then because the height of the set with all vectors
of length 7 is 8 (these vectors represent the values on all the wires) we need to
evaluate all block outputs 7 times. There are 7 block outputs, so evaluating the
system function once has cost 7. Thus the total cost of evaluating the LFP of the
system using a brute-force iteration is72 = 49.

Bekić’s Theorem and Corollary 1 allow us to evaluate the LFP more cheaply.
We cannot apply Corollary 1 at first because the dependency graph is strongly con-
nected, i.e., there is a directed path in both directions between every pair of nodes,
implying every function is dependent on every other. So we use Bekić’s Theorem
to evaluate the LFP.

Bekić gives us the freedom to divide the system function any way we like, so
we will choose a decomposition with the goal of reducing the number of func-

9

tion evaluations. The algorithm we describe later (Section 3.3) suggests we first
choose theX function to consist of nodes 2 and 4, andY to contain the rest. This
decomposition is shown in Fig. 4b, which is drawn to suggest the application of
Bekić’s theorem. First, we calculatêx = lfpxX(x, lfpyY(x,y)) as follows. Starting
with x̂0 = ⊥, we evaluatêx in two iterations usinĝxk+1 = X(x̂k, lfpyY(x̂k,y)), so
x̂ = x̂2. In this computation,lfpyY(x̂k,y) is calculated by taking five iterations of
y0 =⊥, y j+1 = Y(x̂k,y j), andlfpyY(x̂k,y) = y5. Oncex̂ is evaluated, the final value
of ŷ is evaluated by five more iterations ofŷ0 =⊥, ŷ j+1 = Y(x̂, ŷ j), andŷ = ŷ5.

We assume evaluating each output has unit cost, so we compute the cost of this
computation as follows. There are five outputs in theY function, soY costs 5 to
evaluate. It takes 5 iterations to evaluatelfpyY(x,y), and this is done three times:
twice to evaluatêx, and once more to evaluateŷ. TheX function is evaluated twice.
Thus the total cost is22 + (2+ 1)52 = 79, unfortunately higher than the cost of
evaluating the LFP using brute force.

We can do better. EvaluatinglfpyY(x,y) is the most costly part of this compu-
tation because we evaluated it using brute force. But it can be further decomposed
and evaluated more cheaply. Fig. 3c shows the dependency graph for theY func-
tion consists of three strongly-connected components (an SCC is a maximal set of
nodes with directed paths between all pairs)—nodes 5 and 7, node 6, and nodes 1
and 3—whose least fixed point can be evaluated more efficiently using Corollary 1.
Furthermore, it is more efficient to use Bekić’s Theorem than brute force to evaluate
the LFP of a two-output function.

To more succinctly represent these iterations, we introduce notation for repre-
senting a schedule, which indicates a sequence of nodes to evaluate. Juxtaposition
is the fundamental part of the notation: writinga bmeans evaluatea, then evaluate
b, each of which may be single nodes or more complicated schedules. A group of
nodes surrounded by square brackets[n1 n2 · · ·] is evaluated in parallel. Note that
the order of nodes within brackets is irrelevant since they are all evaluated at once.
The most complicated notation in our schedules describes an evaluation according
to Bekíc’s Theorem and consists of two sub-schedules separated by a dot and sur-
rounded by parenthesis with a superscript(s1 . s2)n, corresponding ton iterations
of the sequences2 s1 followed by a single evaluation ofs2. So(s1 . s2)1 expands
to s2 s1 s2, (s1 . s2)2 expands tos2 s1 s2 s1 s2, and so forth. In the language of
Bekić’s Theorem,s1 evaluatesX ands2 isY. In this notation, the brute-force, single
decomposition, and multiple decomposition schedules for the example system are

([5 7 6 3 1 4 2] .)7

([4 2] . ([5 7 6 3 1] .)5)2

([4 2] . (5 . 7)1 6 (3 . 1)1)2

This last schedule implies the following sequence of node evaluations:

7 5 7 6 1 3 1[4 2] 7 5 7 6 1 3 1[4 2] 7 5 7 6 1 3 1

10

which has cost 25 (each node evaluation has unit cost), substantially better than the
brute-force cost of 49.

Our schedules are a generalization of those proposed by Bourdoncle [13], which
always remove exactly one node from an SCC. This can lead to less efficient sched-
ules for certain graphs, such as Fig. 3a. Furthermore Bourdoncle’s scheduling al-
gorithm is heuristic and can miss the optimal schedule, although it runs faster.

3.1 Merging Block Evaluations

These schedules describe evaluating nodes, yet in our language only blocks can
be evaluated as a whole. The simple-minded approach of evaluating a whole block
when the schedule calls for a single output on that block (i.e., a node) still produces
the least fixed point because the blocks are monotonic. (It is easy to show that the
sequence of intermediate results produced by evaluating nodes is a lower bound for
the sequence produced by evaluating blocks.)

However, this approach is wasteful because it may perform more evaluations
than necessary. To eliminate some (but not all) of this inefficiency, we propose the
following algorithm that can reorder a schedule to take into account block evalua-
tions.

