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Abstract

Actor-oriented Metaprogramming

by

Stephen Andrew Neuendger
Doctor of Philosophy in Engineering — Electrical Engineering and Computer Sciences

University of California, Berkeley

Professor Edward Lee, Chair

Robust design of concurrent systems is important in many areas of engineering, from em-
bedded systems to scientific computing. Designing such systems using dataflow-oriented
models can expose large amounts of concurrency to system implementation. Utilizing this
concurrency ffectively enables distributed execution and increased throughput, or reduced
power usage at the same throughput. Code generation can then be used to automatically
transform the design into an implementation, allowing design refactoring at the dataflow
level and reduced design time over hand implementation.

This thesis focuses patrticularly on the benefits and disadvantages that arise when con-
structing models from generic, parameterized, dataflow-oriented componentsacadies
A designer can easily reuse actors iffelient models with dierent parameter values, data
types, and interaction semantics. Additionally, during execution of a model actors can be
reconfigured by changing their connections or assigning new parameter values. This form
of reconfiguration can conveniently represent adaptive systems, systems with multiple op-
erating modes, systems without fixed structure, and systems that control other systems.
Ptolemy Il is a Java-based design environment that supports the construction and execution
of hierarchical, reconfigurable models using actors.

Unfortunately, allowing unconstrained reconfiguration of actors can sometimes cause
problems. If a model is reconfigured, it may no longer accurately represent the system
being modeled. Reconfiguration may prevent the application of static scheduling analysis
to improve execution performance. In systems with data type parameters, reconfiguration



may prevent static analysis of data types, eliminating an important form of error detection.
In such cases, it is therefore useful to limit which parameters or structures in a model can
be reconfigured, or when during execution reconfiguration can occur.

This thesis describes a reconfiguration analysis that determines when reconfiguration
occurs in a hierarchical model. Given appropriate formulated constraints, the analysis can
alert a designer to potential design problems. The analysis is based on a mathematical
framework for approximately describing periodic points in the behavior of a model. This
framework has a lattice structure that reflects the hierarchical structure of actors in a model.
Because of the lattice structure of the framework, this analysis can be perfofinceshéy.

Models of two diterent systems are presented where this analysis helps verify that recon-
figuration does not violate the assumptions of the model.

Run-time reconfiguration of actors not only presenfidlilties for a system modeler,
but can also impedefiécient system implementation. In order to support run-time re-
configuration of actors in Java, Ptolemy Il introduces extra levels of indirection into many
operations. The overhead from this indirection is incurred in all models, even if a particular
model does not use reconfiguration.

In order to remove the indirection overhead, we have developed a system called Coper-
nicus which transforms a Ptolemy Il model into self-contained Java code. In performing
this transformation the Java code for each actor is specialized to its usage in a particular
model. As a result, indirection overhead only remains in the generated code if it is required
by reconfiguration in the model. The specialization is guided by various types of static
analysis, including data type analysis and analysis of reconfiguration. In certain cases, the
generated code runs 100 times faster and with almost no memory allocation, compared to
the same model running in a Ptolemy Il simulation. For small examples, performance close

to handwritten Java code has been achieved.

Professor Edward Lee )
Dissertation Committee Chair
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Chapter 1
Introduction

For inexperienced software engineers, writing correct programs can be a challenge.
Often, simply writing syntactically valid programs that can be compiled fiscdit, dis-
regarding functional correctness, testing, or usability. However as software engineers be-
come more experienced, addressing these issues becomes second nature and other aspects
of engineering craft become more important. These engineering considerations, such as
robustness, ease of maintenance, and reusability, arise in the search for better, more well-

structured programs.

Although designing well-structured programs takes quite a bit of experience, recog-
nizing such programs is relatively easy. A program that performs one task is good, but a
program that performs a variety of similar tasks is generally better. A part of a program that
can be extracted and reused is generally more useful than a part that cannot be extracted.
A program structured according to well-described concepts or metaphors is more easily
understood than one which lacks structure. A program that orthogonalizes unrelated con-
cepts from one another is more easily modified than one with highly dependent concepts.
A program with concepts that are highly localized in the program is generally less fragile
than one where concepts appear in many places.

Unfortunately, although many software engineering advances help programmers to con-
struct well-structured programs, these improvements often come with cost. For instance,
common object-oriented design patterns deal well with concept localization and orthogo-
nalization but add indirection overhead. Recursive algorithm implementations can be more
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concise than iterative implementations at the expense of stack usage and procedural over-
head. Binary component frameworks often incur large communication overhead across
component boundaries.

In contrast, highly optimized software is often highly obfuscated and mdfeudi
to modify directly. Control structures are simplified by code duplication and explicit case
expansion, requiring later changes to be made consistently in multiple places. Assumptions
are made about the organization of data that must be guaranteed by code elsewhere in
the program. The intent of a designer is also often obscured through the replacement of
meaningful identifiers and expressions to save space.

1.1 Metaprogramming and Generative Programming

One way of approaching making a better tratiéetween organization and optimiza-
tion is by Metaprogrammingr Generative Programminf1], i.e., using one program (a
metaprogram) to describe another. Interpreting a metaprogram, either trexemtioror
throughcompilation generates the desired program. This extra step, allows the metapro-
gram to be nicely organized, even when the generated program is not. The process of
metaprogramming is illustrated in Figutel

Metaprogramming is often performed using pre-processor macros, allowing a program-
mer to automatically generate code that would be awkward or redundant to write by hand.
The template mechanism i@ is a structured, turing-complete language that is evaluated
at compile time. Although awkward, the template mechanism has been flisetively to
generate ficient software framework[, 35]. In C++, new language features intended
to directly support metaprogramming have been developed].[ By expressing compile-
time operations in a €+-like syntax and allowing richer design patterns, new language
features have the potential to make metaprogramming more accessiblertpr@gram-
mers. In some cases, metaprogramming has also been found applicable to dynamic run-
time code generatiorlp, 50].

Metaprogramming is commonly used to perform manqsagram specializatioto im-
prove execution performance. In cases where-a €ompiler might otherwise not perform
certain analysis or optimizations, such as loop unrolling or propagation of constant argu-
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\
Meta-Compiler | —» | Specialized | __ Compiler
/ Program

Meta-Program l

Run-time > Run-time
Executable
Inputs —_— —» Outputs

—_

Figure 1.1:A diagram illustrating metaprogramming. The input to the meta-
compiler consists of a program and a metaprogram, which are explicitly
distinguished. Executing the metaprogram on the program results in a new
program, which is then compiled and executed.

ments into a function body, these optimizations can be manually specified using a meta-
program. Specific optimizations that would be impractical to build into a compiler, either
because they are not correct in all cases or because they are complex and rarely applicable,
can be applied programmatically. Fundamentalty optimization that can be performed

using compile-time information can be written using a metaprogram. This technique has
been particularly used to build highly optimized-€ libraries for numerical computation

[97].

Metaprogramming mechanisms have also been built into hardware description lan-
guages used to specify ASIC circuits or FPGA configurations.gelnerate statement in
Verilog-2001 allows for automatic generation of circuit structures. The structure of these
circuits must be statically elaborated early in the process of circuit synthesis. Recent work
on Bluespec40, 5, 82] is partially concerned with providing improved semantics for circuit
synthesis in the presence of automatically generated circuit structures.

The above metaprogramming approaches do not tend to enforce patterns or structure
in metaprograms, leaving designers responsible for building good metaprogkapext-
oriented programmingrovides a structured form of metaprogramming targeted at a spe-
cific architectural problemb, 54)]. In particular, aspect-oriented programming attempts to
elegantly represent and encapsulate of functionality in a program which is normally distrib-
uted throughout the program. Suctoss-cuttingunctionality is represented by @spect
Aspects are incorporated into the primary functionality of a program bgpspect weaver
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\
Partial — | Specialized |__
Program

Evaluator
Compile-time /S
Inputs l

Compiler

Run-time > > Run-time
Executable

Inputs —_— —» Outputs

Figure 1.2:A diagram illustrating partial evaluation. The input to the partial
evaluator is a program and a partial set of inputs. The resulting specialized
program can be compiled and executed on the remaining inputs.

that outputs code which can be compiled normally.

Because of the separation betweadssign timewhen compilation is performed and
metaprograms are executed agxkcution timevhen normal system processing occurs,
languages that support metaprogramming are also dalledtage languagesr two-level
languages One disadvantage this separation is that a programmer must explicitly distin-
guish which parts of an algorithm are executed at a particular stage of execution. In other
words, a program must express an algorithfiedéntly in order to take advantage of the
beneifts of metaprogramming.

One way of eliminating this separation is to focus on automatic specialization of a
generic program to a particular set of inputs. This technique is cpletil evaluation
[57]. In languages with the ability to manipulate programs as well as data, such as func-
tional languages, partial evaluation is a natural way of generating nfficeet programs.
The partial evaluation process is illustrated in Fighr2

Recently, there has been significant interest in applying partial evaluation techniques
to complete object-oriented language$,[89, 90, 91]. These techniques rely on sophisti-
cated inter-procedurdlinding-time analysiso infer which functions in a program should
be partially evaluated. Variables witttatic binding timecan be computed by the partial
evaluator and used to specialize a program. Variablesdyiiamic binding timeemain in
a partially evaluated program and are computed at run-time. Althofiigbtigely making
use of these techniques generally requires some manual annotation of binding times in a
program, partial evaluation generally requires less explicit specification by a programmer
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than other metaprogramming techniques.

1.2 Component Based Design

Another approach to better program organizatiorcasnponent based desiga3].
Component based design focuses on component specifications with well-defined exter-
nal interfaces. The external interface exposes all of the points of interaction with other
components and complex behaviors can be constructed by composing components using
their external interfaces. One benefit of component based design is immresie reuse
where components are reused from one design to the next or purchased as intellectual prop-
erty from component providerg}|. Design reuse can reduce time spent in the design cycle
when applied ffectively [76].

One disadvantage of many component models is the overhead of run-time component
interfaces. Component middleware that provides rich interactions between components,
such as the Common Object Request Broker Architecture (CORBA) or the Message Pass-
ing Interface (MPI), can have significant overhead for fine-grained components. Although
simpler component frameworks may have less overhead, simpler frameworks are often
more constraining and fiicult to leverage #ectively. To make matters worse, migrating
from one component framework to another, if the initial choice turns out to be unsatisfac-
tory, often involves significant reimplementation.

Recently, compile time analysis and transformation of component frameworks in order
to optimize execution has been applied to object-oriented component frameworks, particu-
larly in embedded systemg,[59, 77, 96, 107. These systems use design time information
to specialize a composition of components in a particular model. These systems are capable
of breaking component interfaces apart in order to integrate components fhiciendy
and perform this composition in a safe manner, a process that can be generically called
invasive software compositiqd]. These systems preserve components as a design-time

abstraction, while eliminating component interfaces at execution time.
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1.3 System-level Design

Addressing the tradébbetween between organization and optimization is also impor-
tant at a system-level of design. At the system level, understanding design structure be-
comes more critical since resource constraints and architectural fimdan greatly fiect
the behavior of a system. Without a system-level viewpoint, these properties must be de-
rived from low-level design, which can limit thefectiveness of system-level refactoring.

Concurrencyplays an important role in system-level design. The concurrency between
software running on dlierent processors, orftirent threads on a single processor, is usu-
ally hidden in most programming languages. Unfortunately, current design practice tends
to architect concurrent behavior through low-level mechanisms, such as monitors and criti-
cal sections. Given the flexibility and potential pitfalls in these mechanisms, a higher-level
approach to managing concurrency is preferable.

Part of the system-level approach of this thesis is to consider the design of hardware,
e.g., digital circuits and FPGA configurations, and software, e.g., microprocessor programs.
Traditionally, hardware design has focused on concurrent, cycle-accurate, register-transfer
level design, while software design has focused on sequential, behavior-accurate, function-
level design. However, increasingly, this separation is fading. In hardware, there is a need
to increase the speed of the design process as systems become larger. Although some
design will inevitably performed at a cycle-accurate level, higher-level design techniques
are still in great demand. In software, untimed and sequential programming abstractions
are becoming less attractive, particularly in embedded systems which are intrinsically timed
and distributed.

