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ABSTRACT

Hybrid system modeling refers to the construction of system
models combining both continuous and discrete dynamics.
These models can greatly reduce the complexity of a phys-
ical system model by abstracting some of the continuous
dynamics of the system into discrete dynamics. Hybrid
system models are also useful for describing the interaction
between physical processes and computational processes,
such as in a digital feedback control system. Unfortunately,
hybrid system models poorly capture common software ar-
chitecture design patterns, such as threads, mobile code,
safety, and hardware interfaces. Dealing effectively with
these practical software issues is crucial when designing
real-world systems. This paper presents a model of a com-
plex control system that combines continuous-state physical
system models with rich discrete-state software models in
a disciplined fashion. We show how expressive modeling
using multiple semantics can be used to address the design
difficulties in such a system.

1 Introduction

Hybrid system formalisms (Lygeros, Tomlin, and Sastry )
are often used to simply represent and describe the behavior
of a physical system that cannot be easily described using
differential equations alone. Less commonly, hybrid sys-
tem formalisms are used to describe the interaction between
discrete computation systems and the physical world. This
interaction often arises in the form of embedded systems,
such as digital control systems (Liu, Liu, Koo, Sinopoli,
Sastry, and Lee 1999, Eker, Fong, Janneck, and Liu 2001),
high-performance data acquisition systems (Ludvig, Mc-
Carthy, Neuendorffer, and Sachs 2002), and heterogeneous
electronic systems containing analog and digital compo-
nents (Liu 1998). In these cases, the interaction between
the discrete and analog portions of a system are tightly cou-
pled and crucial to the proper behavior of the system. We
would like to model the behavior of such systems abstractly

as hybrid systems in order to quickly design the function
of discrete computation.

Unfortunately, although hybrid system formalisms pro-
vide a framework for describing the interaction between
software and the physical world, hybrid systems are not a
good model for designing embedded software. It is not gen-
erally practical to explicitly model the computational states
of embedded software through the discrete states of a hybrid
system model because of the large number of explicit states
required. Furthermore, such a model bears little resem-
blance to efficient executable code, making implementation
synthesis difficult.

We have approached this problem by constructing a de-
sign environment, called Ptolemy II (Davis et al. 2001), that
is capable of modeling both the hybrid dynamics of phys-
ical systems and complex software architectures. Ptolemy
II emphasizes the disciplined construction of hierarchically
heterogeneous system models using multiple modeling se-
mantics, called models of computation (Lee 2002). In
Ptolemy II, each model of computation is represented by
a director that gives modeling semantics to a particular
level of hierarchy in the model. Hierarchical heterogeneity
(Eker et al. 2003) allows discrete-state and continuous-
state models to be constructed from primitive components
and be robustly composed to build hybrid system mod-
els. These models can be further composed with models
of embedded software constructed using semantics appro-
priate for software design. Since every model exposes an
opaque component interface that completely describes all
interaction with other components, complex models can be
constructed from smaller models without overwhelming a
system architect.

We call this style of component-based modeling actor-
oriented design. One advantage of actor-oriented modeling
is abstraction: systems can be represented at high levels of
abstraction, facilitating rapid creation of executable simu-
lation models. The functional behavior and current state
of a component are encapsulated inside the component.
Timing and concurrency can be represented directly as part
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of an actor-oriented model, enabling detailed simulation
of software systems interacting with the physical world.
Furthermore, since actors have a well-defined interface, the
model of a hybrid embedded system can often be eas-
ily partitioned into a software model and an environment
model, enabling hardware-in-the loop simulation and au-
tomatic implementation synthesis. Given correct, detailed
models of a physical system, actor-oriented modeling pro-
vides a correct-by-construction path to the construction of
embedded software. This paper illustrates these design tech-
niques using a model of an autonomous vehicle controller
for the Caltech Multi-vehicle Wireless Testbed (Cremean
et al. 2002) as an extended example.

2 Caltech Multi-Vehicle Wireless Testbed

Murray et al. at Caltech have developed a platform for
experimenting with coordinated control of autonomous ve-
hicles, called the Multi-Vehicle Wireless Testbed MVWT)
(Cremean et al. 2002). The platform consists of a number
of ground vehicles operating in a controlled environment.
Propulsion for each vehicle is provided by a pair of ducted
fans mounted on top of the vehicle. By applying the same
force to each fan, the vehicle will move forward in a straight
line, while applying a different force to each fan causes
the vehicle to turn. An embedded computer controls the
fans through off-the-shelf motor controllers connected to
an RS-232 interface. The vehicles slide on three indus-
trial casters, allowing them to slide sideways while turning.
The operating environment of the vehicles includes a video
camera-based localization system (the Lab Positioning Sys-
tem), which broadcasts location and orientation information
for each vehicle over 802.11b wireless ethernet using UDP
datagrams. Because of the embedded, highly mobile nature
of the vehicles, control commands such as way points are en-
tered from a separate base station computer and transmitted
to individual vehicles.