First, consider the following rewrite rules. Written in a deductive style, they im-
ply the subexpression above the bar can be rewritten as the subexpression below
the bar when the condition on the right is true. Two helper functions simplify the
conditions:O(s) is the set of all indices that appear in subexpressions, andI(i) is
the set of predecessors of nodei, i.e., all the nodes that directly affect outputi.

s i
i s

whenI(i)∩O(s) = /0 (4)

(s1 . s2)ni
(s1 . s2 i)n always (5)

(s1 . s2)ni
(s1 i . s2)n whenI(i)∩O(s2) = /0 (6)

(i s1 . s2)n

(s1 . s2 i)n always (7)

i1 · · · in
[i1 · · · in]

when∀ j < k,O(i j)∩ I(ik) = /0 (8)

[i1 · · · in]
i1 · · · in

always (9)

The first rule, (4), follows from noting thati can be evaluated befores if i does not
use any of the outputs froms. Note thats may depend oni, but evaluatingi earlier
only means the least fixed point may be reached sooner because the functions are
monotonic.

11

Rule (5) actually increases the number of evaluations since

(s1 . s2)ni = s2 s1 s2 · · · s1 s2 i and

(s1 . s2 i)n = s2 i s1 s2 i · · · s1 s2 i.

Rule (6) requires thati does not use any outputs ofs2. Examining the bottom
sequence shows why this restriction is necessary: the finali is moved to just before
the final evaluation ofs2:

(s1 i . s2)n = s2 s1 i s2 s1 i · · · s1 i s2.

Rule (7) just adds a trailing evaluation ofi.

(i s1 . s2)n = s2 i s1 s2 i s1 i · · · i s1 s2

(s1 . s2 i)n = s2 i s1 s2 i s1 i · · · i s1 s2 i

Rule (8) says that any sequence of nodes that do not depend on partial results may
be evaluated in parallel. And rule (9) says nodes evaluated in parallel can always
be evaluated in sequence: the parallel result is always a lower bound for the series
result because the functions are monotonic.

Together, these rules suggest an algorithm for rewriting schedules to better suit
block evaluations. The goal of the algorithm is to move outputs on the same block
together so they can be coalesced into a single parallel (block) evaluation by (8).
It considers each node in turn, applying (4)–(7) repeatedly to find a position where
the node can be merged with another on the same block using (8).

For the schedule

([4 2] . (5 . 7)1 6 (1 . 3))2

of the system in Fig. 3, applying (9) to node 4 then applying (7) gives

(2 . (5 . 7)1 6 (1 . 3) 4)2.

Next, applying (5) and (8) gives

(2 . (5 . 7)1 6 (1 . [3 4]))2.

Replacing nodes with blocks produces the final schedule

(A . (C . C)1 C (A . B)1)2,

which corresponds to the sequence of block evaluations

C C C C B A B A C C C C B A B A C C C C B A B.

12

1: function schedule(G,b) returns (s,c)
2: DecomposeG into strongly-connected componentsG1, . . . ,Gn

3: b = min{b,∑n
i=1 |Gi |2−|Gi |+1} Bound to meet

4: (s,c) = (the empty schedule,0) Initialize the schedule and its cost
5: for all strongly-connected componentsGi in topological orderdo
6: b′ = b−c−∑n

j=i+1 |G j | Rough bound for this component
7: if b′ < |Gi | then
8: return (/0,∞) Scheduling is impossible in sub-linear cost
9: if |Gi |= 1 then

10: AppendGi to s Schedule for a single node is the node
11: c = c+1 Schedule a single node
12: else
13: s′ = the empty schedule Best schedule for this component
14: for all subsetsX of Gi do
15: (s′′,c′′) = schedule(Gi−X,

⌊
b′−|X|2
|X|+1

⌋
) Schedule rest of component

16: if |X|2 +(|X|+1)c′′ < b′ then
17: s′ = ([Gi] . s′′)|Gi | Evaluate this component using Bekić
18: b′ = |X|2 +(|X|+1)c′′ Evaluation cost
19: if s′ is the empty schedulethen
20: return (/0,∞) No schedule for this SCC met the bound
21: Appends′ to s
22: c = c+b′ Add the cost of scheduling this component
23: if c≤ b then
24: return (s,c) Met the bound
25: else
26: return (/0,∞) Could not find a low-cost schedule

Fig. 5. The branch-and-bound algorithm for finding the optimal schedule. Capital letters
denote sets of nodes. Primed variables are associated with a strongly-connected component,
double-primed variables with part of a component. Selecting which subsets to consider and
in what order in line 14 is the crux of the algorithm. Choosing these judiciously is the
subject of Section 3.3.

3.2 Scheduling

Fig. 5 shows the recursive branch-and-bound algorithm we use to compute sched-
ules. It takes a dependency graph and a bound and attempts to find a schedule
for computing the least fixed point of the system represented by the dependency
graph that meets the bound. The core of the algorithm decomposes the graph into
strongly-connected components (line 2) and then attempts to find a schedule for
each SCC by further decomposing it (lines 5–22).

