
Software in real-time embedded systems differs
fundamentally from its desktop or Internet
counterparts. Embedded computing is not
simply computation on small devices. In most
control applications, for example, embedded
software engages the physical world. It reacts

to physical and user-interaction events, performs computa-
tion on limited and competing resources, and produces re-
sults that further impact the environment. Of necessity, it
acquires some properties of the physical world, most par-
ticularly, time.

Despite the fact that both value and time affect the physi-
cal outputs of embedded systems, these
two aspects are developed separately in
typical embedded software design. The
functionality is determined at design time
with assumptions such as zero or a fixed
nonzero run-time delay. The actual timing
properties are determined at run time by a real-time operat-
ing system (RTOS). Typically, an RTOS offers as control of
these timing properties one number for each task, a priority.
Whether a piece of computation can be finished or brought
to a quiescent state at a particular time is totally a dynamic
phenomenon, and it depends largely on the hardware plat-
form, when the inputs arrive, what other software is running
at that time, and the relative priorities. These factors are
usually out of the control of embedded system designers
and may break the timing assumptions that the control algo-

rithms may rely on. In most control applications, this
run-time uncertainty is undesirable or even disastrous.

We believe that two steps can be taken to improve the de-
sign process for embedded software and to bridge the gap
between the functionality development and timing assur-
ance:

• rigorous software architectures that expose resource
utilization and concurrent interactions among soft-
ware components

• specification, compilation, and execution mecha-
nisms that preserve timing properties throughout the
software life cycle.

A component-based software archi-
tecture can help compilers to determine
the logical dependencies and shared re-
sources among components. By bringing
the notion of time and concurrent interac-
tion to the programming level, compilers

and run-time systems can be developed to preserve both
timing and functional properties at run time. Recent innova-
tions in real-time programming models such as port-based
objects (PBOs) [1] and Giotto [2] are examples that take a
time-triggered approach to scheduling software compo-
nents and to preserving their timing properties. These
purely time-triggered approaches, although explicitly con-
trolling the timing of each component, require tasks to be
periodic and do not handle irregularly spaced new informa-
tion (or events) well.
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In this article, we introduce an event-triggered program-
ming model, timed multitasking (TM), that also takes a
time-centric approach to real-time programming but con-
trols timing properties through deadlines and events rather
than time triggers. By doing so, each piece of information is
processed exactly once, and the tasks can be aperiodic.
This model takes advantage of an actor-oriented software
architecture [3] and embraces timing properties at design
time, so that designers can specify when the computational
results are produced to the physical world or to other ac-
tors. The specification is then compiled into stylized
real-time tasks, and a run-time system further ensures the
function and timing determinism during execution. As long
as there are sufficient resources, the computation will al-
ways produce predictable values at a predictable time.

Real-Time Programming:
Common Practice
Real-time systems typically need to perform multiple tasks
at the same time. Each invocation of a task is a finite amount
of computation that requires some resources and takes
some time to perform. Tasks may compete for resources,
such as CPU, I/O access, or network bandwidth; thus, a re-
source manager is needed to allocate resources and sched-
ule task activation. This resource management is a major
responsibility of real-time operating systems in common
embedded systems. When two eligible tasks are competing
for resources, the operating system must choose to grant
the resources to one of them, and, as a consequence, that
task finishes sooner.

The process of choosing which task to grant resources to
is called real-time scheduling. A typical strategy is to assign
priorities to tasks and to execute the highest priority task
that is eligible. Intuitively, priorities represent the relative
importance of tasks at run time. Priorities can be statically
assigned to tasks at design time, or they may be dynamically
determined at run time. In today’s embedded systems,
given the run-time overhead of computing priorities, it is
common to fulfill timing constraints by statically assigning
priorities among the tasks.

Another powerful concept for dealing with timing prop-
erties is the notion of preemption, which is to pause a run-
ning task, say A, and execute another task, say B. By doing
so, task B, although it is activated later than task A, can fin-

ish before task A finishes. Obviously, task B must have a
higher priority to preempt task A.