Recently, there has been a trend towards embedding system-level constructs into exist-
ing programming languages, as in Scenit][and SystemC. The resulting library is often
called adomain-specific embedded languageDSEL [42]. While this approach adds no
fundamentally new semantics, DSELs can be significantly easier to build (since they can
rather easily evolve) and for users to learn. Instead of learning new syntax and seman-
tics, designers instead learn libraries and techniques for using these libraries to represent
behavior.

One disadvantage of embedded languages is increased execution overhead, since li-
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braries often add indirection. For domain specific languages embedded into functional
languages, such as Haskell, this indirection can be removed through partial evaluation
[42]. The resulting specialized program has the design time benefits of domain-specific
constructs combined with executioffieiency of a low-level implementation.

1.4 Actor-oriented Metaprogramming

Actor-oriented desigis an approach to system-level design using concurrent dataflow-
oriented components calletttors Actors specify behavior abstractly without relying on
low-level implementation constructs such as function calls, threads, or distributed comput-
ing infrastructure. Typically actor-oriented models are designed to reflect the static struc-
ture of a concurrent system. In this thesis, actor-oriented models are viewed as descriptions
of concurrent software architectures, i.e., structured metaprograms. The behavior of the
model can besimulatedwithout compile-time interpretation of the metaprogranspe-
cializedand executed in a mordfeient manner§1]. Specialization is largely based on
model analysis in the style of partial evaluation tools, rather than through explicit metapro-
gramming.

This thesis provides two main contributions. Firstly, it will present a formal model
for analyzing reconfiguration and parameter dependencies in actor-oriented models. This
model is a central part of the compile-time analysis that guides specialization of actors to
particular parameter values. The model also provides a decidable algorithm for validating
constraints on reconfiguration in a model which often arise from other forms of specializa-
tion, such as dataflow scheduling analysis. For this reason, analysis of reconfiguration is
described as behavioral type theory of reconfiguration

The second contribution is a system for generating optimized software implementations
of actor-oriented models through automatic specialization of actor oriented models. This
system is constructed within Ptolemy #14], an object-oriented software framework where
components are highly generic and reusable. In Ptolemy Il, generic aspects of components
are implemented using run-time mechanisms, such as interfaces and indirection. Based
on compile-time analysis of the model, actor-oriented components can be specialized to
particular uses, reducing the need for costly run-time indirection. The resulting system can
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be considered in many ways: as a code generator for a concurrent programming language,
as a tuned partial evaluation system, or as a component optimization system.

In contrast with other actor-oriented systems, such as Ptolemy 'Cladgic8%] or
commmercial tools such as Simulink from The Mathworks, the system described here al-
lows models to be reconfigured in various ways during execution. This reconfiguration
may include modification of types and the structure of the system in addition to the modi-
fication of parameter values. Furthermore, the generation of an optimized implementation
incorporates code that is used for simulation as a specification of behavior. In contrast,
other systems generally use separate specifications for simulation models of actors and for
generating specialized code. As a result, ensuring consistency of these separate specifica-
tions becomes a significant problem. This thesis follows an approach based on systematic
optimization of a single behavioral specification. This approach can also be combined
with more explicit specifications of generated code for components that arefficiesuly
optimized, but we anticipate that the majority of a system can be generated automatically.



Chapter 2
Actor-oriented Design

Actor-oriented modeling and desig6d, 65, 67] is a methodology for system-level
design that has evolved over many years of research. Carl Hewitt and others developed
basic techniques for constructing systems basedsymchronous message passing
stead of applicative evaluation, as in the lambda calci88s39]. Gul Agha developed
a formal theory for describing concurrent systems that combined Hewitt's message pass-
ing with local state update2] 3]. More recent work 29| focuses on the use of patterns
of message passing between components, calledels of computatigrwith interesting
modeling properties. This thesis focuses particularlydataflowmodels of computation
derived from the work of Gilles Kahmd[/, 48] and Jack DennisZ4].

The actor-oriented models described in this thestedirom the actor models of Hewitt
and Agha in several ways. In particular, Hewitt and Agha focus on dynamically instanti-
ated actors and acquaintance relationships for message passing between actors. In contrast,
this thesis emphasizes models with static structure and shared life cycle, while still allow-
ing dynamic instantiation. Secondly, Hewitt and Agha view actors as a universal concept;
everything in the system is an actor that responds to messages. This thesis will tend to
distinguish data tokens, which encapsulate data and do not interact with one another, from
actors which exchange and process data. This distinction allows the optimization of ex-
ecution performance with respect to the static structure of a model without considering
dynamic data.



10 Chapter 2. Actor-oriented Design

Actor Name

Input I4
Port FIR Output

Port

Figure 2.1: An example of the interface of a simple actor in Ptolemy II.

Parameters and internal state are not shown.
2.1 Actor-oriented Models

In actor-oriented desigrgctorsare the primary units of functionality. Actors have a
well defined interface, which abstracts internal state and execution of an actor and restricts
how an actor interacts with its environment. Externally, this interface inclpdés that
represent points of communication for an actor pachmetersvhich are used to configure
the behavior of an actor. Actors will be shown graphically in the Ptolemy4] tyle, as
in Figure2.1

Actors are composed with other actors to focomposite actorser models Connec-
tions between actor ports represent communicati@nnelghat pass dateokensrom one
port to another. The semantics of composition, including the communication style, is de-
termined by anodel of computatianWhen necessary, the model of computation will be
shown explicitly as an independeditector object in model. Models often export an ex-
ternal actor interface, enabling them to be further composed with other models. A simple
actor-oriented model is shown in Figu2e2.

A central concept in actor-oriented design is that internal behavior and state of an actor
are hidden behing the actor interface and not visible externally. This propestyooiy
encapsulatiorseparates the behavior of a component from the interaction of that compo-
nent with other components. System architects can design at a high level of abstraction and
consider the behavioral properties offdrent models of computation independently from
the behavioral properties of components. Furthermoréerént models of computation
can be used at flerent levels of hierarchy, enablifgerarchically heterogeneousgesign
[29]. By emphasizing strong encapsulation, actor-oriented design addressepd#nation
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Figure 2.2: An example of a simple hierarchical synchronous dataflow

model in Ptolemy Il. The filter component is hierarchically decomposed
into two multi-rate FIR filters with input and output token rates shown on
the figure. The synchronous dataflow scheduler uses these rates to compute
the number of tokens consumed and produced by the filter actor, as will be
described in Sectiod.6.1

of concerng53] between component behavior and component interaction.

In addition to supporting hierarchically heterogeneous models, strong encapsulation
allows primitive oratomicactors to be specified in a variety of ways. For instance, actors
are often specified by drawing finite-state machines where each transition corresponds to
a particular sequence of operatio&]] Another technique is to use a special purpose
textual language that specifies what tokens to consume and what operations to compute
on that data, such as CAI3(, 100. However, one of the most flexible ways to specify
actor behavior is to embed the specification within a traditional programming language,
such as Java or C, and use special purpose programming interfaces for specifying ports and
sending and receiving data. This technique has been widely used in actor-oriented systems
[15, 31, 8(] since it allows for existing code to be integrated into an actor-oriented design
tool and for programmers to quickly start using actor-oriented methodologies.
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2.2 Hierarchical Semantics

Previous work has focused on giving a formal framework for describing the behavior
of actors and models as transition systeB%; {15, 73]. Transitions represent both internal
computation and external interaction, such as the production and consumption of data from
the ports of an actor or coordination with other actors. The behavior of an actor is primarily
determined by a@actor specification The execution of this specification in the context of
other actors and data from the environment results in an actor’s observed behavior.

In this framework, a model of computation determines a style of composition of actor
specifications. This style includes the behavior of communication channels between ac-
tors, and any additional control logic for ordering the transitions of actor specifications.
As with actors, communication and control logic can also be represented as transition sys-
tems. Composing the transition systems for individual actors in a model with the transition
systems representing a model of computation results in a transition system for the entire
model.

In order to be composed in this framework, actors and models are required tpreave
cise reaction$73]. Each actor must consist of a totally ordered sequeneetoi firingsor
iterations which are similar to concept of activity developed by Hewitt and BakeB9).

During the firing of an actor, it may send and receive data from communication channels
and perform computation. Between firings, an actogugescentand cannot communi-

cate or perform computation. Additionally, compositions are required tudrarchically
reactive where each actor firing must be encompassed by a single firing of the actor’s con-
tainer. Equivalently, when a composite actor is quiescent, all actors deeply contained by
the composite actor are also quiescent. A figure illustrating the quiescent points of a model
is shown in Figure.3.

Because the internal state of each actor is hidden from other actors in a model, there are
few intrinsic constraints on the firings offterent actors in a model. The lack of execution
constraints implies that actors in a model Aanredamentally concurrentn order to obtain
efficient execution in single processor environments, additional execution constraints are
often added to a model to enforce sequential execution of actor firings. In the absence of
additional constraints, the firings of two distinct actors are allowed to occur completely



2.3. Parameterization and Reconfiguration 13

toplevel

/

AudioPlayer

/

Filter

y

FIR
—a

‘\\\

Figure 2.3: A graphical representation of the quiescent points in one exe-
cution of the model in Figur@.2 The model is one where acttplevel
contains actorgwudioPlayer andFilter, and actoiFilter in turn contains ac-

tor FIR. Quiescent points are shown as vertical lines and actor firings are
shown as arrows. A quiescent point is a quiescent point of an actor if a fir-
ing arrow of the actor starts or end at the quiescent point. The direction of
arrows represents the partial ordering of quiescent points.

independently.

Unfortunately, the fundamentally concurrent nature of actor-oriented models can re-
sult in rather complex transition systems for actor compositions. In contrast, the structure
of quiescent points in a model is somewhat simpler. Quiescent points abstract the con-
currency and sequentiality between actors in a model and represent only the hierarchical
relationships between actors. This simpler framework for formal analysis can be useful
when analyzing hierarchical properties of models, as will be seen in Chapter

2.3 Parameterization and Reconfiguration

The communication interface consisting of an actor’s ports also allows actors to be
developed independently and provided as reusable library elements. Actor parameters in-
crease the reusability of such library elements, by allowing the same actor specification
to be reused with dierent parameter values. For instance, an actor representing a finite-
impulse response (FIR) filter might have a parameter that determines the filter taps. The
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same actor might also provide multi-rate capabilities fibicent upsampling and down-
sampling, with corresponding parameters to determine the number of tokens produced and
consumed during each execution of the filter. At design time, parameters help keep the
size of actor libraries manageable and allow models to be quickly modified or tuned for
performance. At run time, actor parameters allow for dynamic reconfiguration of actors
(and models) while a model is executing.

There are many applications that can make use of dynamically reconfigured models.
For instance, a communication system with adaptive echo cancellation can be modeled by
reconfiguration of a parameterized filter. Parameter reconfiguration enables a single com-
ponent to be used either as a fixed filter or an adaptive filter, obviating the need for two
separate components. At a coarser level of granularity, systems with multiple operating
modes are common. For instance, a communication system might operate in either a train-
ing mode or a communication mode. In the training mode, the system communicates a
predetermined bit sequence and estimates the characteristics of the channel. These charac-
teristics are used in the communication mode to improve the bit-error performance of the
modem. Transitions between training mode and communication mode can be modeled as

system reconfiguration.

In actor-oriented models, parameters are usually used to represent configuration values
specified by a designer. Configuration parameters are usually usetbprdownfash-
ion, where parameter values of contained actors are dependent on parameter values higher
in a model. However, parameters in actor-oriented models can also be used to represent
synthesized properties of actors, such as data types, execution schedules, and token rates.
The dependencies between such parameters are gertsstihyn-up with parameters of
the toplevel depending on parameters of contained actors. In this thesis we will leverage
parameters as a uniform representation for properties in a model that cdiedtted by
reconfiguration.