The algorithm always produces correct schedules. The schedule for a graph is
a sequence of schedules for each SCC in topological order, since this is the order
in which the algorithm considers them (line 5), and if a schedule for the SCC that
meets the bound is found, it is added to the returned schedule in line 10 or 21.

13

Corollary 1 tells us that evaluating SCCs in topological order is correct. Each SCC
is decomposed and scheduled using the computation in Bekić’s Theorem, which
appears in line 17.

The function begins by attempting to lower the given bound (line 3). It is always
possible to evaluate an SCC by using Bekić’s Theorem with aY function containing
exactly 1 node. For ann-node SCC, this costs(n−1)2+n= n2−n+1: the estimate
used in line 3. This upper bound is tight because a fully-connected graph can require
this many evaluations.

To schedule each SCC, the main loop (lines 5–22) begins by computing a bound
for the SCC (line 6) by assuming all the remaining SCCs can be scheduled with
linear cost. If this optimistic bound still requires the SCC to be scheduled in less
than linear cost, then the function returns failure (line 8).

There are two ways an SCC can be scheduled. A trivial SCC consisting of a sin-
gle node can always be scheduled with cost one, handled by lines 10–11. Handling
nontrivial SCCs, done in lines 12–22, is the main challenge.

The branching in this branch-and-bound algorithm comes from different decom-
positions of each SCC. The most cost-effective decomposition is rarely obvious, so
the algorithm tests many different ones, bounding the cost of the worst schedule it
is willing to consider as better schedules are found.

Decomposing an SCC amounts to choosing theX function in Bekíc’s Theorem—
a set of nodes that will become an outer loop in the schedule. The next section
discusses how different subsets of each SCC are chosen in line 14; for the moment
assume the algorithm considers all2n−1 possibilities.

The inner loop (lines 14–18) begins by calling the scheduler recursively to sched-
ule the rest of the SCC (line 15). The bound deserves explanation. The cost of eval-
uating the entire SCC using Bekić’s Theorem is|X|2 +(|X|+1)c′′ (the expression
in lines 16 and 18), where|X| is the number of nodes in the removed subset (the
dimension of Bekíc’s X function) andc′′ is the cost of evaluating the nodes that
remain. The bound in line 15 must be met to make this expression less thanb′, the
maximum cost allowed to evaluate the SCC.

If the costc′′ of evaluating the rest of the nodes in the SCC is sufficiently low,
the schedule that produced it is used to schedule the SCC (line 17) using the com-
putation in Bekíc’s Theorem, and its cost becomes the new bound.

If the algorithm finds a schedule for the SCC that meets the bound, the schedule
for the SCC is appended to the schedule for the graph (line 21) and the cost of the
component’s schedule is added to the total schedule costc (line 22). Note that since
the SCCs are considered in topological order (line 5) and the schedule for each is
appended to the schedule for the graph (line 10 and 21), the SCCs are scheduled in
topological order in accordance with Corollary 1.

Finally, if the cost of all the SCCs did not exceed the bound (line 23), the func-
tion returns a pair consisting of the schedule for the graph and its cost (line 24),
otherwise the function returns failure (line 26).

14

1

2 3

4

5

6

7 1

2 3

4

5

6

7 1

2 3

4

5

6

7 1

2 3

4

5

6

7

(a) (b) (c) (d)

Fig. 6. The heuristic for partitioning an SCC in action. Nodes inK, the candidate ker-
nel, are drawn normally. In each step, the heuristic returns the predecessors ofK nodes,
drawn in black, as a candidate subsetX. (a) The initialK = {6} givesX = {2,4,5,7}. (b)
Adding node 7 toK givesX = {2,4,5}. (c) Node 5 added (X = {4,2}). (d) Node 2 added
(X = {3,4}, K = {2,5,6,7}).

3.3 Finding Efficient Schedules

The branch-and-bound algorithm in Fig. 5 will always find the most efficient
schedule if it considers all2n−1 subsets in line 14, but this makes the algorithm
very costly (exponential) to run. The branch-and-bound technique does tend to re-
duce the number of possibilities considered by attempting to trim the search space
as much and as soon as possible, but the asymptotic running time remains expo-
nential.

If we are resigned to considering all possible subsets in line 14, which appears
to be necessary to find the optimal schedule, we consider them in an order that
attempts to find tighter bounds more quickly to reduce the number that must be
considered. We consider all subsets of size 1 first, then all subsets of size 2, and so
forth. This order should lower the bound more quickly because the cost of evaluat-
ing an SCC using Beckić’s Theorem rises with the square of the size of the subset,
as reflected in the cost computation in line 18.

If, however, we are willing settle for merely a good schedule instead of the opti-
mum, we can greatly reduce scheduling time by using a heuristic that only consid-
ers some of the possible subsets. The motivation for this heuristic comes from the
observation that an optimal partition of an SCC always breaks its strong connec-
tivity, and that breaking strong connectivity requires making sure some subset of
nodes in the resulting graph has no predecessors outside that set (Frank [25] calls
this a well-known result). If partitioning an SCC did not break strong connectivity,
the remainder would consist of a single SCC that would have to be evaluated using
Bekić’s Theorem. It would have been more efficient to have combined the twoX
functions rather than nesting the evaluation.