From a control-oriented viewpoint, the continuous-time
dynamics of a Caltech vehicle can be modeled by the
equations (from (Cremean et al. 2002)):

mi(t) = —n i(t) + [Fs(t) + F,(t)] cos 6(t)
mij(t) = —n y(t) + [Fs(t) + Fp(t)] sin6(t)

JO(t) = = 0(t) + [Fu(t) — E,()] 7

where friction is assumed to be proportional to velocity.
F,(t) and F),(t) are inputs to the system corresponding to
the forces applied to the starboard and port fans respectively.
The system state o(t) = [x(t), &(t), y(t), 5(t),0(t),0(t)]"
is available to a control algorithm through the localization
system. The vehicle dynamics are similar to a two dimen-

sional approximation of winged aircraft dynamics (Evans,
Inalhan, Jang, Teo, and Tomlin 2001), making the testbed
useful for experimenting with aircraft control systems. The
Caltech group has implemented LQR-based state-feedback
digital control of the above dynamics capable of tracking
smooth trajectories.

In the physical system, there are several hardware lim-
itations that serve to complicate the design of the control
system. For instance, in the physical system, Fs and F), are
limited to a maximum of approximately 5 Newtons, and can-
not operate in reverse. The fans are driven by discrete-input
motor controllers, resulting in quantization of the forces
that can actually be applied to the vehicle. The localization
system is only capable of capturing 60 frames of video
per second, limiting the availability of location estimates.
Lastly, the computational system is distributed (between
the localization system, the base station and various vehicle
controllers) and communicates over a shared media with
the potential to lose data.

While these issues are partially addressed through robust
LQR control system design techniques, simulation is still
a crucial step in the design of such a system. In particular,
some system requirements must be specified explicitly at
the software level. For instance, one design requirement of
the system is that the base station must be able to record
telemetry from the vehicle and dynamically reconfigure the
executing controller. A safety requirement may state that if
the communication network fails or if the vehicle begins to
spin out of control, that the controller should power down
automatically. Simulation allows for these scenarios to be
modeled and appropriate action integrated into the software
model. Effectively modeling such behaviors, which might
be implemented using dynamic loading of mobile code
or software reconfiguration, requires software architecture
models that are fundamentally different from models of
the physical system. However, these models must be able
to interact with physical system models in a simulation
environment.

3 Basic Control Model

A Ptolemy II model of the physical dynamics of a single
vehicle is shown in Figure 1. This model is constructed in
the style of Simulink, a commercial tool produced by The
Mathworks Inc. The semantics of component interaction
are designed to support numerical integration algorithms,
implemented by the Integrator component. The sig-
nals communicated between components are interpreted as
functions of time that are solutions to a set of Ordinary
Differential Equations. We call this style of modeling,
with continuous-time signals and numerical integration, the
continuous-time (CT) model of computation.

In this model, the inputs are not taken as continu-
ous functions, but are instead assumed to be discrete-event
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Figure 1: A model of the continuous dynamics of a single vehicle. The hierarchical kinetic and kineticY models are
similar to kineticX. Each connection in this model represents a continuous-time signal with a value defined at all points
in time. Simulation approximates the values of these signals at desired points in time.

signals. Discrete-event signals, unlike continuous-time sig-
nals, are assumed to take values only at a countable num-
ber of points in time. At all other points in time, a
discrete-event signal has no value and is said to be ab-
sent. We call the style of modeling, with chronological
processing events in discrete-event signals, the discrete-
event (DE) model of computation. The Zero-Order
Hold components convert from discrete-event signals into
continuous-time signals suitable for integration. Similarly,
the PeriodicSampler component produces a discrete-
event signal, which happens to consist of events evenly
spaced in time, from the continuous-time signal. In this
model, the PeriodicSampler models the fact that only
sample values of the continuous-time dynamics are available
to the vehicle controller.

The interaction between the vehicle model above, and
the controller is shown in Figure 2. This model includes
a detailed model of the data format between the plant
and the controller. The localization system broadcasts a
UDP datagram containing the encoded state of the vehicle,
approximately 60 times a second. This communication is
modeled by an event consisting of a 56-byte array sent from
the vehicle model to the controller model. Inresponse toeach
network packet, the control computer executes the control
algorithm and eventually sends a three byte serial sequence
to change the speed of the fans. The serial communication
is modeled by a separate event sent from the controller.

Conversions to and from arrays of bytes are modeled by
Extract Forces and Construct Localization
Packet, which are not shown in detail.