We distinguish two forms of reconfiguration: parameter reconfiguration and structural
reconfiguration. Parameter reconfiguration changes the value of actor parameters, while
structural reconfiguration may add or remove actors and modify the connections between
ports. In actor-oriented models, both structural and parameter reconfiguration are allowed
only at quiescent points in execution. The hierarchical structure of quiescent points can be
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used to analyze parameter reconfiguration for statically structured models, as described in
Chapterd.

2.4 Dataflow Models of Computation

In actor-oriented models, many models of computation are pos$iBlé&§]. By us-
ing different models of computation, actor-oriented modeling principles can be adapted to
a variety of problem domains, such as physical systems, communication networks, and
embedded systems. For the purposes of this thesis, we focus on dataflow models of com-
putation applied to computing systems.

Dataflow models of computatior2{, 47, 69] have been used to represent a wide vari-
ety of computing systems, such as signal processing algorishgjstributed computing
workflows [74, 99|, and embedded processing architectuds 92]. In a dataflow model,
message communication between actors is performed through queues of data. These mes-
sage queues desynchronize the communication between actors, allowing the sending actor
to continue concurrently without waiting for the message to be received. At the same time,
message queues ensure that messages are received in order of transmission with no message
loss.

Dataflow models of computation are appealing since they often closely match a de-
signer’s conceptualization of a system as a block diagram. Additionally, dataflow models
of computation fer opportunities for icient concurrent and sequential implementation.
Since actors only communicate through ports and do not share state, system parallelism
is exposed in the model and concurrent execution is possible. However, parallel imple-
mentation is not required and static scheduling analysis can gendiiaien¢ sequential
implementation.

2.5 Dataflow Execution

One advantage of dataflow modeling is a wide variety of techniques for operationally
executing a model. One of the most basic execution techniques, known as dynamically
scheduled dataflow (DDF), requires actors to declare tbken ratedor each input and
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Actor1 Actor2

Figure 2.4:A dataflow model that cannot be executed in bounded memory.

output port. The token rate of a port determines the number of tokens that port will pro-
duce or consume during the next firing of the actor. Based on this information, a centralized
scheduler decides on the next actor (or actors) to fire. After firing those actors, the sched-
uler inspects the token rates which may have changed, and selects another set of actors to
execute.

A closely related technique for executing dataflow models, the process network (PN)
model of computation48], does not rely on a centralized dataflow scheduler or declara-
tions of token rates. Instead, each actor in a process network is associated with a indepen-
dent sequential thread of control, roughly corresponding to an operating system process.
The actor’s thread of control processes data from input ports as it becomes available using
ablocking read If no input is present, an actor must block until the data is available and
there can be no way for an actor to query for the presence of data. In a process network,
blocking reads ensure that the output of a dataflow model is correct, regardless of when
processes are actually executed. As a result, operating system scheduling techniques that
are not aware of token rates can be applied in order to execute more than one actor on a

single processor.

In general, dataflow models of computation diging completeand it is undecid-
able whether a particular dataflow model can be executed in bounded memory. Both DDF
and PN are capable of executing arbitrary dataflow models, even those that require an un-
bounded amount of memory, such as the model in FiguteHowever, they can be imple-
mented robustly so that every model which can execute in bounded memory will actually
be executed in bounded memory, using Park’s algorit®®ng3, 7].
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2.6 Static Dataflow Scheduling

Although dataflow models can require an unbounded amountftégtomemory in order
to execute, many interesting computations can be executed in bounded memory. Although
showing this for an arbitrary model is undecidable, model analysis techniques have been
developed that allow bounded memory usage to be guaranteed for restricted forms of data-
flow models. These techniques determine if a given dataflow modelrhasraal complete
cycle[16], which is a sequence of actor firings that returns the dataflow model to the same
original state without deadlocking. If complete cycles do exist, then dataflow scheduling
techniques are usually capable of producing a finite leeg#tution schedulavhich re-
sults in complete cycles when executed.

Unfortunately, even if execution schedules can be found, they may not have desirable
properties for system design. In particular, a schedule may use an unbounded amount of
buffer memory before returning to the original state. It is also possible for a schedule
to use a bounded amount of fier memory, but require an unbounded number of actor
firings. This section will summarize these dataflow scheduling techniques, and summa-
rize the conditions under which execution schedules can be found whidimiéedength
bounded memorynd can be executed ounded time

2.6.1 Synchronous Dataflow

In a synchronous dataflow (SDF) mod&L] 64], the token rates of actors are assumed
to not change during execution. Given the token rates, an execution schedule consisting of a
finite sequence of actor firings can always be found, if a minimal complete cycle exists. The
resulting scheduling is guaranteed to use boundd@ibmemory and to produce bounded
executions. Since lfier memory usage is bounded, the synchronous dataflow model of
computation is not Turing complete, unless actors can use unbounded memory internally.

SDF analysis occurs in two steps. The first step involves solving a dealahce
equationsdetermined by the token rates and structure of the model. The balance equa-
tions require that the number of tokens produced on a channel match the number of tokens
consumed. Generally, these equations will have a set of linearly dependent solutions that
determine the number of times each actor must fire in a complete cycle. Selecting the
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smallest positive solution gives the shortest schedule, although any positive solution can
be used. If such a solution exists, an execution schedule is possible. However, if no non-
zero solution to the balance equations exists, then the moaeassistenand cannot be
executed forever in bounded memory.

The second scheduling step simulates the execution of the model, allowing each actor
to fire a maximum number of times determined by the balance equations. If the simulated
execution does not deadlock, then the resulting sequence of actor firings is an execution
schedule. If an execution schedule is found, then it is guaranteed to execute in bounded
memory and with a bounded number of actor firings. A scheduling example is shown in
Figure2.5.

2.6.2 Parameterized Synchronous Dataflow

Parameterized synchronous dataflow (PSI#-Y] is another technique for analyzing
dataflow models that allows more general models than SDF. The Keyatice is that para-
meterized synchronous dataflow allows token rates to change during execution. However,
rate changes are only allowed between executions of a parameterized schedule. Such a
model is calledocally synchronou$10]. For locally synchronous models with bounded
token rates, PSDF schedules are guaranteed to use bounded memory and have bounded
executions.

The procedure for parameterized synchronous dataflow scheduling is very similar to
synchronous dataflow scheduling, except that token rates are considered to be variables,
instead of constants. The balance equations are solved symbolically, and a quasi-static
schedule is generated that is a function of the token rates determined at run-time. Although
the execution of this schedule depends on token rates that might change at run-time, the
schedule is statically determined and can be compiled iffitment executable software.

In Figure 2.6, a solution to the balance equations exists for any token rates. Such a
model is calledstrongly consistenft6?]. Alternatively, it is possible for some models that
an integer solution to the balance equations only exists for certain token rates, in which
case the model is onlyeakly consistentAs with SDF, is it also possible for no non-trivial
solution to exist, in which case the modelngsonsistenand no execution schedule can be
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(a) Example Model

input.tokenConsumptionRate 2 = FIR.firingCount
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(b) Balance Equations

FIR.firingCount =
FIR2.firingCount =

input.tokenConsumptionRate =
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output.tokenProductionRate =

(c) Balance Equation Solution

Figure 2.5:An example of synchronous dataflow scheduling. The balance
equations for the model ifa) are shown ir{b) and the least positive solution

is shown in(c). Note that the rates of external ports are inferred from the
solution to the balance equations.

found.

For complex parameter constraints determined by arithmetic expressions, it is generally
undecidable whether a model is inconsistent, strongly consistent, or weakly consistent.
Since dataflow scheduling analysis is used to assert safety properties, such as bounded
memory usage, it is preferable to disallow scheduling for models which cannot be shown
to be strongly consistent. However, by adding the appropriate assumptions to a model, it
is often possible to manipulate a weakly consistent model into a strongly consistent one.
This addition may be necessary because a parameter value is known to a designer to never
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Figure 2.5:Execution of the model iffa), given the required six input to-
kens.

change, is known to take on only constrained values, or is known to be related to other
parameter values. The extra assumptions may be either checked at run-time, or become
additional proof obligations in a formal analysis framework.

In PSDF models, the memory usage of a schedule generally depends on parameter
values specified at run-time. Larger parameter values often result in larger memory usage
(as in Figure2.6). Hence bounded memory usage is only generally guaranteed given either
constraints on parameter values or explicit bounds dfebsgizes from which constraints
on parameter values can be inferred. These parameter value constraints are also treated as
extra assumptions, which must either be checked at run-time or proved satisfied outside
of PSDF scheduling. PSDF models are also guaranteed to have a complete cycle that
execute in bounded time as a function of parameter values. If the parameter values are
themselves bounded, then the resulting schedule will execute in bounded time. Based on
these results, locally synchronous and strongly consistent dataflow models with bounded
parameter values cannot express arbitrary computations and are fundamentally decidable.

Existing scheduling techniques based on parameterized acyclic pairwise grouping of
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Figure 2.6:An example of parameterized synchronous dataflow scheduling.
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adjacent nodes (P-APGANg] generate finite schedules only for models without feedback,

or models where feedback does ndffieat scheduling. For models with tight feedback,
good static scheduling techniques have yet to be developed, although bounded run-time
scheduling is still possible. It is likely that improved clustering techniques, such as those
applicable to Boolean-controlled dataflow are capable of generating schedules for arbitrary
PSDF models.

2.6.3 Boolean- and Integer-controlled Dataflow

Boolean-controlled dataflow (BDF)f] and integer-controlled dataflow (IDF)Y] are
closely related scheduling techniques. The primaffedence between them and PSDF is
that BDF and IDF lift the restriction on local synchrony and allow token rates to change
every time an actor fires. This seemingly simple change makes scheduling significantly
more complex, and introduces the possibility that execution schedules may not terminate.
For general BDF and IDF models, determining if a model can be executed in bounded
memory is undecidable, although heuristic techniques are able to find execution schedules
for commonly used structures.

BDF and IDF models are usually constructed using flow control actors, shown in Figure
2.7. These actors change their behavior according to the current value of the control signal.
Each token received from a control input reconfigures the actor, determining the routing of
the next data token. These actors are not locally synchronous and cannot be used directly
in PSDF models. In terms of the FIR filter example given previously, IDF allows the filter
to have input ports which determine decimation and interpolation factors.

Switch and Select actors are usually used in well-behaved patterns or schema, such as
conditionals and loops. Using these patterns, finite execution schedules can be found and
complete cycles are guaranteed to be boun88d However, in general, strongly consis-
tent models are not guaranteed to execute in bounded memory, or in finitel®md-pr
example, Figur@.8is a model that might require unbounded memory and unbounded time
to execute. Itis also possible for a model for model to execute in unbounded time, but only
use bounded memory, as shown in Fig2ré In both of these models th@ontrolSource
actor can produce an arbitrary sequence of control values, but the minimal complete cycle
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Figure 2.7:Control flow actors in Ptolemy IBooleanSwitch andBoolean-

Select take a boolean control input that determines which output consumes
or produces the next token and no tokens are produced or consumed from
the remaining port.Switch and Select take an integer control input that
determines which channel of the multiport produces or consumes the next
token and no tokens are produced or consumed from other channels. Note
that the names here used in Ptolemy Iffel slightly from the literature

[16, 24], where actors with boolean control input are calBadtch andSe-

lect and actors with integer control inputs are caltease and EndCase.

occurs only after th€ontrolSource actor produces twdRUE tokens.

Note that the schedulingfiiculties of BDF and IDF models only arise in models that
are not locally synchronous. If the control flow actors always receive the same value from
their control ports and this fact is available to a scheduler, then SDF scheduling can be
applied. If the value received from their control port doesn’t change until the end of the
minimal complete cycle, then PSDF scheduling can be applied. For this reason, it is use-
ful to consider the the control ports of control-flow actors toréeonfiguration portsas
described in Sectio8.1
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Figure 2.9:A dataflow model where a minimal complete cycle might require
unbounded time, but is guaranteed to require only bounded memory.