The heuristic tries to find a small subset of nodes to remove from the SCC to
break strong connectivity. It does this by adding each node in the SCC one at a
time to a setK. In each step, the heuristic returns a setX (used in line 14) which
contains the predecessors ofK. The branch-and-bound algorithm removes theX
nodes from the graph, which usually makesK a kernel and thus breaks the strong
connectivity of the graph. This does not break strong connectivity ifX∪K is the
whole SCC, e.g., in a fully-connected subgraph.

15

+ +++ +++ +++++
++ +++ ++++ ++++++ ++++

++

+

+++ +++ +
+

+

+++ +

+

++

+

+

+
+

+

++
+
++

+

+

+

+

+

+

+ ++

+

+

+

+

++++ +

+

+ ++ ++

++
+

+
+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

++

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+
++++

+

+

++

+

+

+
+

++

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

++

+

+

+

+

+

+ +

+

+
+

+

+

+

++

+ +

+

+

+

+

+

+

+

+

+
+

+

+
+

+

+

+

+

+

+

+
++

+

+

+ exact

* *
** *

** ******* *** **** **** ** ****** * ***
** * **** ** * *** *** * ****** **** *** *** *** **** * ** *

*
* *

**
*

**
**

**
*

* * *
* ** ** * **

*
* *** ** * ** **
*

*

**
*** ***
*** *
*

*

** * ** *** * *
*

* *
**

*
*

*

* *** * **
* **

*
*

*
*

*

**
**

*

*
*

*
*
*

* *
*

*
*

*

*
*

*
**

** *
*

* *
*

*

* *
*

*

*
*

* * **

*
*

*

*

* *
*

*

*

* *

* *
*
*

*

*
**

*

*
*

*

*
* *

*

* *

*

*

**

*

*
* **

*
*

* *

*

*
* *

*
*

**
*

*

*
*

**

* *

*

*
*

*
**

*

*

*

*
*

*

* * *

*

*
*
* *

*

*

*

*

*

*
*

*
*

*

*

*
*

*

* heuristic

1s

10s

100s

0 20 40 60 80 100 120
Nodes to schedule

Scheduling
time

Fig. 7. Scheduling times for the exact and heuristic algorithms. Times are on a SPARCSta-
tion 10.

Fig. 6 illustrates how this heuristic chooses partitions (i.e., subsets of a strongly-
connected component) for the dependency graph in Fig. 3b. Initially,K is seeded
with a single node, 6 (Fig. 6a). Its predecessors are nodes 2, 4, 5, and 7, so the
first subsetX = {2,4,5,7}. Next, the algorithm adds one of the nodes inX to K,
choosing the one that will produce the smallestX in the next step. Adding nodes 2
or 4 would add node 3 or 1 toX, but adding node 5 or 7 removes one node from
X. The algorithm chooses 7 arbitrarily, returningX = {2,4,5} (Fig. 6b). The next
step adds 5 toK, again because adding nodes 2 or 4 would add a node toX and
adding 5 reduces the size ofX. This producesX = {2,4}, which turns out to be
the best choice; however, the algorithm continues to produce newX sets until every
node has been added toK.

This heuristic may not locate the optimal subset for two reasons. First, certain
kernels are missed because only one node is ever added to the kernel set, even when
there is a choice. Second, the optimal subset may be larger than the minimum—it
may include nodes that are not required to break strong connectivity.

4 Experimental Results

To test the efficiency of the scheduling algorithm and the partition selection
heuristics, we generated 304 block diagrams at random and found the minimum
cost schedule for each using both the exact and heuristic scheduling algorithms.
The exact algorithm considers all possible subsets by first considering all subsets
with one vertex, then all with two, and so forth: an exponential number of possibil-
ities. The heuristic variant uses the algorithm described in the last section to choose
small subsets within the branch-and-bound technique.

To create the random block diagrams, we generated sixteen systems with two

16

+
+

+++

++

+
++

+

+

++
+

+
+++

++
++
+

+
++

+
+

++
+

+

+

++
+
+++
+

+

+

+
++
+

+

+
+

+

+

+
+

+

+
+

+

+
+

+

+

+

+

+

+

++
+

+

+

+

+

+ ++++

+

+
+

+

+ +

++

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

++

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+ +

+++

+

+

+ +

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

++

+

+

+

+

+

++

+

+

+

+

+

+

++

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

0.3s 1s 3s 10s 30s 100s 300s
1

3

10

30

100

300

Time to computeexactschedule

Speedup
dueto
heuristic

Fig. 8. Scheduling time speedup due to the use of the heuristic as a function of exact times.

0 20 40 60 80
1

1.5

2

2.5

Number of nodes to schedule

Relativecost
of heuristic
schedule

10%20%30%
Fraction of runs

Fig. 9. The cost of running the heuristic as a function of the problem size.

blocks, sixteen with three blocks, etc., up to twenty blocks. For each block in a
system, we independently selected a number of inputs and outputs at random from
one to ten, uniformly distributed. Then, we connected each block’s input to a block
and output chosen at random.