Unfortunately, from the point of view of accurate simu-
lation, we have no idea how long the controller computation
will actually take in the final system. In this model, the
controller is idealized and generates its output event in zero
time. The model includes an explicit model of the computa-
tion and communication delay, given by the TimedDelay
component. Here the delay is assumed to be constant, but
it is trivial to substitute a stochastic delay, perhaps allowing
for the possibility of dropped packets.

The model of the controller itself is shown in Figure
3. This controller is based on an LQR controller design
by Murray’s group for tracking circular trajectories. The
trajectories are generated in polar form according to pa-
rameters specified in the model. Note that input to the
Circular Trajectory Controller is a structured
record datatype containing six fields, one for each state
variable of the physical system. The state is converted to
another record containing the state in polar form and the
control law is computed in polar space. This controller uses
an idealized model of the forces produced by each fan (im-
plemented by Force Map), which in a real system would
be replaced by calibrated lookup tables. A simulation plot
is shown in Figure 10.
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Figure 2: The toplevel simulation model, showing the interaction between the model of vehicle dynamics and the model
of the controller. Each connection in these model represents a discrete-event signal whose value is only defined at discrete

points in time.

The controller model is constructed as a Synchronous
Dataflow (SDF) model. (Lee and Messerschmitt 1987) In
this model, the signals between components are untimed
sequences of values. Each component processes these se-
quences in order at fixed relative data rates, allowing the
execution of individual components to be statically ordered
in a fixed schedule. Because of the nice scheduling properties
and the ability to synthesize efficient implementations (Bhat-
tacharyya, Murthy, and Lee 1996), Synchronous Dataflow
is a good model of computation for dataflow-oriented em-
bedded software.

4 Implementation

The model in previous section is a model that is constructed
primarily to allow simulation. Some aspects of the intended
system have been modeled explicitly, such as the format of
information received from the localization system. On the
other hand, some aspects of the system have been abstracted,
such at the communication between the localization system
and the controller. The model represents this communication
as an instantaneous event, while the actual communication
layer incurs some random (possibly infinite) delay. The
model of the vehicle is, itself an abstract representation
of the vehicle and the localization system. These models
cannot be viewed as a program, i.e. a source for synthesis,
without additional information, such as a communication
protocol or a 3D CAD model of the physical vehicle.

The controller on the other hand, is a concrete model.
Given appropriate inputs and outputs, the controller is in a
form which directly corresponds to a software architecture
for implementing the controller algorithm. This architecture
can be automatically generated in a relatively straightforward
mapping from the original. However, in order to perform
the synthesis procedure, this the concrete, synthesizeable
portion of the simulation model (corresponding to embedded
software) is partitioned from the abstract portion. The result
of partitioning the above system is shown in Figure 6. Note
that the communication channels have been replaced with
Datagram, and SerialComm components encapsulating
the UDP and RS-232 communication interfaces.

Note that Figure 6 includes the entire partitioned model,
including the abstract portion corresponding to the vehicle
dynamics. While this portion is not useful for implementa-
tion synthesis, it can be used for distributed simulation. By
executing the model of the vehicle on one computer and a
model of the controller on another computer, more accurate
simulation of the system behavior can be performed. In
particular, such a simulation includes actual properties of the
communication protocol, rather than the approximate model
included earlier. Other combinations are also possible, re-
sulting in various forms of hardware-in-the-loop simulation
(Sanvido 2002). For instance, the controller model can
be executed in the actual system, taking the place of an
embedded controller. This structure allows us to test that
communication protocols and vehicle dynamics have been
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Figure 3: Model of the vehicle controller. Extract Vehicle Location decodes localization information from an array
of bytes into a record of values and Construct Actuator Output encodes the control output into an array of bytes.
The interesting part of the controller is implemented by Circular Trajectory Controller, and is shown expanded
below. Each connection in this model represents an untimed sequence of values which are processed in order.
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Figure 4: A simulation plot of the position of a vehicle,
tracking a counter-clockwise circular trajectory around the

point (3,3).
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time = 0.0167, {85ub, 70ub, Oub}
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Figure 5: A partial trace of the discrete-event signal output
from the controller during simulation. The value of each
event is an array of three unsigned byte values between zero
and 255. The array consists of a dummy start byte (85),
followed by values between zero and 70 for each fan, where
a value of 70 corresponds to maximum available thrust.
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Figure 6: A partitioned version of the simulation model, where event communication has been replaced with communication
interfaces. The VehicleModel and Controller models are as before. In this model, SerialComm encapsulates an
RS-232 serial interface and the DatagramReader and DatagramWriter encapsulate event-driven communication using

UDP datagrams.

modeled in sufficient detail. Alternatively, the vehicle dy-
namics model can be executed with code generated from
the controller model, to test that the implementation was
generated correctly.