2.6.4 Hierarchical Dataflow Scheduling

In a hierarchical actor-oriented framework, it is natural to usiedint scheduling tech-
niques at dterent layers of hierarchy. While dataflow scheduling techniques are not typi-
cally presented in a hierarchical framework, it is generally straightforward to extend them
to operate hierarchically. One possibility is to recursively schedule a hierarchical model
beginning with scheduling of models deep in the hierarchy. Scheduling each model deter-
mines the token rates of external ports, which can then be used to schedule higher-level
models. This procedure maximizes use of the rate information of primitive actors without
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additional annotation.

Declaration of token rates does not occur solely at compile-time, but may also occur
at run-time when a model is reconfigured. As a result, there are dependencies between
token rates that behave in exactly the same way as dependencies between configuration
parameters. As mentioned previously, this fact will be leveraged by representing token
rates agate parametersdespite the fact that rate parameters are not usually configured
directly by a designer. As a result, token rate changes can be considered in the same way
as any other parameter change.
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Chapter 3

Reconfiguration of Actor-oriented
Models

Although actor-oriented design encourages the use of parameters and reconfiguration
of a model, reconfiguration can also caus@éclilties. In some cases, the implementation
of an actor assumes that certain parameters don’t change during execution of the actor.
In other cases, reconfiguration can modify parameters that are not meaningful to modify
during execution of a model, such as parameters specifying physical parameters. Recon-
figuration can also indirectlyfBect properties of an actor or model used for static analysis,
such as dataflow scheduling or type checking.

3.1 Hierarchical Parameter Reconfiguration

Many different modeling syntaxes have been used to represent reconfiguration in data-
flow systems. This section presents a brief summary of the mechanisms which have been
implemented in Ptolemy 1.

3.1.1 Modal Models

One syntax for specifying reconfiguration is based on an extended version of a finite
state machine, calledmmodal modelEach state of the finite state machine contains a data-
flow model that isactivein that particular state. The active dataflow model is alternatively
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called arefinemenbf the state. Essentially, the active dataflow model replaces the finite
state machine until the state machine makes a state transition. Additionally, finite state ma-
chine transitions are capable of reconfiguring parameters of the target state’s refinement.
This syntax is similar to the *-charts mode&d4, 61], the FunState modeBp], and the
Stream-Based Functions modB#.

During each firing of a modal model, the dataflow model associated with the active state
is fired once and it communicates directly with the external ports of the modal model. After
the active dataflow model is fired, the guard of each transition originating in the active state
is evaluated. If exactly one guard is satisfied, then that transition is taken and the destination
state of the transition will be active in the next firing. If no guard is satisfied, then the active
state will remain active in the next firing. If multiple guards are satisfied, then either the
model is considered incorrect or one of the transitions can be chosen non-deterministically.
If a transition is taken then the action of the transition is performed, possibly resulting in
reconfiguration of a model parameter at the quiescent point after the firing. An example
model is shown in Figur8.1and a plot from running the model in FiguBe2.

Another example of a modal model is shown in FigGt8 This modal model has
multiple states, and afiierent refinement model is active in each state. Each refinement is
a statically scheduled synchronous dataflow model, but the external rates of the refinement
models are dierent. When the modal model changes state, the rate parameters of the
modal model are reconfigured to reflect the rate parameters of the new refinement.

Modal models (and finite state machines in general) are practically limited by the num-
ber of states that a designer can specify explicitly. It is common to use various forms of
extended state machine formalisms to reduce the states that must be specified explicitly.
For instance, the state machine may include state variables which may be modified in state
transitions and used to govern transition guards. Another possibility is to use hierarchical
state machines and parallel state machine composition, as in State86a8{.[

3.1.2 Reconfiguration Ports

The second syntax ties reconfiguration to dataflow in a model. Reconfiguration in this
model is represented bgconfiguration portsa special form of dataflow input port. An
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Figure 3.1:A graphical representation of a simple modal model in Ptolemy

Il showing three levels of hierarchy. In this model, the refinement for the
current state is executed first producing a block of output tokens. After pro-
ducing output tokens, the modal model transition is taken since the guard
expression always evaluatesIRUE, resulting in reconfiguration of the con-
tained model for the next block. In this model, reconfiguration results in
sinusoidal segments withfierent amplitudes. The parameters of the inte-
rior dataflow model ensure that 130 samples of the sinusoid are generated

in each block.

example of this syntax is shown in Figused. Each reconfiguration port is bound to a pa-
rameter of its actor and tokens received through the port reconfigure the parameter. More
specifically, a firing of an actor with reconfiguration ports is composed of two distinct sub-
firings separated by an internal quiescent state. During the first sub-firing the actor con-
sumes a single input token only from reconfiguration ports. The input tokens determine the
reconfiguration applied during the internal quiescent state. During the second sub-firing in-
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Figure 3.2:A plot from running the model shown in FiguB1l Note the
obvious jumps in the generated signal, corresponding to mode switches in
the model.

ModalModel

SDF Director

DownSample output

nput :

SDF Director

UpSample output

input :

Figure 3.3:A modal model example with multiple states. In each state, the
modal model reconfigures its rate parameters to reflect the rate parameters
of the current refinement.

put tokens are consumed from normal dataflow input ports, computation is performed, and
any outputs are produced. For a composite actor, contained actors are not fired during the
first sub-firing and the associated dataflow model is executed only during the second sub-



30 Chapter 3. Reconfiguration of Actor-oriented Models

Reconfiguration .
Port @ vectorizationFactor: 130 S0 DI
|:>>factor: 14
Sinewave Scale
N output
SDF Director
Gaussian mposite actor SequencePlotter

Av4

L 5 =y

Figure 3.4:A graphical representation of a simple model with a reconfigura-

tion port in Ptolemy Il. In this model, the reconfiguration port is shaded gray
instead of black and reconfigures the parameter named “factor” directly to
its right. This model behaves essentially identically to the one in Figuse
except that the reconfiguration occurs prior to each block of samples being
produced rather than after.

firing. Reconfiguration ports exist in many dynamically-scheduled dataflow environments,
such as AVZEXxpress (Advanced Visual Systems, Inc.).

3.1.3 Reconfiguration Actors

A third syntax represents reconfiguration using a special actosefvariable actor.
This actor has a single input port and is associated with a parameter of the containing model.
The actor consumes a single token during each firing and reconfigures the associated pa-
rameter during the quiescent point after the firing. Althoughsdi®ariable actor might
appear similar to a reconfiguration port, it allows for a parameter to be more frequently re-
configured, since thgetVariable actor might fire more than once in the execution schedule
of its contained model.

As with reconfiguration ports, theetVariable actor can be used to implement models
that are not locally synchronous. Furthermore,db#/ariable actor can be used to imple-
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ment models which are not deterministic. For instances#teariable actor can be used
similarly to the graph variables in the Process Graph Method (PGN}) [n such models

the behavior of a model is dependent on the order in which actor firings are scheduled. Al-
though non-deterministic models are sometimes useful, they can be rffareliio design

and test robustly.

3.2 Delayed Reconfiguration

One way of ensuring local synchrony in the presence of reconfiguration is to delay
reconfiguration until the next quiescent point of the toplevel model. Essentially, this results
in treating the above syntaxes exjuestsfor reconfiguration, rather than as immediate
operations. Delayed reconfiguration ensures that all parameters are constant over firings
the toplevel model, and hence over the firings of any actor. However, requirements that
parameters are constant must still be checked.

Delayed reconfiguration can be reasonably used in conjunction with any of the above
syntaxes. Heterochronous dataflo®4][ combines delayed reconfiguration with modal
models and synchronous dataflow scheduling. Delayed reconfiguration combined with the
setVariable actor gives a more useful mechanism for reconfiguring parametersfibet a
token rates since, in the absence of other reconfiguration, the model will be locally syn-
chronous. In order to encourage the construction of safe and deterministic models, the
default operating mode of theetVariable actor in Ptolemy Il actually performs delayed
reconfiguration.

The key disadvantage of delayed reconfiguration is that it results in models that are not
compositional The behavior of an actor constructed using delayed reconfiguration depends
on the model in which it is placed. This situation is shown in FiguiEewhere thesetVari-
able actor performs delayed reconfiguration. The displayed sequence of tokens changes
depending on the rate of tii@wnSample actor. As a result, delayed reconfiguration can
be dfficult to apply in reusable actor specifications.
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Figure 3.5:An example of delayed reconfiguration illustrated with seé

Variable actor. The model displays a sequence of natural numbers. Each
number is displayed a number of times given by the rate oDihenSam-

ple actor.

3.3 Hfhicient Parameter Evaluation

In models without reconfiguration, the computational complexity of determining para-
meter values is usually unimportant. Even given complex specifications in terms of other
parameters, parameter values can generally be determined at design time and this evalu-
ation does not féect run-time performance. In the presence of reconfiguration, however,
evaluation of parameter values does incur run-time overhead. Minimizing this overhead is
important for €ficient system execution.

One general model for representing interdependent parameteratisibnte grammar
[25, 58], commonly used to model language compilers operating on Abstract Syntax Trees
(ASTs). In an attribute grammar, each terminal and non-terminal node in a syntax tree is
labeled withattributes according to rules given in the attribute grammar. Each attribute
has an associated value, which may depend on the value of other attributes. The depen-
dence on other attributes is determined bydbestraint functiorthat defines the attribute.
An attribute grammar igvaluatedby repeatedly selecting attributes which have not been

assigned a value and evaluating their constraint function.
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In a general attribute grammar, several modifications ¢kettthe value of attributes.
Attributes may be added or removed, dependencies between attributes may be added or re-
moved, and the value of an attribute with no dependencies can be modified. In the presence
of such modifications, incremental evaluation of attributes is desirable, since modifications
often dfect only a small number of attributes. A standard algorithm to evaluate attribute
grammars 43] has been developed which guarantees that attribute values are evaluated
only when necessary. In this algorithm, attributes are associated with an additional flag that
keeps track of whether the attribute valu@adid. When modification to an attribute gram-
mar occurs, the flag is set for any attribute whose value may have feeted. Attribute
values are recomputed in a demand-driven manner when an attribute value is required and
the current value is not valid.

The common usage of parameters in actor-oriented models is somewhat simpler than ar-
bitrary attribute grammars. While attribute grammars are normally considered for context-
free languages with possibly unbounded syntax trees, hierarchical actor-oriented models
are typically bounded at design time. Furthermore, the structure of actor-oriented mod-
els and dependencies between parameters are often fixed at design time. Complex com-
putations are represented by actor interactions and parameter reconfiguration, rather than
through structural reconfiguration.

3.4 Assumptions about Reconfiguration

A crucial part of the design process is to ensure that assumptions about the use of
reconfiguration are met, implying that reconfiguration is used safely. Unfortunately, as-
sumptions about reconfiguration ardhdult for a designer to consider, since théeets
of reconfiguration often cross levels of hierarchy in a model. Making the problem even
worse, assumptions about reconfiguration are often left implicit in a model, makirfi-it di
cult to check these assumptions through inspection. This section describes some examples
of reconfiguration assumptions and the kinds of conflicts that can arise.
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ExpressionToToken

<

outputType = int

Figure 3.6:The ExpressionToToken actor, showing the parameter that de-
termines the type of the output.

3.4.1 Reconfiguration and Type Checking

One powerful mechanism for building generic components involves the usgef
parameters Type parameters can be interacted with just like other parameters, but their
value is used to perform type inference and static checking. Type correctness of the model
cannot be guaranteed if type parameters are reconfigured during execution.

As an example, consider tiixpressionToToken actor, shown in Figur8.6. This actor
consumes a string, parses it as a parameter expression, and outputs the resulting value. For
an arbitrary string, this value may be of any type. In practice, however, the type produced is
known to a designer, but is not visible to the type checking mechanism. A type parameter
is used to declare the type of this output.

3.4.2 Reconfiguration and Structural Parameters

In many cases is it useful to build parameterized structures in actor-oriented models.
Such programmatically generated structures are cligder-order component® em-
phasize their similarity to higher-order functions in functional languag8éjs A parameter
which is used to determine the structure of a higher-order componestriscural para-
meter

The MultiinstanceComposite actor in Ptolemy Il is one example of a simple higher-
order component. Just before a model is executed, this actor replicates itself a number of
times determined by a structural parameter. This actor is often used in situations where a
model contains repetitive structures that are awkward to build by hand, or when the number
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of repetitions is specified by a parameter.