All data were collected on a SPARCStation 10 with 96MB of main memory,
although the program never consumed more than about 4MB. All times include
the time to initialize the program and load the system, typically a few hundred
milliseconds.

Fig. 7 shows the time it took to schedule each system using the exact and heuristic
algorithm. The number of outputs in the system is plotted horizontally (the sum
of the number of outputs on each block—exactly the number of vertices in the
dependency graph). The times are plotted vertically on a logarithmic scale. The
exact algorithm required over 500 seconds to compute a schedule for 98 systems
(out of 304), but the heuristic always took less than eight seconds.

From Fig. 7, it appears the time to run the exact algorithm varies substantially and
grows quickly with problem size. The heuristic algorithm’s run time also appears

17

+

+

++

+

+

+

+

+
+
+++

+

+
+

+

+
++

+

+
++

+

+
+ +

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+
+

+
+

+

+

+

+

+

+
+

+

+

+

+

+

+
+

+

+
+

+

+

+

+

+
++

+
+

+

+
+

+

++

+
+
+

+

+

+

+

+

+

+

+
+

+

+

+

+

+
+

+
+

+

+

+

+ +

+
+

+

+
+

+

+

+

+
++ +

+

+

++
+

+

+

+
+

+
+

+

+
+
+

+ +
+

+

+

++

+
+

+
+

++

+

+

+

+

+

+

+
+

+

+
+

+
+

+

++

+

+
+

+

+

++

+
+
+

+

+
+

++

+
+

+

+

+
+

++

+
+

++
+++

++ +

+

+
++++

+

+

n

n1.5

n2

1 10 100
1

10

100

1000

Nodes to schedule

Costof
exact
schedule

+

+
+

+

+

+

+

+

+
+
++

+

+

+
+

+

+

+

+

+

+
++

+

+
+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

++

+

+

+
+

+

+

+

+
+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+
+

+

+

+

+
+

++

+
+

+

+
+

+

+
+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+ +

+

+

+

++

+

+
+

+

+

+

++
+

+

+

+

+

+
+

+

+
+

+

++

+

+

+

+

+
+

+
+

+

+

+

+

+

+

+

+
+

+

+

+

+ +

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+
+

+
+++

+

+

+

+

+

+

+

+

++

+
++

+

+

+
+

+

+ +

+
+

+
+

+
+

+

+

++

+
+

+

+

+

+

+

+

+

+

+
+

+

+

+
+

+

+

++

+

++ +

+

+

+

+

+

+

++

++

+

++

+

+

+
+

+

+

+

++
+ +

+

+

+

+

+

+

++

+

+

+

++
+

+
+
+

+
+

+

+

+

+
+

+
+

+

+

+
+

+

n

n1.5
n2

1 10 100
1

10

100

1000

Nodes to schedule

Costof
heuristic
schedule

(a) (b)

Fig. 10. The cost of the schedule generated by the exact (a) and heuristic (b) schedulers as
a function of problem size.

to be growing exponentially, but much more slowly and predictably.
Fig. 8 shows the heuristic is exponentially more efficient than the exact algo-

rithm. Although the speedup is between1× and2× about 40% of the time, and
the heuristic is actually slower in about 20% of the cases, this is only the case
when both the exact and heuristic times are fairly small. For longer times (e.g., one
second or more), the heuristic partitioner is the clear winner by an exponentially
growing margin.

To save time, the heuristic partitioner considers only a subset of all possible par-
titions. Unfortunately, it can miss the optimal partition, leading to the cost increases
shown in Fig. 9. But this penalty is not devastating: the increase is less than 12%
for more than an quarter of the cases. Interestingly, the additional cost does not
appear to be related to the problem size, suggesting the heuristic will continue to
work well for larger problems.

The cost of an optimal schedule for ann-node graph ranges fromn to n2−n+1.
The graphs in Fig. 10 bear this out—the cost of all schedules falls between the
n andn2 lines. However, more interestingly, the asymptotic bound appears to be
closer ton1.5. Of course, this is a function of the systems we chose to schedule, and
there are systems whose optimal schedule costsn2−n+1, but there do not appear
to be many of them.

From these results, we conclude both the exact and heuristic partitioning schemes
have merit. In many cases, finding the exact answer is computationally feasible,
but when it is not, the heuristic scheme is much faster and produces comparable
results—half of the time within 25% of the optimal schedule, and rarely more than
twice as bad.

18

5 Related Work

This work arose from a desire to marry the heterogeneous philosophy of the
Ptolemy project [16] with the synchronous semantics of the Esterel language [11].
The Ptolemy system consists of domains that each implement a particular block-
diagram language. The structure of these domains has followed Lee and Messer-
schmitt’s Synchronous Dataflow [32,33] block diagram language, which can be
executed by a very efficient scheduler that needs little information about the blocks
apart from their connectivity. This approach of allowing blocks to be black boxes
enables heterogeneous systems to be modeled hierarchically by nesting systems
described in other domains within blocks. When we began the work presented in
this paper (c. 1996) it was not clear that this same philosophy could be applied to
the synchronous languages, whose execution then required detailed understanding
not just of the components of the system but also of the system’s state space.