Consider the example shown in Figure 1, where a Control-
ler and a Supervisor are implemented on the same computer.
Suppose that the controller is triggered by periodic sam-
ples, say, every 2 ms, and for each sampling input, the con-
troller produces an output with a delay. For now, let’s
assume the delay is fixed, say, 1 ms, from activation to acti-
vation. The supervisor task is only triggered once in a while
(e.g., every second), and it takes a long time ( > > 2 ms) to
compute a new set of parameters to adjust the control algo-
rithm. Since both tasks are implemented on the same em-
bedded system, they share the computing resources.
Assume it is unacceptable for the controller to stop produc-
ing any output for a long time if the supervisor task keeps
running. A preemptive strategy is shown in Figure 2, where
the controller task preempts the long-run supervisor task.
In this figure, each box represents the execution of a task.
The nonshadowed parts within the execution of the super-
visor task indicate that its execution is preempted by the
controller task.

Real-Time Scheduling
How to assign priorities to multiple tasks is a key part of the
real-time scheduling problem. This has been an active re-
search area for more than 20 years, starting with the seminal
work by Liu and Layland [4]. The goal of real-time schedul-
ing is to devise a set of priority assignment rules to make
sure that all tasks are finished before their deadlines.

Real-time scheduling algorithms typically make some as-
sumptions about tasks and resources. For example, Liu and
Layland’s original work makes the following assumptions:

• a single and arbitrarily preemptable resource (CPU)
• independent tasks
• fixed and known task execution times
• each task must be completed before receiving the

next trigger
• periodic task triggers (for rate monotonic scheduling).
Under these assumptions, Liu and Layland derived

rate-monotonic (RM) and earliest-deadline-first (EDF)
scheduling policies. These algorithms are shown to be opti-
mal (in terms of CPU utilization) for static and dynamic pri-
ority assignments, respectively. Further work in this area
has developed more sophisticated timing analysis theories
and has relaxed many assumptions in the original algo-
rithms [5]-[9]. However, most of them still rely on knowing
all tasks’ worst-case execution time (WCET) and having ar-
bitrary preemptability. When multiple resources are being
managed, optimal scheduling becomes NP-hard [10], so
most methods deal with only one shared resource.

In reality, many of the assumptions in scheduling theo-
ries do not hold. Tasks may require multiple resources to ex-
ecute, and they can be strongly coupled. For instance, in our
controller/supervisor example, the supervisor may update
the controller’s parameters by directly accessing them. Sup-
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pose that the lower-priority supervisor task is writing to a
set of parameters in the controller, and at the same time, the
higher-priority controller task is activated. The controller
task cannot start immediately since its parameters may not
be consistent. To ensure the integrity of the parameters, the
controller can only preempt the supervisor after the update
operations are finished. We call this situation partial
preemptability. Partial preemptability not only complicates
timing analysis in the sense that the response time of the
controller is lengthened, but it may also cause more serious
problems, such as priority inversion.

Priority Inversion
The intuition behind assigning priorities to tasks is to priori-
tize resource utilization and obtain fast response for critical
tasks. However, because of the partial preemptability of
some tasks, blindly following the priority assignment and
triggering high-priority tasks may cause a high-priority task
to be blocked by low-priority tasks indefinitely, a situation
called priority inversion.

Consider the following situation in our previous exam-
ple, where there is one more task, say, fault diagnosis, that is
independent of the controller and the supervisor, running
on the same embedded computer. Suppose that the fault di-
agnosis task has an intermediate priority that is higher than
that of the supervisor but lower than that of the
controller. Suppose in addition that at some
point, when the controller is blocked waiting for
the supervisor to finish updating the control pa-
rameters, the fault diagnosis task is activated.
Since the fault diagnosis task is independent of
the supervisor and has a higher priority, it pre-
empts the supervisor and starts executing. Now
the controller, although having a higher priority
than the fault diagnosis task, is in fact blocked
by the fault diagnosis task. This situation is il-
lustrated in Figure 3. Imagine that there are mul-
tiple intermediate-priority tasks that act like the
fault diagnosis task here. Then the controller
task may be postponed indefinitely.

Priority inversion problems are usually
solved by the priority inheritance and priority
ceiling protocols [11]. The basic idea of these
protocols is to look into the content of each
task, analyze critical sections (e.g., shared data
access), and for each critical section, find the
highest priority task that may access it. Call this
highest priority value p. Then, if a lower priority
task A enters this section, the priority of task A
becomes p, so that no task of priority lower
than p can preempt A. When the task leaves the
critical section, its priority drops back to its
normal value.