Although not required from a purely behavioral perspective, implementations can often
benefit if structural parameters are not reconfigured. The structural parameters can be eval-
uated at design time to determine an equivalent actor-oriented model. The equivalent model
can then be statically analyzed and optimized as if constructed manually. Such optimiza-
tions are particularly important in the hardware design community, as when synthesizing
FPGAs from dataflow model4d B, 28].

3.4.3 Reconfiguration and Model Correctness

In some cases, parameter reconfiguration violates the assumptions made in constructing
a model. Some models are no longer accurate if certain parameters are reconfigured. One
such case arises when applying the classic equation that associates the current and voltage

across a capacitor:

dV t
This equation can be discretized in time and implemented as a simple dataflow model,
shown in Figure3.7. It is common in models of physical systems, such as Micro Electro-
Mechanical Systems (MEMS) to have circuits with variable capacitances. Although it may
seem reasonable to represent such a circuit by reconfiguring the capacitance parameter in
the model, the original equation is not valid for variable capacitances. It is derived from

the definition of capacitance, which is the ratio of charge to voltage:

C:v

Rearranging and fferentiating both sides gives the correct equation for describing a vari-
able capacitor:

dQ(t) dV(t) dC(t)

I(t) = = Cl)— + V(1) —~

This equation reduces to the earlier equation, as long as the capacitance does not change.
Without explicitly representing the assumption that¢bpacitance parameter is constant,
the model can be easily misused and the results misinterpreted.
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Figure 3.7:An example of a model with implicit assumptions that parame-

ters do not change. In this model the capacitance parar@etéould not
be reconfigured, since the model was created assuming that the capacitance
was constant. The parametiita gives the amount of time between input

samples of the current.

3.4.4 Reconfiguration and Dataflow Scheduling

As mentioned previously, scheduling analysis of synchronous dataflow models assumes
that the token rates of ports do not change. However, model reconfiguration has the poten-
tial to affect token rates, although in many cases it does not. Other scheduling models allow
token rates to change, as long as the changes occur only at certain points in the execution
of a model. Ensuring that a model satisfies these constraints is a critical part of validating
the correctness of models.

Unfortunately, understanding the dependencies between parameters that can be recon-
figured and token rates is oftenfliGult. As an example, Figur@8shows an actor that de-
scribes a finite-impulse response (FIR) filter capable of decimation and interpolation. With
the default parameter values shown, the actor performs no decimation or interpolation and
produces and consumes a single token. However, ififltémation or interpolation para-
meters are given other values, then the actor will produce or consume multiple tokens each
firing. For given interpolation and decimation factors, synchronous dataflow scheduling
can be performed, but those parameter values must not be reconfigured. On the other hand,
thetaps parameter can be reconfigured withoffeating dataflow scheduling.

In most dataflow modeling systems, the relationship between scheduling and reconfig-
uration is solved by design. Most systems provide a combination of scheduling algorithm,

reconfiguration specification, and actor specification that is guaranteed to be safe. For
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FIR
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taps = {-1.0, 1.0}

Figure 3.8:TheFIR actor, showing the parameters that determine dataflow
token rates. Because thecimation andinterpolation parametersféect to-
ken rates, reconfiguration of this actor has the potential to violate scheduling

assumptions.

instance, parameterized synchronous dataflow combines parameterized dataflow schedul-
ing with reconfiguration ports and heterochronous dataflow combines modal models with
delayed reconfiguration and on-the-fly synchronous dataflow scheduling. In these cases,
assumptions about reconfiguration can remain implicit, since they are guaranteed by the
structure of models that are allowed. Unfortunately, in a dataflow modeling system that sup-
ports hierarchically heterogeneous models with multiple scheduling algorithms and more
that one way of specifying reconfiguration, the situation is more complex. Chaptdr

present a unified formal framework aimed at explicitly specifying reconfiguration assump-
tions and verifying that these assumptions are satisfied in the presence of multiple sources

of reconfiguration.
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Chapter 4
Reasoning About Reconfiguration

This chapter presents an abstract, unified formalization of parameterization and recon-
figuration in actor-oriented models. This formalization is abstract in the sense that it allows
reconfiguration at all levels of the hierarchy, without binding reconfiguration to specific
syntactic constructs. It represents static schedules, quasi-static schedules, token rates, type
parameters, structural parameters, and user-level configuration options in a unified fash-
ion. Dependencies between parameters are made explicit and may arise from a variety of
sources, such as an expression in a design environment that expresses the value of para-
meter in terms of another, a declaration of token rates in a library actor, or a scheduler
that synthesizes a schedule and corresponding token rates for the external ports of a model.
Since it can be used to decide safety properties concerning the use of reconfiguration in a
model, it is useful to think of this asl@ehavioral type theory for reconfiguration

4.1 Parameterization Model

A hierarchical reconfiguration modeat represented by a finite tree of actors, called
the containment tree Leaf elements of the tree are primitive, atomicactors, and non-
leaf elements are calletbmpositeactors. The root of the containment tree is thplevel
composite actor. The behavior of a compaosite actor is given by a dataflow model consisting
of the actors that are its direct children in the tree. The dataflow model associated with each
composite actor is assumed to refereexternal portdhat communicate with the dataflow
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model that contains the composite actor. The composite actor at the root of the containment
tree contains no external ports. We say that the all actors in a subtreerdagnedby the

root of the subtree. Similarly, a composite aatontainsall actors in the subtree rooted by

the composite actor, including itself.

Formally, the set of actors in a modelAs The parent of an actor is given by a partial
functionparent: A — A, which is defined for all actors that are not toplevel composite
actors. Recall that we can also consigarentto be a relation on actors, wheparent C
A x A. By constructionparentis required to be irreflexive, corresponding to the constraint
that no actor is its own parent. Furthermore, the reflexive, transitive clgarsnt is
required to be antisymmetric, corresponding to a constraint that no parent of an actor is
also contained by the actoparent can also be interpreted as a partial order on actors,
which will be called thecontainment ordefvritten it < to emphasize the fact that it is a
partial order. The set of actors combined with the containment order is §Aee), called
thecontainment tree

The set of parameters in a modePsEach parameter is associated with a single actor,
given by the functioractor(p). For convenience, the subset of parameters associated with
an actora is written P,. The value of each parameter at any point during execution of a
model is given by an element of the 8&bf token values. In practical models, the values
of parameters are often dependent on one another. This dependence might be specified
explicitly in the construction of a model, e.g., one parameter is given as an expression
of another, or implicitly, e.g., a dataflow scheduler synthesizes some parameter values.
However, these €lierences are largely unimportant from the point of view of describing
the constraints that parameter values must satisfy.

A valuation functionis a function inP — V that gives the value of each parameter
in a model. The value of a paramefgmay depend on a finite, indexed set of parameters
domair? = {domair, ..., domairf}. We say that a parametpis independenif domairf is
empty, anddependenbtherwise. The value of each dependent parameigiconstrained
by aconstraint functionconstraint, : V" — V, wheren is the number of elements in
domairf. A consistent valuation functiois a valuation function where the value of every
dependent parameter satisfies the parameter’s constraint function.

Definition 1 Consistent valuation function:
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Figure 4.1:An example of parameters in a model. Actors are shaded nodes,
parameters are unshaded. Solid lines depicptrentandactor relations,
and dotted lines depict the»> relation.

A valuation functionv is consistent if and only i¥p € P, p is dependent
= constraing(v(domairf), ..., V(domair})) = v(p)

In a model, independent parameters in a model are allowed to be modified during recon-
figuration, while dependent parameters cannot be. As a result, as long as the hierarchical
structure of a model is fixed, the dependencies between parameters are fixed and can be
statically analyzed. This model is essentially a version o&tnbute grammar25, 58]
with fixed, finite structure.

Conceptually, if a parametgris reconfigured, then all of the parameters that depend on
it must be re-evaluated, followed by any parameter that depends on any of those, etc. The
dependence relatigrwritten ~» C P x P, captures these dependencies. The dependence
relation is the least transitive relation between parameters, suchxlgatdomair?, x ~» p.
In order for a model to be well-defined, the dependence relation is required to be irreflexive,
i.e., no parameter depends on itself. The set of parameters that are transitively modified by

a parametep will be written p = {x € P, p > x} and, for a set of parameteli%f5 =UDp.
peP

Generally speaking, a design tool will determine the values of parameters in fhéased
on the value of a parameter Figure4.1shows the structure of the model graphically.
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4.2 Reconfiguration Semantics

Formally, we write the set of all quiescent points of acaturing an execution of a
model asQ?. Hierarchical reactivity requires that a = Q° C Q2. TheseQ = |J Q?
is the set of all quiescent points of all actors. Tgrecedence relatiors a partiaallegrder
< € Q x Q that gives a time-ordering of quiescent points. The precedence relation is
constrained such that the quiescent poi@tsof an actora are totally ordered by. If
0: < gz then the quiescent poig always occurs beforg,. If q; £ g, andg, £ g, then
there is freedom in the execution @f andqy, possibly allowing for concurrent execution.

At each quiescent poimtin the execution of a model, a set of independent parameters
R(q) is selected for reconfiguration. Based on this initial set of parameters and reconfigured
values, reconfigured values for dependent parametéféq)rare determined based on their
individual constraint functions and those parameters are also reconfigured. In general, this
set of parameterRN(Tq) may be associated with actors anywhere in the model.

Although the seR(q) contains a complete description of reconfiguration at a particular
guiescent point, considering each quiescent point individually is generally unnecessary. It
is more interesting to consider aggregate properties of an entire execution. During what set
of quiescent points is a parameter reconfigured? Is a particular parameter reconfigured at
all? The following two definitions, related to the notion of@nstant parametedescribe
these properties for a particular execution. These properties can be seen as bounds on the
set of quiescent points during which a parameter is reconfigured. Two additional theorems
give intuition about constant parameters.

Definition 2 Constant parameter:
Parametep is constantf and only if
Yae A,¥qge Q% p ¢ R(Q).

Definition 3 Constant parameter over actor firings:
Parametep is constant over firings of actarif and only if
Yae A,Vge @, pe R(g) = qe Q“

Theorem 1 pis constant impliep is constant over firings of any actor.

Theorem 2 pis constant over firings afandc > aimpliesp is constant over firings .
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As described in Chapt&}, actor-oriented models are often accompanied by reconfigu-
ration requirements that must be satisfied for the model to be correct. If these requirements
are not satisfied, then intrinsic assumptions of the model are violated and unexpected or
undefined behavior may result. In the same sense that a progtgpeisafdf constraints
on the usage of data types are satisfied, an actor-oriented model is saicetmbggura-
tion safeif all necessary requirements on the use of reconfiguration are satisfied. In large
actor-oriented models with many sources of reconfiguration and complex parameter depen-
dencies, compile-time checking of reconfiguration safety is an important form of system
verification.

Definition 4 Reconfiguration Requirement:
A reconfiguration requiremenh a modelmis a statement of the formp'is constant,” or
“p is constant over firings of acta” where p anda are in the model.

Definition 5 Reconfiguration Safe:
An execution of a model with a set of reconfiguration requiremé&nis reconfiguration
safeif the execution satisfies each requiremen$in

It is straightforward to cast the informal assumptions about reconfiguration described
in 3 as formal requirements. Ib is a type parameter used for static data type checking,
then p must be constant in order to guarantee type soundness. Similarly, parameters that
determine the structure of the model, such as the number of replications of a single actor,
and parameters used for synchronous dataflow scheduling must also be constant. The local
synchrony constraint for parameterized synchronous dataflow scheduling requires that pa-
rameters influencing the execution schedule of a composite @aterconstant over firings
of c.