Although Benveniste and Le Guernic’s synchronous dataflow language SIG-
NAL [6] also has provisions for dealing with instantaneous feedback, its solution is
very language-specific. Instead, the semantics presented here follow from Berry’s
more general constructive semantics for Esterel [8,10], which also address the in-
stantaneous feedback problem. This grew out of his work on implementing Esterel
programs in hardware [7,8], which could produce irksome cyclic circuits. Malik’s
procedure for analyzing the meaning of such circuits [34,35] provided a solution
and connected the synchronous semantics of Esterel with the fixpoint semantics
long used in the denotational semantics community pioneered by Dana Scott and
Christopher Strachey in the early 1970s [39]. Textbooks such as Gunter [26] or
Winskel [43] describe this philosophy in detail.

Shiple, Berry, and Touati [40] describe the procedure the Esterel V5 compiler
uses to handle programs with instantaneous feedback: the program is first translated
into a netlist using Berry’s procedure [7,8]. We took the semantics of our block di-
agram language from the semantics of these netlists. Next, any strongly-connected
components in the netlist are unrolled using Bourdoncle’s algorithm [13] and the
state space of the program explored symbolically [21] using Binary Decision Dia-
grams [15,14].

Our execution procedure amounts to using chaotic iteration to find the least fixed
point. Chaotic iteration has been widely studied as a method for finding solutions to
systems of equations [38]. One of its main advantages, which we do not exploit, is
its ability to be used on parallel hardware without the need for synchronization [2].
A series of researchers have shown that chaotic iteration schemes converge under
successively weaker conditions [41,42]. Wei notes that the computation will con-
verge even if older intermediate results (say, those that might not have yet come
from another processor running in parallel) are used. This result, stronger than we
need, confirms our ability to evaluate blocks even though our analysis is done on a
per-output basis.

Our scheduling technique builds on Bourdoncle’s work [13], which comes from
the field of abstract program interpretation pioneered by Cousot and Cousot [23,24,22].
Our schedules are a strict superset of Bourdoncle’s because we are able to remove

19

more than one node at a time from strongly-connected components, which can be
a great advantage for highly connected graphs. Furthermore, our algorithm, when
run in exact mode, can guarantee an optimal (lowest cost) schedule, whereas Bour-
doncle’s algorithm is a heuristic.

Berry and Sentovich [12] present another technique for executing systems with
constructive semantics (e.g., our block diagrams). Their goal, however, is execu-
tion within the asynchronous domain of the POLIS project’s CFSMs [1,20] which
has no explicit scheduler, something that could be found in a distributed system.
Thus, while their semantics are very similar to ours, their execution environment
is far less disciplined and hence less predictable. It does, however, have the novel
ability to pipeline the execution of a synchronous system. Caspi, Girault, and Pi-
laud [17,18] propose a more disciplined mechanism for distributed implementa-
tions of synchronous systems, although theirs does not directly implement con-
structive semantics, instead assuming a system’s behavior has been coded into a
finite automaton.

The key difference between Esterel’s constructive semantics [8,10,12] and ours
is the admission of⊥ values on signal values. For a program to be considered cor-
rect, Esterel’s constructive semantics specifically prohibits the appearance of⊥ on
any signal, internal or otherwise, whereas our semantics permits this. As a result,
our approach does not require systems to undergo the extensive analysis necessary
to prove a program constructive to run it, unlike Esterel. While this does appear
to permit seemingly erroneous systems under our scheme, it has the benefit of al-
lowing heterogeneity, i.e., our systems can execute without the compiler/scheduler
knowing details about the contents of the blocks.

Berry’s group has an experimental system for performing separate compilation
of Esterel modules. Each module is compiled into a separate netlist. Before the
system runs, a linking phase wires these netlists together, which sometimes re-
quires unrolling to address Esterel’s reincarnation problem (an idiosyncrasy due to
preemption constructs in Esterel, not shared by our block diagram language). Fi-
nally, the resulting netlist is simulated using three-valued logic by traversing the
in-memory network. This technique does not allow compile-time scheduling, and
is probably not very efficient. To our knowledge, this work has not been published.

The Lustre language [19,28] explicitly prohibits zero-delay feedback loops and
the compiler requires detailed understanding of the program. The compilation tech-
nique [29] explores the state space of the system to build an automaton. A simple-
minded search would produce many equivalent states, so the compiler employs a
clever state minimization technique that removes these redundant states on the fly.

Benveniste et al. [5] propose another approach to separate compilation of syn-
chronous specifications based on characterizing functional dependencies among
inputs and outputs on a single block. Rather than completely characterizing the I/O
behavior of a block, they abstract it either structurally (“this output depends on this
input”) or functionally (“this output depends on this input when the block is in state
A”). They still require, however, that the system have an acyclic computation order
in every cycle, something they admit may not be trivial to prove.