Priority inheritance and priority ceiling pro-
tocols successfully solve the priority inversion

problem. By adding more constraints, such as requiring
that all tasks enter critical sections in the same order, it
also solves deadlock problems that may be caused by
cross waiting on data access. Thus, these protocols are
widely implemented in real-time operating systems like
VxWorks, QNX [12], and Resource Kernel [13]. On the
down side, the footprint and the run-time overhead of
these protocols are not trivial. Thus, some lightweight
real-time kernels do not support them and require soft-
ware designers to take care of avoiding priority inversion
and deadlock problems themselves.

More Pitfalls
Using priorities as the only tuning parameter and applying
priority-driven preemptive execution rules without consid-
ering the status of other tasks introduce many problems. Be-
sides priority inversion, other pitfalls exist when the
assumptions of real-time scheduling theories do not hold.

• Preemptive execution, especially with static priority as-
signment, is fundamentally fragile. The timing behavior
of tasks may be very sensitive to task activation time
and their actual execution time. An early arrival of a
high-priority task or an unexpectedly long execution of a
task can have domino effects and add delays to the re-
sponse time of all subsequent lower-priority tasks.
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• The results of schedulability analysis may not be very
useful. The typical answers from a schedulability anal-
ysis are the worst-case response time between the
triggering and the finishing of the tasks. These values
are required to be less than the deadlines to pass the
schedulability test. However, schedulability analysis
does not reveal how often the worst-case response
time is met, what distribution it has, and what hap-
pens if it is greater than the deadline. In many control
applications, the physical system is fundamentally ro-
bust, and missing a deadline occasionally may not
cause catastrophic results.

• The WCET may not be the best representation of the
execution time of a task. It could be much larger than
the average execution time, and by using WCET for
schedulability analysis, the results could be very con-
servative. As a consequence, the resources are not
sufficiently used to be cost effective.

• Pushing for fast response may not be optimal. Some
hard real-time algorithms may have strict require-
ments on the output time. An optimal result may only
be achieved by emitting the output at a particular time.
Early as well as late outputs may result in a suboptimal
result. This is particularly true for some multimedia ap-
plications and predictive control algorithms.

One fundamental problem behind these pitfalls is that
there is not enough discipline in real-time programming.
Common embedded software development inherits empiri-
cal programming models from desktop software develop-
ment and tries to patch timing properties by tuning
priorities after fixing the functionality. Characteristics such
as resource requirements, synchronization, and critical sec-
tions, which directly affect timing properties, are not ex-
plicit parts of the program specification. Thus, there is not
much space for compilers and run-time systems to help en-
sure timing properties at run time. This in turn forces de-
signers to work with WCET and worry about the domino
effects and to rely on exhaustive testing to develop confi-
dence in a design.

Time-Triggered
Architectures
Time-triggered architectures (TTAs)
are system architectures and network
protocols for safety-critical distributed
embedded systems [14]. Various pro-
gramming models use the same ideas
to address the fundamental issues of
real-time programming by using time as
the only trigger for computation. They
bring timing constraints explicitly to
the programming model level, so that
compilers and run-time systems can
schedule and optimize the software to
achieve timing determinism. We give

two examples of time-triggered models in this section,
port-based objects and Giotto, that significantly influence
our design of the timed multitasking model.

Port-Based Objects
In PBO models [1], tasks, called port-based objects, are
time triggered, and the communication channels between
them form a global data space. Once activated, a PBO is free
to read from and write to the global data space. Read and
write operations are atomic, and all computation within the
PBOs is based on their internal variables. Although synchro-
nization, using monitors and locks, for example, is still nec-
essary to guard the access to the global data space, it is
managed outside of the objects, at the operating system
level, instead of by the objects themselves. It is thus much
easier to maintain the atomicity of the communications and
avoid priority inversion problems.

The execution time of a PBO task may vary from activation
to activation, and the time when the inputs are consumed
and the outputs are produced may not be regular. The global
data space has a state semantics, meaning that the value of a
variable is preserved as long as it is not overwritten, and a
newly written value will overwrite the old value regardless of
whether the old one has been used by other tasks. An exam-
ple of an execution trace of a Controller PBO is shown in Fig-
ure 4, where the controller is activated every 2 ms. Suppose
that a successor task reads the controller’s output at 1.5 and
3.5 ms in this timing diagram; then in the first period, it reads
a fresh output from the controller, but in the second period,
since a new output is not yet produced, it will use the control-
ler output from the last cycle again.