4.3 Change Contexts

In general, it is undecidable to determine if a parameter is constant or constant over
firings of an actor on any particular execution, since th&sistinfinite andR(q) for g € Q
might depend on data given to a model only at runtime. As a result, it is possible to detect
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violations of reconfiguration requirements at runtime but impossible to statically ensure
reconfiguration safety in bounded time. Fortunately, by simplifying the properties being
checked the problem can be made more tractable. Instead of analyzing the reconfiguration
in particular executions, we will concentrate on analyziogsiblereconfigurations in all
executions.

To begin with, we assume that an actor-oriented model determinesoafiguration
setR? C P for every actora. The setR® is the smallest set that contains all independent
parameters that may be modified when aetas quiescent. During any execution of the
model,Ya € A,¥q e Q?, R(Q) € R?, andRza) c Re. For convenience, we say that an actor
a is achange contextor all parameters ifR?, and that a parameter is inherently constant
(or inherently constant over actor firings) if its change contexts satisfy certain constraints.
Intuitively, a parameter is inherently constant (over actor firings) if it is guaranteed to be
constant (over actor firings) during any execution of the model.

Definition 6 Change context:
An actorais a change context of a paramepgmritten am» p, ifandonlyif pe I%

Definition 7 Inherently constant parameter:
Parametep is inherently constanif and only if
Yac A,anm p.

Definition 8 Inherently constant parameter over actor firings:
Parametep is inherently constant over firings of actaif and only if Yce A,cr» p =

cka.
Theorem 3 pis inherently constant impliegis constant during any execution.

Theorem 4 pis inherently constant over firings of actoimplies
p is constant over firings of actarduring any execution.

Given the seRe for each actor and the parameter dependerinesair?, definitions7
and8 can be used to check if a parameter is inherently constant. The definitions leave room
for several direct computational procedures. One approach, shown in Bigucemputes
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Given: A, P, R2, domair?

for pe Pdo
changeContexts(p) = ¢
forae A do
if (p € R?)
then changeContexts(p) += a
fi
od
od
done= FALSE;
while ('dong do
done= TRUE;
for pe Pdo
for p’ € domair? do
if (changeContexts(p) ¢ changeContexts(p’))
then changeContexts(p) += changeContexts(p’); done= FALSE,;
fi
od
od
od

Figure 4.2:An algorithm for computing the set of change contexts. This set
can be used to check reconfiguration requirements.

the set of change contextsr every parametep, wherechangeContex(p) = fac A : a
~» p}. This set is then used to directly check the set of constr@ints

Although the above direct procedure for checking reconfiguration safety is decidable,
it is not necessarily the mosftieient approach. The complexity of the direct computation

could be reduced after careful analysis of the problem, since the dependencies between

parameters are usually sparse and long dependence chains are uncommon. Unfortunately,

simple modifications of the algorithm in Figude2 are fundamentally limited by the need

to compute sets, such gs< A : a s p}. Itis also possible, however, to check reconfigu-
ration safety of a model indirectly. The indirect approadieis an #icient computational
algorithm for checking reconfiguration safety without directly dealing with set computa-
tions. In addition, it éfers an intuitive conceptualization of reconfiguration requirements
as constraints that must be satisfied by a model.
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4.4 The Least Change Context

This section presents an alternative formulation of reconfiguration that is better suited to
reasoning about reconfiguration. In particular, it leads tofacient algorithm for checking
inherent reconfiguration safety. Underlying this alternative formulation is the realization
that the sefa € A : a m» p} of all change contexts of a paramegeican be usefully
approximated by the greatest lower bound of the set when checking reconfiguration safety.
This approximation arises primarily because the hierarchical structure of quiescent points
mirrors the hierarchical structure of a model.

The least change context is not computed in theAsebut instead in an artificially
constructed sehA | that contains artificial elements and T. The elementL is less than
all other elements and guarantees thatwith the appropriate ordering is a lattice. As a
result, the greatest lower bound of a set of actors always exists in tA€ seven though
it may not in the seA. The elementr serves to represent the greatest lower bound of an
empty set of actors. The element allows constant parameters with no change contexts to
be distinguished from parameters that are constant over firings of the toplevel actor.

Formally, the seAT is defined to béA U {T, L} whereT and_L are artificial elements
not in A. The ordering relatiom]C A x A] is defined to be the transitive, reflexive,
antisymmetric ordering relation wheva € A,Yb € A,a> b < a>] bandVa e
Al, T ] arx] 1. With this construction(A],>7) is alattice [23]. A basic property of a
lattice is that every set of elemerfsn the lattice has a greatest lower bound in the lattice.
An example of a resulting lattice is shown in Figur&.

We define the function-] : P — A7 as shown in Definitior® and say thatp] is
theleast change contexif the parametep. The least change context of a paramgiés
essentially a conservative approximation of the set of all the change contgxtdfahe
least change context of a paramegpas eitherT or an element of\, then the set of change
contexts ofp is limited and reconfiguration gf can only occur during the quiescent points
of certain actors. On the other hand, if the least change contexthen the conservative
approximation gives no interesting information about reconfiguration, and no restrictions
on reconfiguration can be inferred. Theorefhand 6 prove the soundness of the least
change context approximation.
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Figure 4.3: An example of the lattice formed by augmenting the contain-
ment tree of the model in Figu&2with artificial top and bottom elements.

Definition 9 Least change context of a parameter:

The least change context of a parameigefp], is an element oA] where|p] = Mfa €
Al racAnrnam p}

Or equivalently,

T iffacA:arms p}=0

if fac A:ams p}#0and
Lpl =<mMaeA:ams p} )
M{ae A :ams p}exists

1 otherwise

Theorem 5 | p| = T impliespis inherently constant.

Theorem 6 | p] € A impliesp is inherently constant over firings op].

Approximate approaches to static analysis must always balance usefulness with utility

and avoid discarding interesting information about behavior. One source of approximation

in our theory arises from the inherently constant property, which requires that reconfigu-

ration of a parameter not occur duriagy behavior of the model. While it is possible to

construct models that specify reconfiguration that does not actually occur, such as a modal

model where the guards of transitions are always false, we accept that such models might

be rejected by by reconfiguration analysis. A second source of approximation arises from

the least change context approximation to the set of change contexts. Théstews
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that for interesting reconfiguration requirements, such as the local synchrony constraint for
parameterized synchronous dataflow scheduling, the least change context approximation
does not discard information.

Theorem 7 pis inherently constant oveactor(p) implies that p] # L.

Based on the structure of a model, the least change context of a parameter must satisfy
two constraints over the lattig®\[,>7). The first constraint (Theorei®) requires that
the least change context of a parameierannot be any higher in the hierarchy than the
least change context of a parameter thatepends on. The second constraint (Theorem
9) requires that if a parameter is reconfigured by an actor, then the actor must contain the
least change context of the parameter. In fact, these constraints will be satisfied by not only
the least change context but alsaylower bound on the set of change contexts. Using the
greatest lower bound, however, gives the most information about the set of change contexts
for a parameter.

Theorem 8 p; w» py implies| py] =7 [ p2l.
Theorem 9 p € R®impliesc>] |p].

By using the above constraints, the least change context of a parameter can be computed
without direct computation of the set of change contexts for each paran@teralgorithm
for computing the solution is known to be linear time in the number of constraiits [
The algorithm computes] by beginning with an initial guess whevg € P, p] = T. The
initial guess is updated according to each constraint until all the constraints are satisfied.

4.5 Conditional Reconfiguration

Up to this point, we have considered unconditional specifications of reconfiguration.
However, in some cases reconfiguration is useful to consider reconfiguratiorcembyie
tional. Depending on the structure of the model, or the values of other parameters, recon-
figuration might or might not actually occur. If reconfiguration does not occur, then this
fact is often important to expose to the behavioral type system in order to prevent models
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Figure 4.4:An example of a component that exhibits conditional reconfig-

uration. Every time the modal model makes a state transition, the external
rates are reconfigured to the same value.

that are reconfiguration safe, but not inherently reconfiguration safe, from being consid-
ered invalid. As an example, the model in Figdrd shows one case in which it is useful

to consider conditional reconfiguration. This model is similar to the model in Fig\3e
except that each refinement operates on the same number of tokens.

Can this component can be used in an SDF model? Since each state refinement has
the same input and output rates, one might think that it should be possible. However, the
formal framework above provides no way of considering this information in thB°satd
must conservatively assume that the rate parameters of the modal model are reconfigured.
Another example is shown in Figuee5. It seems logical to consider the rate parameter
of the actor to be constant, since the reconfiguration port always receives the same value.
However, the formal framework again provides no mechanism for considering this infor-
mation.

Conditional reconfiguration also arise simply through parameter dependencies. If a
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SequenceToArray

{””}

Figure 4.5: Another example of a partial model that exhibits conditional
reconfiguration. In this model, the value received from the bottom port
changes the number of tokens consumed by the top port. If the parameter
of the Const actor is not reconfigured, then the rate parameter ofmimat

port obviously doesn’t change, even though it is reconfigured.

parametern depends on parametexsndy, then we assume that whenewesr y changes,
thena changes. However, if the constraint function &s

_ 0 ifx<O
constraing(x,y) =

y otherwise

andx is less than 0 and never reconfigured, theatpes not change whenchanges. The
constraint in Theorerf is safe, butonservative

In order to accommodate conditional reconfiguration, the left-hand side of the con-
straints in Theorem8 and9 may be augmented to includecanditional functionf. A
conditional function takes the initial parameter valuatignand the least change context
function|-]| and returns a new lower bound on the least change context. The updated con-
straints are shown below, in terms of Definitiol@and11. The resulting solution to the
least change context can be used to check if parameters are constant, even if they are not
inherently constant.

Definition 10 Conditional Reconfiguration Function:

A conditional reconfiguration functioffaw.p : (P — V) x (P - A]) — {a T} for an
actora and a parametgu is monotonic function, wheré?(vo, |-]) = aif in any execution
beginning with parameter valugg Yq € Q, p € R(q).
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Definition 11 Conditional Dependence Function:

A conditional dependence functidg,..p,, : (P = V) x (P — A]) — A7 for parameters
p1 and p, is monotonic function, wheré,, ..., (Vo, |- 1) = L pa] if in any execution beginning
with parameter valueg, reconfiguration o, requires evaluation afonstraing,

p € R°implies fa..p(Vo, |]) &7 Lp]

pL > pz implies fp,..p,(Vo, L) =1 Lp2]

The modified constraints are somewhat more complicated, since the least change con-
text appears in a function on the left hand side of the inequality. As a resiltisihot
well behaved then the least change context may no longer be well defined or easily de-
termined computationally. To ensure that the algorithm8w joperates, it is sfiicient
to require thatf is amonotonic functioni.e., if I; andl, are functions inrP — A7, then
Vp e P, l1(p) =] Io(p) implies f(vo, I1) =] f(vo,[2).

In general, it is important to notice that conditional reconfiguration can fiewlt to
detect statically. For instance, it is generally undecidable whether a stream in a dataflow
model has a constant sequence of values, or not. However, the formal framework can be
extended to support any analysis to detect conditional reconfiguration, by incorporating
more model semantics intiG'. Even fundamentally undecidable techniques such as model
checking could be used, although we expect that most design tools will follow a type-
based philosophy and accept that static safety analysis will flag some safe models as errors.
Ultimately, it is the responsibility of individual design tools to provide analysis which is
appropriate to support a designers intuition of which models should be valid.
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Chapter 5
Design Examples

This chapter presents some significant designs in Ptolemy Il which illustrate the design
issues that reconfiguration analysis addresses.

5.1 Blind Communication Receiver

Figure5.1 shows an example signal processing model that describéacacommu-
nication receiver This system is designed to analyze and process a received signal with
unknown characteristics to determine the carrier frequency, baud rate, and number of phase
shifts of a digital Phase Shift Keyed (PSK) signal. The toplevel model is executed in the
style of a Kahn-MacQueen process netwatg [69], where each actor is associated with an
operating system thread and actor threads block until communication queues have enough
data. Most of the actors in the process network are defined hierarchical using statically
scheduled dataflow models, resulting in a hierarchically heterogeneous composition.