5 Improving the System Model

The model presented above includes many details that are
abstracted by the differential equation dynamics. How-
ever, from an embedded software perspective, the model is
still very minimal. It does not model how the system is
initialized, for instance, or how the system recovers from
errors. This information must either be specified as part
of code generation, perhaps by specifying a target platform
that provides initialization and reset capabilities, or it must
be specified through a more detailed system model. In
order to show how these might be represented in a more
detailed model, we concentrate on the interaction between
the control algorithm and the base station computer.

The first improvement we consider is the ability to
trigger mode switches from the base station. This is modeled
by augmenting the model of the controller with a finite state
machine to control reconfiguration, as shown in Figure 7.
In each mode, the modal controller behaves as the original
controller, which follows circular trajectory given by a set
of parameters. In response to switch events sent by the
base station over a separate UDP datagram port, the state
machine enters an intermediate switching state. The state
machine waits in the switching state until the position of
the vehicle is reasonably close to the new trajectory, at
which time the state machine automatically transitions to
a new state, reconfiguring the control algorithm to follow
the new trajectory. The guard leaving the switching state
must be designed so that the new trajectory can be followed
without saturating the available control inputs. In the new
controller state the vehicle follows a circular trajectory with
the new parameters. In this case, the controller only switched
between two fixed trajectories, in order to emphasize the

presence of switching states. In general, the parameters of
the new trajectory and the switching guard could be received
as part of the request for a trajectory change.

The second improvement that we deal with is the abil-
ity of the base station to dynamically update and modify
the control algorithm remotely. This is modeled using a
MobileModel, as shownin Figure 8. This component does
not have behavior of its own, but simply encapsulates other
components received on its bottom input port. In this case,
the mobile model receives a description of the component
over a CORBA-based publish and subscribe network, en-
capsulated by the PushConsumer and PushSupplier
components. Essentially, the controller publishes a event
service which the base station computer subscribes to, allow-
ing it to push a new component description to the controller.
Although it was not represented here, switching guards are
often important when updating components, in order to
avoid control transients.

A final improvement to the model addresses the need
for automatic shutdown of the system in case of network
failure. A modified controller model is shown in figure
9. This model moves from a purely event-driven style of
execution, where the controller was driven by the arrival
of a network packet, to a more time-driven Giotto model
of computation (Henzinger, Horowitz, and Kirsch 2001,
Henzinger, Kirsch, Sanvido, and Pree 2003). A Giotto
model presents an abstract view of time-triggered tasks
executing in a real-time operating system with deterministic
communication. Each signal in the Giotto model is a special
case of discrete-event signal where events occur periodically
in time. Like Synchronous Dataflow, Giotto is a model of
computation that can be synthesized into efficient embedded
software.

In the model, the state of input channels is updated
based on incoming events from the localization system and
the time of the last event arrival on the input port to the
Giotto model is provided explicitly. The controller task
is triggered at a fixed rate of 100 Hz regardless of when
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Figure 7: A model of a modal controller. The base station computer can send an event over the network, triggering a state
transition and reconfiguration of the controller parameters.

by the toplevel discrete-event driven model. In synthesized
embedded software using a real-time operating system, the

input events arrive and always sees the newest available
localization input. This architecture does not appreciably

increase the latency of the controller, but ensures that the
control algorithm is regularly executed, even in the absence
of fresh localization data. Detection of the network failure
is actually performed by the SafetyShutdown compo-
nent. This component compares the current time with the
time of the last localization event to determine whether or
not a network failure has occurred. The CurrentTime
component gives the current simulation time, as determined

current time would be implemented using a real-time sys-
tem clock. If a network failure is detected, feedback in
the model forces the software to be reinitialized before the
controller will be active again.
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Figure 8: A model of the interaction between the base station computer (on the left) and the control system model on the
right. The base station can remotely update the controller being executed. In this model, PushSupplier and PushConsumer
encapsulate event-driven communication over a publish and subscribe network interface.

6 Conclusion

This paper has presented a sequence of Ptolemy II models il-
lustrating techniques for modeling the behavior of embedded
control systems. Part of the complexity in such systems can
be handled by building heterogeneous models with multiple
execution semantics. By starting with an abstract model
that is close to a control engineer’s conceptualization of the
system, we have engineered more complex behaviors by
leveraging more complex modeling idioms that do not fit
into an analytical model of the control system. Ultimately,
the model is designed so that control software (or hardware)
can be automatically synthesized from the model after suf-
ficient scenario-based simulation. This modeling approach
combines idealized and concrete models of the system, and
provides a path to gain understanding of idealized portions
of the model through hardware-in-the-loop simulation.
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Figure 9: A modified controller that disables the vehicle if network failure is detected
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Figure 10: A plot of position estimates of a vehicle for a scenario with network failure. Received localization events are

plotted in red, while missed events are plotted in blue. After .1 seconds, corresponding to 6 missed localization events, the
vehicle controller assumes a network failure and disables the fans.