Giotto
The Giotto model [2] further extends the time-triggered
concepts so that both computation and communication
among tasks are triggered by time. Each execution of a task
has a well-defined start and stop time, declared at design
time. Conceptually, communication only occurs between
task executions. A task obtains all inputs at the start time of
its execution, and the outputs are only available to the rest
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of the system at the stop time of the execution, regardless of
when the values of outputs are actually calculated.

For example, suppose we specify that a controller is acti-
vated every 2 ms. In Giotto, this implies that the input data is
consumed at the beginning of the 2 ms, the execution hap-
pens somewhere within one period, and the output is made
available at the end of the period. A timing diagram is shown
in Figure 5. Thus, no matter how quickly or slowly the con-
troller executes, as long as it can finish in 2 ms, the outputs
will be produced at the exact time instants.

Tasks in Giotto execute concurrently, at least conceptu-
ally. Consider, for instance, a Giotto model as shown in Fig-
ure 6, where a task A with period 2 ms feeds data to task B
with period 2 ms. Conceptually, the tasks begin executing si-
multaneously and end simultaneously. Thus, task B will al-
ways see data provided by A in the previous cycle. Hence
there is a precise 2-ms delay introduced by task A. This one
sample delay per task may not be desirable for some appli-
cations, but it yields a deterministic timing and functional
behavior.

Notice that both PBO and Giotto models use the state se-
mantics for communication, which has the significant ad-
vantage of avoiding unnecessary synchronizations among
senders and receivers and allowing tasks to be triggered at
any time. However, state semantics may lose the notion of
new events such that some data may be processed more
than once and some others may be completely ignored. The
problem is left to the designers in the PBO model, whereas it
is made explicit by the one-sample delay in the Giotto
model. Furthermore, pure time-triggered models require
precise time synchronizations across distributed plat-
forms, which may be a significant cost for complex systems.

Timed Multitasking
This article describes the TM model, which tackles the
real-time programming problem using an event-driven ap-
proach. Unlike in the PBO and Giotto models, a task in TM
(called an actor) is executed when there are input events
that fulfill certain conditions specified by the actor. But like
the Giotto model, it provides a predictable input/output tim-
ing so that the computational delays can be used as deter-
ministic parameters in algorithm designs. The basic idea
behind the TM model is simple: since the activation of a task
depends either on other tasks or on interrupts, by control-
ling the time at which outputs are produced and triggering
tasks with new events, we can effectively control both the
starting and stopping time of each task, thus obtaining de-
terministic timing properties.

Actor-Oriented Programming
The TM model is built on top of a component-based ap-
proach, where components are called Ptolemy actors (the
name is due to its implementation in the Ptolemy project
[15]). This model helps the designer to isolate atomic com-
putations and identify interdependencies among software

components. This notion of actors differs from Agha’s actor
model in the sense that actors do not necessarily associate
with their own thread of control.

In TM, an actor represents a sequence of reactions,
where a reaction is a finite piece of computation. The actor
has state, which carries from one reaction to another. Ac-
tors have ports, which are their communication interface.
The concept of ports is broad enough to support many com-
munication mechanisms among actors. For example, a port
may represent an interrupt, a first-in-first-out (FIFO) queue,
a rendezvous point, etc. Actors can only communicate with
other actors and the physical world through ports. Thus,
their internal state is not directly accessible by anything
outside the actor.

Unlike method calls in object-oriented models, interac-
tion with the ports of an actor may not directly transfer the
flow of control to the actor. The control flow inside the actor
could be independent of its data communication. An actor
may be directly associated with a thread of control, in which
case the actor is a process. Nevertheless, it is more common
in real-time systems to have a scheduler or an event dis-
patcher that activates actors by triggers. The hiding of
states and the decoupling of data flow and control flow are
two major distinctions between Ptolemy actors and general
software tasks or processes.