20

6 Conclusions

We have presented the semantics of a coordination language for synchronous
software systems along with a practical implementation policy. It is novel in its
ability to handle heterogeneous zero-delay software blocks with feedback and re-
main deterministic. The formal semantics for these systems is based on the least
fixed point of a monotonic function on a finite partial order, and we presented an
execution scheme that finds this least fixed point by executing the blocks in a fixed
order according to a schedule.

The schedules are derived from a recursive strongly-connected component de-
composition of the system. Any schedule so derived is correct, but the cost of ex-
ecuting a particular schedule depends on the choice of nodes to remove from each
SCC. We use a branch-and-bound algorithm to make good choices, and have both
an exact way to develop the set of choices and a heuristic that greatly reduces the
number of choices to consider at the expense of sometimes returning a non-optimal
schedule.

The language and scheduler have been implemented as the SR Domain, part of
the “Ptolemy Classic” environment available from http://ptolemy.eecs.berkeley.edu/.
There, blocks written in the other Ptolemy domains, including dataflow and discrete-
event, can be imported into SR block diagrams to build heterogeneous simulations.

Almost certainly there are more sophisticated algorithms for choosing the nodes
to remove from an SCC. It is an open question whether this scheduling problem is
NP-hard, but we suspect it is due to the subtle relationship between a graph and the
optimal schedule for it. However, since determining the minimum number of nodes
required to break the strong connectivity of a graph can be done in polynomial time
with network flow algorithms, there is still hope for a polynomial-time algorithm.

References

[1] F. Balarin, P. Giusto, A. Jurecska, C. Passerone, E. Sentovich, B. Tabbara, M. Chiodo,
H. Hsieh, L. Lavagno, A. Sangiovanni-Vincentelli, K. Suzuki, Hardware-Software Co-
Design of Embedded Systems: The POLIS Approach, Kluwer, Boston, Massachusetts,
1997.

[2] G. M. Baudet, Asynchronous iterative methods for multiprocessors, Journal of the
Association for Computing Machinery 25 (2) (1978) 226–244.

[3] H. Bekić, Definable operations in general algebras, and the theory of automata and
flowcharts, in: C. B. Jones (Ed.), Programming Languages and Their Definition, Vol.
177 of Lecture Notes in Computer Science, Springer-Verlag, 1984, pp. 30–55.

[4] A. Benveniste, G. Berry, The synchronous approach to reactive real-time systems,
Proceedings of the IEEE 79 (9) (1991) 1270–1282.

[5] A. Benveniste, B. Caillaud, P. Le Guernic, Compositionality in dataflow synchronous
languages: Specification & distributed code generation, Information and Computation
163 (2) (2000) 125–171.

21

[6] A. Benveniste, P. L. Guernic, Hybrid dynamical systems theory and the SIGNAL
language, IEEE Transactions on Automatic Control 35 (5) (1990) 535–546.

[7] G. Berry, Esterel on hardware, Philosophical Transactions of the Royal Society
of London. Series A 339 (1992) 87–103, issue 1652, Mechanized Reasoning and
Hardware Design.

[8] G. Berry, The constructive semantics of pure Esterel, draft book, see
http://www.esterel.org (1999).

[9] G. Berry, The Esterel v5 Language Primer, Centre de Mathématiques Appliqúees, part
of the Esterel compiler distribution from http://www.esterel.org (Jul. 2000).

[10] G. Berry, Proof, Language and Interaction: Essays in Honour of Robin Milner, MIT
Press, 2000, Ch. The Foundations of Esterel.

[11] G. Berry, G. Gonthier, The Esterel synchronous programming language: Design,
semantics, implementation, Science of Computer Programming 19 (2) (1992) 87–152.

[12] G. Berry, E. Sentovich, An implementation of constructive synchronous programs in
POLIS, Formal Methods in System Design 17 (2) (2000) 165–191.

[13] F. Bourdoncle, Efficient chaotic iteration strategies with widenings, in: Formal
Methods in Programming and Their Applications: International Conference
Proceedings, Vol. 735 of Lecture Notes in Computer Science, Springer-Verlag,
Novosibirsk, Russia, 1993.

[14] K. S. Brace, R. L. Rudell, R. E. Bryant, Efficient implementation of a BDD package,
in: Proceedings of the 27th Design Automation Conference, Orlando, Florida, 1990,
pp. 40–45.

[15] R. E. Bryant, Graph-based algorithms for boolean function manipulation, IEEE
Transactions on Computers C-35 (8) (1986) 677–691.

[16] J. T. Buck, S. Ha, E. A. Lee, D. G. Messerschmitt, Ptolemy: A mixed-paradigm
simulation/prototyping platform in C++, in: Proceedings of the C++ At Work
Conference, Santa Clara, CA, 1991.

[17] P. Caspi, A. Girault, D. Pilaud, Distributing reactive systems, in: Seventh International
Conference on Parallel and Distributed Computing Systems, PDCS’94, ISCA, Las
Vegas, 1994.

[18] P. Caspi, A. Girault, D. Pilaud, Automatic distribution of reactive systems for
asynchronous networks of processors, IEEE Transactions on Software Engineering
25 (3) (1999) 416–427.