The Demodulator and BaudRateEstimator actors are implemented by synchronous
dataflow models that proceg¥%"input samples and compute estimates of the carrier fre-
guency and symbol rate of the input signal. Additionally, Bemodulator block synthe-
sizes a carrier signal of the appropriate frequency and outputs a baseband version of the
input signal. TheResampler actor samples the baseband signal at the estimated baud rate
and outputs a data-dependent number of complex samplesPAdseStatesEstimator
processes the resampled data to estimate the numbefferedi phases used in the PSK
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transmission.

A hierarchical model implementing thehaseStatesEstimator using a dynamically
scheduled dataflow model is shown in detail in Figbre This model relies on th€om-
puteHistogram actor, which computes an array representing a histogram of input data.
The number of samples used to compute the histogram is specified as an actor parameter
reconfigured by thénputCount reconfiguration port. The model is constructed so that a
histogram is computed of all the resampled data.

Overall, the data-dependent nature of the resampling operation prevents the toplevel
model from being statically scheduled, since the number of resampled data tokens is not
available to a scheduler. However, in order to avoid the overhead of runtime scheduling, a
static or quasi-static schedule for tAkaseStatesEstimator would be preferred. Attempts
to apply synchronous dataflow scheduling analysis to the model results in constraints that
cannot be satisfied, since the parameter that determines the number of tokens consumed by
the histogram is reconfigured. Direct application of parameterized synchronous dataflow
scheduling to the model also fails, since BteseStatesEstimator actor is not locally syn-
chronous. The inconsistent constraints derived from sources of reconfiguration, parameter
dependencies, and reconfiguration requirements for such models are shown irbEigure

One design solution is to modify the model as shown in FiguB2 In this model,
reconfiguration has been moved up one level in the model, resulting in reconfiguration
just before thePhaseStatesEstimator is fired. The value of thinputCount parameter is
equal to value of theount parameter, which is reconfigured by a reconfiguration port.

In this model, thePhaseStatesEstimator model is locally synchronous, as indicated by
the reconfiguration constraints in Figusel. The resulting execution schedule is quasi-
static and depends on the current rate parameter @dhguteHistogram actor, which is
reconfigured by theount reconfiguration port.
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Figure 5.1:A process network design example where each actor is an inde-

pendent thread that blocks waiting for input data.

ComputeHistogram >] |ComputeHistogram.inputCount]
>T |ComputeHistogram.input.tokenConsumptionRate |

T
2T

(a) Inconsistent SDF Scheduling Constraints

ComputeHistogram >7 |ComputeHistogram.inputCount]
>1 |ComputeHistogram.input.tokenConsumptionRate |
> |ComputeHistogram.PSDFschedule|

>T PhaseStateEstimator

(b) Inconsistent PSDF Scheduling Constraints

Figure 5.2: Reconfiguration constraints associated witfiedent types of
dataflow scheduling analysis of the model in Figbr& The constraints

in (a) indicate that the model is not a valid SDF model. The constraints
in (b) indicate that the model is not locally synchronous, and hence not a
valid PSDF model either. In each case, the final constraint corresponds to a
reconfiguration requirement that is violated.
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Figure 5.3: An improved design that allows more opportunities for static
dataflow scheduling. Theount port has been converted from a dataflow
port to a reconfiguration port, and tfRhaseStatesEstimator model has
been changed to use a parameterized synchronous dataflow scheduler.

PhaseStateEstimator >] |ComputeHistogram.inputCount]
>7 | ComputeHistogram.input.tokenConsumptionRate |
>7 | ComputeHistogram.PSDFschedule ]

>1 PhaseStateEstimator

Figure 5.4:Consistent reconfiguration constraints associated with the model
in Figure5.3. Again, the final constraint is implied by a reconfiguration
requirement that must be satisfied. These constraints, along with others not
shown, indicate that the model is locally synchronous and can be scheduled
using parameter synchronous dataflow techniques.
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5.2 Rijndael Encryption

A second example of reconfiguration is shown in Figbu® which performs the AES-
standard Rijndael encryption algorithrd2]. This algorithm performs a sequence of 10
encryption rounds on blocks of 16 bytes. In this model, each block of data is communi-
cated in sequence between each actor. The encryption operations are all performed by the
RoundSequence component, where data is fed back to the input as needed for future en-
cryption rounds. Th&®oundKeyGenerator generates a pseudo-random sequence from the
user’s 16-byte key, an operation callkely expansionSince each encryption round uses
a fresh portion of the pseudo-random sequence generat&bilnydKeyGenerator, this
architecture makes distribution of round keys relatively simple.

At the top level, theRijndael model operates on blocks of 16 bytes at a time. The
sequence of rounds is governed by RmundSequence modal model. In the first round,
the incoming block of tokens is read and XOR’d with round key. The resulting 16 bytes
are produced on thiatermediate cipher port and fed back to the modal model. The main
encryption rounds operate entirely on intermediate cipher values returned lastlod
pher port, and no further tokens are read from teet input. In the last encryption round,

16 bytes representing the final encrypted text is produced onigpher port, completing
the encryption process. TI8box, ShiftRow, andMixColumn actors implement the corre-
sponding operations in the Rijndael specification.

Given understanding of the model, it is not too hard in this case to determine the data-
flow behavior of theRijndael actor. Using robust run-time scheduling of dynamic dataflow
graphs ¥, 69, 83], the operations do not deadlock and execute forever in a bounded amount
of memory for communication. However, this fact cannot be proven using either synchro-
nous dataflow or parameterized synchronous dataflow analysis, since the rate parameters
of the RoundSequence model are reconfigured during each state transition. The fact that
these assumptions are not satisfied is indicated by inconsistent reconfiguration constraints,
as shown in Figuré.2,

One approach to recovering the robustness of static scheduling is to modify the model
to include “dummy” communication that makes data rates constant, as shown in Figure
5.6. In this model, every state of tfRoundSequence actor produces and consumes 16
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Figure 5.5:A model of the Rijndael Encryption algorithm.
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Figure 5.6:A synchronous dataflow model of the Rijndael Encryption algo-
rithm.

bytes of data in sequence. Unneeded data is read and discarded. The external behavior
of the model is identical to the model in Figuteb due to “dummy” data produced by
upsampling the incoming data and by Se@mpleDelay. Intermediate outputs are discarded
by downsampling the output to leave just the final result.

In this model, the reconfiguration constraints of synchronous dataflow scheduling can
be guaranteed, as shown in Figit& Note that these constraints use a conditional recon-
figuration function to assert that rate parameters of the modal model are not reconfigured
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fRoundSequencewtokenConsumptionRate (VO’ LJ) =

Vo(init.text.tokenConsumptionRate) =
Vo(regular.text.tokenConsumptionRate) =
Vo(final.text.tokenConsumptionRate)
T if and
Linit.text.tokenConsumptionRate | =
Lregular.text.tokenConsumptionRate| =
Lfinal.text.tokenConsumptionRate| = T

RoundSequence otherwise

fRoundsequence~tokenConsumptionrate(Vo, [-]) =] [RoundSequence.text.tokenConsumptionRate |
LRijndael.SDFschedule]
T

Figure 5.7:Reconfiguration constraints associated with synchronous data-
flow scheduling analysis of the model in Figlr®. The constraints indicate

that the model can be scheduled using synchronous dataflow techniques, as
long as the rate parameters of the modal model are conditionally reconfig-

ured.

if the initial values of the refinement rate parameter in each mode are equal and inher-

ently constant. Execution of the resulting static schedule is guaranteed to execute forever
in bounded memory without deadlock. The disadvantage of this model is that, depending

on the desired implementation architecture, the dummy communication may result in un-

desirable overhead. Because of this overhead, it may be desirable to refactor the model
further to leverage less constrained scheduling analysis, such as cyclo-static ddtaflow [

or cyclo-dynamic dataflondg.
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Chapter 6

Actor-Oriented Metaprogramming
System

This chapter describes a system for software design based on actor-oriented metapro-
gramming. The system consists of two primary portions: Ptolemy Il and Copernicus.
Ptolemy Il is a design environment targeted primarily at capturing abstract system behav-
ior using highly reusable and reconfigurable components and models. Although Ptolemy
Il models are directly executable, the inherent overhead in the framework is generally
unacceptable for models constructed from fine-grained reusable components. Models of
software systems are generally larger, consume more memory, and execute slower than
optimized hand-written code.

Copernicus attempts to reduce this execution penalty by automatically eliminating generic
aspects of components in a model through actor specialization. The process leverages
significant portions of the functional descriptions of actors and data types in Ptolemy I
through generalized partial-evaluation techniques. For portions of the framework where a
wider variety of implementation possibilities are desired or where partial-evaluation tech-
niques perform poorly, explicit specifications of generated code can be used instead. The
resulting Java code is much closer to what a designer might write by hand, while still lever-
aging actor-oriented design techniques.

The presentation here is not intended to be a comprehensive description of Ptolemy II,
or Copernicus. Instead, we will focus on how actor-oriented models are represented, with
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an emphasis on data, type, and component abstractions.

6.1 Ptolemy Il

Ptolemy Il [44] is a design tool supporting the actor-oriented design of systems. It
is implemented as a Java class library that models actor-oriented syntax and semantics.
Ptolemy Il provides a variety of extension points for adding new actors, new data types,
and new models of computation within the basic framework. gioéemy.actor package
is the basis for actor-oriented models in Ptolemy 1.

The actor package implements an object-oriented framework for modeling actor-oriented
systems. It includes structures for representing actorsT{ghed AtomicActor class), ports
and parameters (thigpedlOPort andParameter classes), and for describing compositions
of actors in a model (th&pedCompositeActor class). In a model, connections between
ports are represented by relations (flypedIORelation class), while the model of com-
putation is determined by a director (tbérector base class). The director is responsible
for creating receivers (thReceiver interface) of the appropriate type to manage commu-
nication and for driving the execution of individual actors. Models are also associated
with a single writer, multiple reader locking mechanism, implemented by\bkspace
class. This locking mechanism allows the structure of models to be modified safely in a
multi-threaded environment.

Ptolemy Il supports a rich syntax for actor-oriented models. Ports magubigoorts
and connected to multiple relations. Relations may have an assowmdthdallowing them
to represent multiple communication channels with a single connection. The number of
independently addressable communication channels for a port is inferred from the number
and width of relations connected to it. Syntactically, multiple ports can also be connected
to a single relation, allowindgan-outor mergingof communication channels when such
structures are allowed in a particular model of computation.

Parameterization is represented in Ptolemy Il by instances d¢#dtemeter class. Pa-
rameters are associated with a strexgpressionwhich is evaluated to determine thalue
of the parameter, represented by a data token. Expressions may reference the values of
other parameters, allowing parameter values to depend on one another. Expressions are
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Figure 6.1:A UML diagram for Ptolemy II'sptolemy.actor package, show-
ing various supporting classes

assumed to béunctional indicating that evaluation of a parameter expression may not
change the state of the system. This property allows significant implementation freedom,
since the value may either be cached or repeatedly recomputed when needed.

Ptolemy Il emphasizes the construction of highly reusable actor specifications, which
may be instantiated in a context and given parameter values and connections appropriate
to that context. Fundamentally actors are components that can be generally connected
and reconnected to other actors. Actors can be parameterized and reconfigured during
execution, as described in Secti®nAdditionally, actors in Ptolemy Il are designed to be
type-polymorphi¢able to operate on data offtérent types) andomain-polymorphi¢able
to operate under fferent models of computation). Type polymorphism is largely supported
by theptolemy.data package, which hides arbitrary data objects behind an object-oriented
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‘Foo L» :Bar
..Tfoo() R EERTEERPERS )[bar()

Figure 6.2:A simple indirection diagram showing invocation of ther ()

method of an instance of tiBar class from thefoo () method of an instance
of theFoo class. The instance of tigar class is obtained by indexing into
the array referenced by the instance of Hoe class.

abstract data type. Domain polymorphism is supported byAttier interface, which is
implemented by all actors and directors. Parameters, type-polymorphism, connections,
and domain-polymorphism are the primaygneric aspectsf actor-oriented design.