Actor-oriented programming can be conveniently visual-
ized using block diagrams, which are familiar to most con-
trol engineers. For example, the embedded system in Figure
1 can be represented by a very similar actor model, as
shown in Figure 7. There are two actors: a Supervisor and a
Controller. The supervisor has an input port, named data,
and an output port, named param. The controller actor has
two input ports, input and paramIn, and one output port.
These ports decouple the threads of control among the su-
pervisor, the controller, and the scheduler that manages
their execution. For example, consider the link from the
param port of the supervisor to the paramIn port of the con-
troller. Suppose this link is implemented as a buffer, such
that the output from the supervisor is first buffered at the
paramIn port, and then the controller decides when to read
it (e.g., the next time the controller is activated). Although
mutual exclusion between reads and writes on the port is
still needed, the controller can always proceed using its in-
ternal state without waiting for the supervisor to finish writ-
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ing and can update parameters at the beginning of the next
invocation. The supervisor task can now be arbitrarily pre-
empted by the controller without worrying about priority
inversion or about the consistency of parameter data.

The actor architecture can also make resource utilization
explicit. A useful design pattern is to use specific actors for
delegated resources. For example, suppose that two actors,
A and B, both need to write to the same file, as shown in Fig-
ure 8. Obviously, an implicit locking mechanism is needed if
both of them implement the file writing inside their code. Al-
ternatively, a third actor, fileWriter, can be introduced to
manage the file explicitly. By using this actor, the order of
writing in actors A and B becomes visible and is formally
managed in the same way as any other events in the system,
and the actors no longer need to be partially preemptable.

TM Programming Concepts
The building blocks in the TM model are actors with further
annotations. Actors in a TM model not only declare their
computing functionality, but also specify their execution re-
quirements in terms of trigger conditions, execution time,
and deadlines. As illustrated in Figure 9, an actor is acti-
vated when its trigger condition is satisfied. If there are
enough resources at run time, then the actor will be granted
at least the declared execution time before its deadline is
reached. The results of the execution are made available to
other actors and the physical world only at the deadline
time. This is sometimes called faster-than-real-time compu-
tation [17] in the sense that the results are computed well
before required by the real-time constraints. Since the out-
put may immediately trigger other tasks, whose deadlines
are also known, we effectively control both the starting and
stopping times of the actors and provide deterministic tim-

ing behavior. In the cases where an actor cannot finish by its
deadline, our model includes an overrun handler, much like
the timing failure handlers in Chimera [18], to preserve the
timing determinism of all other actors and allow the actor
that violates the deadline to come to a quiescent state.

Trigger Conditions
A trigger condition can be built using real-time physical
events, communication packets, and/or messages from
other actors. The trigger conditions are required to be re-
sponsible [19], meaning that once triggered, the actor does
not need any additional data to complete its (finite) compu-
tation. The communication among the actors has an event
semantics in which, unlike state semantics, every piece of
data will be produced and consumed exactly once. Event se-
mantics can be implemented by FIFO queues. Conceptually,
the sender of a communication is never blocked on writing.
The responsible trigger condition guarantees that if an ac-
tor is activated, there are enough data to complete a reac-
tion so actors will not be blocked on reading data.

Deadlines
The deadline of a reaction is expressed as a real-time value,
indicating that the computational results are produced if
and only if the deadline is reached. Explicitly expressing
deadlines has two benefits:

• By knowing the deadlines of all actors and their trig-
gering dependencies, designers know exactly what
time delay their programs will introduce at run time,
so that they can be more confident in choosing algo-
rithm parameters.

• Explicit deadlines are also useful in resource-aware al-
gorithms, such as anytime algorithms [20], which can
provide results with different fidelities, depending on
the computational time available.

If a deadline is not specified, the results will be produced
as soon as the computation has finished. This is useful to
handle soft real-time actors or intermediate computational
steps to provide prompt triggering for downstream actors.

Execution Time
An actor also declares its execution time, which is the
amount of time it needs to finish its reaction, provided that it
is not preempted by any other actors. Unlike the deadline,
which is given in terms of real time no matter how many
times the actor is preempted, the execution time is mea-
sured with respect to the actual time spent on the actor’s ex-
ecution. This value is mainly used at compile time to
determine schedulability and resource utilization. The exe-
cution time can be the WCET so that the actor can always
finish its reaction. Alternatively, the declared time can be a
relaxed typical execution time so that resources may be
better used, and the actor can rely on overrun handlers
when deadlines are missed.
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Overrun Handling
Overrun handlers are nonpreemptable pieces
of code that are triggered by the run-time sys-
tem when the corresponding actors are about
to miss deadlines. Since the TM model is event
driven and the execution time of reactions var-
ies, it is generally impossible to guarantee that
all deadlines of all reactions can be met. By hav-
ing overrun handlers, the TM model can pre-
serve time determinism as much as possible
when resources are not sufficient. How to han-
dle overruns is application dependent. For ex-
ample, if the actor implements an anytime
algorithm, then the overrun handler may termi-
nate the current iteration and bring internal
variables to a quiescent state. If the actor imple-
ments a transaction-based algorithm, then the
overrun handler may commit the transaction if
it has finished or may roll back the transaction if
it has not finished. If the application is safety
critical, then the overrun handler may trigger a
mode change into a more conservative mode of
operation. In all cases, the actor should be
ready for the next activation after running the
overrun handler.