[19] P. Caspi, D. Pilaud, N. Halbwachs, J. A. Plaice, LUSTRE: A declarative language
for programming synchronous systems, in: ACM Symposium on Principles of
Programming Languages (POPL), Munich, 1987.

[20] M. Chiodo, P. Giusto, A. Jurecska, L. Lavagno, H. Hsieh, A. Sangiovanni-Vincentelli,
A formal specification model for hardware/software codesign, in: Proceeding of the
International Workshop on Hardware-Software Codesign, 1993.

22

[21] O. Coudert, C. Berthet, J. C. Madre, Verification of synchronous sequential machines
based on symbolic execution, in: J. Sifakis (Ed.), Proceedings of the Workshop on
Automataic Verification Methods for Finite State Systems, Vol. 407 of Lecture Notes
in Computer Science, Springer-Verlag, Grenoble, France, 1989, pp. 365–373.

[22] P. Cousot, Program Flow Analysis: Theory and Applications, Prentice Hall, Upper
Saddle River, New Jersey, 1981, Ch. Semantics Foundations of Program Analysis, pp.
303–346.

[23] P. Cousot, R. Cousot, Abstract interpretation: A unified lattice model for static analysis
of programs by construction or approximation of fixpoints, in: ACM Symposium
on Principles of Programming Languages (POPL), Association for Computing
Machinery, Los Angeles, California, 1977, pp. 238–252.

[24] P. Cousot, R. Cousot, Automatic synthesis of optimal invariant assertions:
Mathematical foundations, in: Proceedings of the ACM Symposium on Artificial
Intelligence and Programming Languages, ACM SIGPLAN Notices 12(8), Rochester,
New York, 1977, pp. 1–12.

[25] A. Frank, How to make a digraph strongly connected, Combinatorica 1 (2) (1981)
145–153.

[26] C. A. Gunter, Semantics of Programming Languages, MIT Press, Cambridge,
Massachusetts, 1992.

[27] N. Halbwachs, Synchronous Programming of Reactive Systems, Kluwer, Boston,
Massachusetts, 1993.

[28] N. Halbwachs, P. Caspi, P. Raymond, D. Pilaud, The synchronous data flow
programming language LUSTRE, Proceedings of the IEEE 79 (9) (1991) 1305–1320.

[29] N. Halbwachs, P. Raymond, C. Ratel, Generating efficient code from data-flow
programs, in: Proceedings of the Third International Symposium on Programming
Language Implementation and Logic Programming (PLILP), Vol. 528 of Lecture
Notes in Computer Science, Passau, Germany, 1991.

[30] J.-L. Lassez, V. L. Nguyen, E. A. Sonnenberg, Fixed point theorems and semantics: A
folk tale, Information Processing Letters 14 (3) (1982) 112–116.

[31] P. Le Guernic, T. Gautier, M. Le Borgne, C. Le Maire, Programming real-time
applications with SIGNAL, Proceedings of the IEEE 79 (9) (1991) 1321–1336.

[32] E. A. Lee, D. G. Messerschmitt, Static scheduling of synchronous data flow programs
for digital signal processing, IEEE Transactions on Computers C-36 (1) (1987) 24–35.

[33] E. A. Lee, D. G. Messerschmitt, Synchronous data flow, Proceedings of the IEEE
75 (9) (1987) 1235–1245.

[34] S. Malik, Analysis of cyclic combinational circuits, in: Proceedings of the IEEE/ACM
International Conference on Computer Aided Design (ICCAD), Santa Clara,
California, 1993, pp. 618–625.

23

[35] S. Malik, Analysis of cyclic combinational circuits, IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems 13 (7) (1994) 950–956.

[36] F. Maraninchi, The Argos language: Graphical representation of automata and
description of reactive systems, in: Proceedings of the IEEE Workshop on Visual
Languages, Kobe, Japan, 1991.

[37] F. Maraninchi, Operational and compositional semantics of synchronous automaton
compositions, in: CONCUR ’92. Third International Conference on Concurrency
Theory., Vol. 630 of Lecture Notes in Computer Science, Springer-Verlag, Stony
Brook, NY, 1992, pp. 550–564.

[38] F. Robert, Discrete Iterations: A Metric Study, Vol. 6 of Springer Series in
Computational Mathematics, Springer-Verlag, 1986.

[39] D. Scott, C. Strachey, Toward a mathematical semantics for computer languages, in:
Proceedings of the Symposium on Computers and Automata, Polytechnic Institute of
Brooklyn, 1971, pp. 19–46.

[40] T. R. Shiple, G. Berry, H. Touati, Constructive analysis of cyclic circuits, in:
Proceedings of the European Design and Test Conference, Paris, France, 1996, pp.
328–333.

[41] A. Üresin, M. Dubois, Parallel asynchronous algorithms for discrete data, Journal of
the Association for Computing Machinery 37 (3) (1990) 588–606.

[42] J. Wei, Parallel asynchronous iterations of least fixed points, Parallel Computing 19 (8)
(1993) 886–895.

[43] G. Winskel, The Formal Semantics of Programming Languages: An Introduction,
Foundations of Computing, MIT Press, Cambridge, Massachusetts, 1993.

24