Software Synthesis
Building real-time embedded software using actors and the
timed-multitasking model allows certain levels of analysis of
timing properties and generation of run-time software and
scheduling. This formal step preserves the TM execution se-
mantics and reduces the burden of writing error-prone code
for event queues and task synchronizations. We consider a sin-
gle-processor platform at this time and discuss two aspects in
the synthesis: scheduling analysis and code generation.

Scheduling Analysis
General event-triggered, real-time systems with multiple
shared resources are not amenable to compile-time
schedulability analysis [10]. However, explicit actor parti-
tion and time determinism make real-time scheduling theo-
ries applicable to many TM models. When trigger
conditions are predictable, such as periodic triggers, the ex-
ecution time and the deadlines can be fed to scheduling al-
gorithms for schedulability analysis and priority
assignment. Notice that the semantics of TM does not re-
quire that a designer directly specify the priorities of actors.
Typically, there are multiple priority assignment policies
that can fulfill the timing requirements, and for any feasible
scheduling policy, the execution result for a given set of in-
puts is exactly the same in terms of both time and value de-
terminism. In this sense, the TM model is robust to
scheduling policies.

Code Generation
Fully automated software synthesis is a very broad issue. In
this article, we focus on generating the interfaces and inter-
actions among actors into imperative languages like C and
leave the definition of the actor functionality as an open is-
sue. In fact, after providing the interface and scheduling
code, the actor code becomes single threaded and
self-contained, which is much easier to manage. The gener-
ated code is linked with a TM run-time system, which will be
described in the next section.

The first step of software synthesis is to distinguish two
types of actors—ones that respond to external events and
ones that are triggered entirely by events produced by peer
actors. By partitioning software components into actors, it
is easy to make sure that these two types do not intersect. At
run time, we call the first type interrupt service routines
(ISRs) and the second type tasks. For code generation, they
have different interfaces.

An ISR typically converts inputs from the outside world
into events that trigger other actors. In a TM model, an ISR
usually appears as a source actor or simply a port that trans-
fers events into the model. These components do not have
triggering rules. They are typically managed by low-level de-
vice drivers and are triggered immediately when interrupts
occur. An ISR does not have a deadline, and an output is
made immediately available as a trigger event to the down-
stream actors. An ISR is synthesized as an independent
thread, with an init() method that initializes hardware
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resources and a start()method that registers itself to the
run-time system. A produceOutput() method is also gen-
erated for the ISR to produce trigger events for other actors.

Tasks, on the other hand, have a much richer set of inter-
faces than ISRs. In additional toinit() andstart()meth-
ods that initialize resources and states, there is a set of
methods, shown in Figure 10, that defines the split-phase re-
action of a task, in this case, a Controller. Among the meth-
ods, isReady() returns a Boolean that indicates if the task
is ready to execute when the method is called;
getDeadline() assigns the deadline value if a deadline is
specified; exec() is the main body of the reaction;
stopExec() is the overrun handler; and produceOut-

put() produces events that may trigger other tasks. Obvi-
ously, this interface very closely matches the TM
programming model. In the interface generation step, for

each TM actor that is not an ISR, a C file will be generated
that contains the template of all methods listed. ATASKdata
structure is also generated, which defines a scheduling en-
try representing a task. In addition to the function pointers
that point to the task methods, there are two variables:
hasDeadline is a variable indicating whether the reaction
should meet a deadline; priority is an integer indicating
the ordering among triggered tasks, assuming a static prior-
ity assignment.

The software synthesis process also generates the inter-
action relations among actors by sorting through ports and
connections. In a TM model, ports are contained by actors.
Thus, it is obvious to the code generator which task to trigger
when a new event is received by a port. There are many ways
to achieve event-triggered execution models. Here we use an
event dispatcher at the scheduler level; therefore, ports be-

come proxies for the event dispatcher. Events on the
same connection are represented by a global data
structure, which contains the communicating data, a
mutual-exclusion lock to guard the access to the vari-
able if necessary, and a flag indicating whether the
event has been consumed. Figure 11 is an example of
the code generated for the port paramIn of the actor
Controller in Figure 7, assuming the data type of the
port is a pair of floats and assuming an underlying op-
erating system that supports POSIX threads. A data
structure for the events is generated, together with a
set_Controller_paramIn() method that repre-
sents putting an event into the paramIn port. The last
line in the generated Supervi-

sor_produceOutput() template will call the
set_Controller_paramIn() method with a new
event. In this method, the data in the event is trans-
ferred to the global variable representing the port, and
a task trigger is created and queued with a dispatcher.
A run-time scheduler will use the dispatcher and trig-
ger the task at a proper time.

TM Run-Time Systems
The execution model of TM programs is a stylized use
of priority-based multitasking execution, as seen in
most RTOSs. The run-time scheduler, implemented as
a highest priority task, uses a dispatcher to manage
trigger events and to execute reactions. The sched-
uler is activated by an insertTriggered

Task(TASK_t* task) call when a port receives a
new event. The scheduler then invokes the
isReady() method of the corresponding task. If the
task is ready, the scheduler will send the task’s
exec() to the underlying RTOS to schedule its execu-
tion. At the same time, it sets up a timer to monitor the
task’s deadline, if necessary.

The run-time system for TM programs strictly
obeys the deadlines for each actor if they are speci-
fied. It keeps track of the deadlines for all actors as
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Figure 10. Definition of a TASK in generated C code.

Figure 11. Generated code that defines an event type, a port, and a
triggering mechanism, which activates the controller task when new events
are sent to the port.



timer interrupts, and when the deadline is reached, it asks
the actor to stop execution and produce its outputs. If the
actor is still executing at the deadline time, the overrun han-
dler will be invoked.

An overrun reaction can be terminated either gracefully
or abruptly. A graceful termination may set a flag to ask the
reaction to stop and rely on the reaction code to check this
flag at reasonable frequencies. The actor can then invoke
the overrun handler itself and return from the reaction. An
abrupt termination requires the scheduler to terminate the
reaction regardless of what is executing and invoke the
overrun handler to bring the actor to a safe state. Abrupt
terminations may be more efficient in time, but both the
scheduler and the overrun handlers may need assem-
bly-level access to tasks’ internal state, which makes the
run-time systems less portable.

Example
In this section, we describe the design and hard-
ware-in-the-loop (HITL) simulation of an unmanned aerial
vehicle (UAV) controller using the TM model. The helicop-
ter UAV belongs to the Berkeley Aerial Robot (BEAR) team,
and the control algorithms have been proposed in [21]. The

first generation of the flight control software is implemented
as a set of hand-tuned tasks on top of an RTOS. Due to the
significant loss of modularity, the performance of the con-
troller is very hard to predict. In [22], Horowitz et al. imple-
mented a time-triggered controller in Giotto that greatly
improves the modularity and time determinism of the em-
bedded software. However, the asynchrony between sen-
sors and the controller and the timing requirements of the
controller do not exactly match the Giotto assumptions.
Here we design the same control system in TM, which is
much more flexible yet still preserves timing determinism.

Flight Control System
The primary components in the flight control system are ac-
tuators, sensors, and a control computer. The actuators
consist of servomotors controlling the collective pitch, cy-
clic pitch, throttle, and tail rotor. The primary sensors are:

• Inertial navigation system (INS), which consists of ac-
celerometers and rotational rate sensors and pro-
vides estimations of the helicopter’s position,
velocity, orientation, and rate of rotation. Although
the information is provided at a rate of 100 Hz, the er-
ror in the estimates could grow unbounded over time.
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• Global positioning system (GPS), which solves the
INS drifting problem by providing a more accurate
position measurement, but less frequently, at
roughly 5 Hz.

Both sensors push their measurement into the control
computer as interrupts. A Kalman filter, implemented in em-
bedded software, fuses the INS-GPS readings to provide fre-
quent and accurate estimates of the state of the helicopter.

The controller implements a modal state feedback algo-
rithm, which partitions the helicopter trajectory into opera-
tion modes and uses state feedback to stabilize and drive
the helicopter. The controller runs at 50 Hz, which is deter-
mined by the helicopter dynamics and the limitations of the
actuators. In essence, the controller runs on every second
output of the sensor fusion component.

Giotto has two difficulties with the flight control system.
First, the clocks of the GPS and INS are not synchronized with
the control computer. If sensor fusion is implemented as a
Giotto task of frequency 100 Hz, then when the task is trig-
gered according to the control computer clock, the sensor in-
puts may not be fresh. Second, if the control task is modeled
using Giotto as a 50-Hz task, then the controller output will
only be available to the actuator by the end of a 20-ms period,
even though the control algorithm can be finished in about 2
ms. The latter problem is solved in [22] by designing the con-
troller as a 200-Hz task where in three out of every four cycles,
the controller does no computation. Even so, the control sys-
tem introduces a total delay of 15 ms.

Modeling in TM
TM is a suitable model for the UAV flight control system,
since it is event driven, so that no explicit clock synchroni-
zation is required between the sensors and the control com-
puter. In addition, the explicit notion of deadline allows the
timing properties of the fusion task and the controller to be
expressed flexibly. There is no restriction such as that the
output has to be produced just before the start of the next
period.

The flight control system is mod-
eled in the TM domain of Ptolemy II,
and the helicopter dynamics are mod-
eled in the continuous-time (CT) do-
main. Figure 12 shows the model. The
helicopter dynamics are implemented
as a set of differential equations using
the DifferentialSystem actor. Two trig-
gered samplers and irregular clocks
are used to model the unsynchronized
outputs from INS and GPS. There are
two tasks in the TM Controller—Fusion
and Controller. The Fusion actor is trig-
gered by the INS inputs. For the GPS
inputs, it consumes values but does
not execute the Kalman filter. Thus,
the actor is executed at a 100-Hz rate,

driven by the INS clock. The Controller is triggered by every
other output of the Fusion actor. The timing of the actors is
shown in Figure 13. Let k be an integer that increases by one
for every 10 ms. Then the deadline of the Fusion actor is (10k
+ 6) ms in the cycle when the controller is not activated. Oth-
erwise, the deadline is (10k + 3) ms. The deadline of the Con-
troller is always (20k + 5) ms. Having these deterministic
deadlines, the controller introduces a fixed delay of 5 ms in
every control cycle.

Hardware-in-the-Loop Simulation
The controller is validated further in an HITL simulator im-
plemented in the BEAR project [22]. Interfaces and sched-
ules of the embedded software components are generated
from the Ptolemy II model into C code running on Linux. The
two input ports of the TM Controller are generated as inter-
rupt service routines. The Fusion and Controller actors are
generated into TM run-time tasks. The output port con-
trol_output is synthesized into a trivial task. Its isReady()
method always returns 1 and it does not have a deadline.
The execution of this task simply drives the actuators.

The HITL simulator executes the helicopter dynamics
and provides sensor and actuator interfaces as UDP
datagram sockets. The INS and GPS interrupt service rou-
tines are implemented as UDP servers that are executed in
separate threads. Received UDP packets are converted into
events that trigger the fusion task. Deadline monitors are
implemented as separated threads that wake up at the dead-
line times and call stopExec() on corresponding tasks. A
graceful task termination policy is implemented where the
fusion and the controller execution code checks flags that
can be set by a corresponding stopExec(). If a deadline is
missed, the results from the last cycle are produced. The fu-
sion task uses the spare time in the long cycle to catch up on
missed computation. Since the controller, implementing
state feedbacks, is stateless, no extra computation is neces-
sary for compensating for missed deadlines.
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Conclusion
This article reviewed the challenges of developing embed-
ded software for real-time control systems and argued that
timing properties should be introduced at the programming
level to bridge the gap between algorithm development and
real-time priority tuning. We further described the timed
multitasking model that uses an event-triggering mecha-
nism and deadlines to provide deterministic timing behav-
ior for embedded software. The actor-oriented program-
ming model and a highly structured communication style al-
lowed interface and scheduling code to be generated from
the high-level specification. A helicopter control system
was designed as an example.
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