6.1.1 Indirection in Object-oriented Frameworks

As in typical object-oriented frameworks, Ptolemy Il implements generic aspects of
actors through interfaces and indirection. This indirection is not visible in the UML static
structure diagrams of the previous page. The indirection in the implementation of each
method will be described using amdirection diagram an example of which is shown in
Figure6.2

An indirection diagram has the general structure of a UML object diagram, where each
box represents an instance of a Java class. An object with a dotted outline represents an
instance of an unknown subclass of the class or interface. References between the objects
are represented by a solid arrow between the objects, or by a solid line for references nav-
igable in both directions. Methods are shown in the body of an object in a similar manner
to a UML class diagram. Method invocations are represented by dotted arrows from one
method to another, with multiplicities representing the possibility of multiple invocations.
For convenience, entry point invocations are shown as an arrow with no source.

Indirection diagrams are similar in many ways to a UML collaboration diagram, since
they describe method invocations betweefiiedent objects. However, unlike a collabo-
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ration diagram which emphasizes the sequencing of method calls, an indirection diagram
emphasizes the implementation of particular methods. An indirection diagram is primarily
used in the examples below to show the approximate complexity of various methods in the
Ptolemy Il framework.

6.1.2 Data and Data Types

In order to maximize reuse of actors in a model, Ptolemy Il provides base classes for
representing data types in a uniform way throughgtoéemy.data package. Various sub-
classes of th@oken base class encapsulate both Java primitive types and composite types
such as arrays and records. By programming usingdken class as an abstract data type,
type polymorphic Java code can be written.

Data types are explicitly represented in Ptolemy Il througtptbemy.data.type pack-
age. Various subclasses of thge base class represent classes of token values. For most
Token subclasses encapsulating Java primitive types, such &stToken class that repre-
sents operations on signed integers, there is a correspongiagubclass and a singleton
instance of that subclass. For other tokens, such a&rthgToken class, which encapsu-
lates an array of other tokens, multiple instances of a sifigle subclass are instantiated
to represent dierent contained token types. Conceptually, data types represent subsets of
the setV of all token values. Every valuee V has a uniquexact typegiven by TypgVv),
whereType: V — T. The setV, = {ve V : Typdv) = 7} is the set of all tokens with type
T.

Data types are related in a lattice, as shown in FiguBewhere automatic conversion
is allowed from one type to another. This conversion happens during operations between
tokens and during communication from one actor to another. df7” in the type lattice
then automatic type conversion is allowed from values with type values with typer’.
Theautomatic conversion functid@onvert, is a partial function wher€onvert, : V — V,
returns the result of converting an arbitrary value to a value of typ&he conversion
function satisfies two primary constraints: conversion to a lesser type is not possible, and
conversion of a value of one type to the same type is an identity operation.

This lattice includes both exact types (shown unshaded)adstracttypes (shown
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string

boolean

unsignedByte

Figure 6.3:An abbreviated version of the Ptolemy Il data type lattice.

shaded). Generally speaking, exact types represent disjoint sets of tokens and automatic
conversion to an exact type results in #&elient token. On the other hand, abstract types
represent the union of all lesser data types and conversion to an abstract type does not result
in a new value. The typgeneral corresponds to th@ken base class and includes every
token value. The typenknown is an artificial type that is only used in type checking.

Although the interface defined in thieken base class make it easy for a designer to
describe type-polymorphic operations, there is additional overhead to support these opera-
tions as shown in Figuré.4. Data types must be compared during each operation in order
to ensure that operations are value and to allow for automatic type checking. In addition, in
order to guarantee that tokens are immutable values, operations on tokens typically allocate
a new token to represent the returned value.
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Figure 6.4:Typical indirection diagram for thdata package. This diagram
shows the indirection in an invocation of thdd () method on anmntToken
with a DoubleToken argument.

6.1.3 Type Checking

In addition to token operations, type conversions are also performed automatically dur-
ing communication from one port to another. Ptolemy Il includes a static type inference
and checking systenv¥§, 88, 103 that infers the types of ports and parameters to deter-
mine when type conversion should occur and statically ensures type safety in the presence
of automatic type conversions.

This type system is based on type constraints expressed as inequality constraints on the
lattice in Figure6.3. These type constraints are implied by connections between ports, and
by the operations implemented by actors. Type constraints in dataflow models typically
take the form shown in Figuri@ 5, where the type constraints for connections represent the
presence of automatic type conversion and the type constraint for an actor gives the type of
output ports in terms of the types of input ports and parameters.

Type checking is performed by collecting type constraints from the model and solving
them for the least solution. A type error is reported if no solution to the type constraints
exists, or ports are parameters are assigned the artificiaibm®wn. For type constraints
of the form shown in Figuré.5, a unique least solution to the constraints can be found
efficiently as long a$  is a monotonic functiond7]. Figure6.6 shows the application of

type inference to a simple model.
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Figure 6.5:Type constraints in dataflow models. In genefg,gives the
types of output ports in terms of the types of input ports and parameters.
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Figure 6.6: Type inference in a dataflow model. In this model, the value
produced byConst would be automatically converted from and integer to a
double before being received mput.

6.1.4 Parameters and Expressions

Configuration parameters in Ptolemy Il models are represented by instance$af the
rameter class. This class provides mechanisms for evaluation of parameter expressions
and for caching and reevaluating the expression when necessary using a lazy evaluation
strategy #3]. When a parameter is reconfigured, other dependent parameters are notified
and a flag is set to indicate that the value must be recomputed. When the value is recom-
puted, theattributeChanged() method of the parameter’s container is called and the
flag is cleared. ThattributeChanged() method is often used in actor classes to check
for consistency between the values dfelient parameters.

Evaluation of expressions is performed by parsing the expression into an AST and
traversing the AST to evaluate a token value for the root node. The Java code to perform
the evaluation is architected using a Visitor design pattdgh [Evaluating each node in
the parse tree results in two virtual method invocations, in addition to other method calls to
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Figure 6.7:Indirection in parse tree evaluation for evaluating a expression
containing a sum.

traverse the AST. An indirection diagram for this evaluation is shown in Fi§ute

6.1.5 Ports and Communication

The communication interface of an actor is represented by instances offibelO-

Port class. The connections between these ports in a model are represented by instances
of the TypedlORelation class. Each connection between an output port and an input port
forms a communication channel, represented by an instance of a domain-specific class im-
plementing theReceiver interface. Since modifications to the structure of a model are
unusual, the receivers reachable from an port are cached to make data transpoffimore e
cient. As a result, sending or receiving data does not deal with relations, but only with the
communication channels.

However, there is still a significant amount of processing that must be performed to
transmit a single data value from one actor to another, as illustrated in Fegir&kead
access to the workspace is obtained, in order to ensure that run-time modifications to the
model are not made. Run-time type checking in tkkeckType () method ensures that
actors respect type declarations. If necessary, run-time type conversion is performed by
invoking theconvert() method of the destination port. Lastly, the converted token is
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Workspace

.. »getReadAccess()
- »doneReading()

remoteReceivers

<<output>>
TypedIOPort Yok
; | Receiver <input>>
------ » send(channel:int, t:Token).«.;:- el :CZZZZZZZZZZZ TypedIOPort
_checkType(t:Token) < - - 7 ;):k. )!»_etit_(t_:'[o_lie_n_)“
R R EEEEREEE o + convert(t:Token):Token-
Type

Figure 6.8:Indirection in sending data.

placed in the appropriate receiver via thet () method. The end result is a minimum

of four class field access, two indexes into an array, and six method calls, in addition
to domain-specific and type-specific code of unknown complexity. Similar overhead is
incurred to retrieve the token using thet () method of the input port.

In Figure 6.8, notice that each indirection is present to support particular features in
the Ptolemy Il system. ThReceiver interface is present to support domain-polymorphic
actors, while theconvert () and_checkType () methods support automatic type conver-
sions. The arrays of receivers support addressing individual channels on each port through
the first argument of thget () andsend() methods and the broadcast of data to multi-
ple input ports. Workspace synchronization enables modifications to models in a multi-
threaded environment.

It is important to recognize that almost no model uses all of these features on every
connection. In most models, output ports are connected to a single input port of the same
type. Most models are not structurally reconfigured while executing. However, in some
models these features allow for simpler models and more convenient specification. Unfor-
tunately, to support these features in any model, all models must incur the same indirection
overhead.
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public classConst extendsSource {
public Const(CompositeEntity container, String name)
throws NameDuplicationException, I1legalActionException {
// The super class declares the output port.
super(container, name);
// Declare the value parameter
value = newParameter(this, "value");
/and its default value.
value.setExpression("1");
// Set the type constraint of the output port.
output.setTypeAtLeast(value);
// Declare the graphical representation.
_attachText("_iconDescription", ¥svg>\n_<rect.x=\"0\"_y=\"0\"_"
+ "width=\"60\"_height=\"20\"_style=\"fill:white\"/>\n"
+"</svg>\n");
}

public Parameter value;

public void fire() throws I1legalActionException {
super.fire();
output.send(0, value.getToken());

Figure 6.9:CompleteConst actor class.

6.1.6 Actor Specifications

Specifications of actor behavior in Ptolemy Il are given by subclasses dfpled Atom-
icActor and TypedCompositeActor base classes. These subclasses, caltéol classes
use the programming interfaces (APIs) provided by Ptolemy Il to model actor behavior.
These APIs provide an actor-oriented abstraction as long as actor classes respect a stylized
form of Java.

A typical actor specification in shown in FiguBed. This class derives from ti&ource
base class, which creates a port namegbut and provides default implementations of all
actor methods. The constructor consists primarily of method invocations that create objects
to represent the fixed interface of an actor. Although these objects are created only when
an object is constructed, it is useful to think of the constructor code as declarations of actor
structure. The call to theattachText () method declares the representation of the actor
in a visual editor. Thefire() method implements the interesting behavior of this actor,
which sends the value of thalue parameter to the output port.
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In general, actor classes can be written without any assumptions on the structure of a
model by using the appropriate Ptolemy Il APIs to dynamically discover ports and connec-
tions. Most actors, however, are written the style of @oast actor, where the ports and
parameters of the actor are declared by the actor when the actor is created. As a result, only
a relatively small number of methods defined by the Ptolemy Il API need to be considered
in actor classes. For example, Figid 0 shows the methods that are particular to the
TypedIOPort class. However, only a small number are commonly used in actor classes.

When used correctly, the Ptolemy Il APIs provide a robust actor-oriented semantics.
One basic restriction is that actor classes interact with other actor classes only through
the Ptolemy Il APIs. Actor classes are expected to not deglaa@ic fields or methods
for communicating with other actors. Additionally, although the Ptolemy Il API provides
mechanisms for retrieving actors in a model by name and manually traversing relations to
other actors, actor classes are expected to be self-contained and not invoke these methods.
Instead, actor classes declare public fields for keeping track of ports and parameters that
form the actor’s interface.

6.1.7 Model Specifications

In most cases, Ptolemy Il models are not specified by manually writing Java code,
but indirectly by constructing a model in a graphical editor or by writing an XML-style
specification of a model using the Modeling Markup Language (MoMB).[Processing a
MoML file results in the instantiation of the correct actor classes for each actor in the model
and the invocation of other methods to create hierarchy and connections in the model. In
effect, actor classes implement reusable software components which can be instantiated
and composed in manyfierent models.

6.2 Copernicus

Copernicus is a tool that generates Java code from a Ptolemy Il model. The generated
code has the same functional behavior as the original model, with the possibility of greatly
improved performance. The construction of Copernicus was motivated primarily by the
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booleanisDeeplyConnected(ComponentPort)
booleanisInput()
booleanisInsidelLinked(Relation)
booleanisLinked(Relation)
booleanisMultiport()
booleanisOpaque()
booleanisOutput()

List insidePortList()

List insideRelationList()

List insideSinkPortList()

List insideSourcePortList()

int getWidth()

int getWidthInside()

int numInsideLinks()

int numLinks()

int number0fSinks()

int numberOfSources()

Enumeration connectedPorts()
Enumeration deepConnectedInPorts()
Enumeration deepConnectedOutPorts()
Enumeration deepConnectedPorts()
Enumeration deepInsidePorts()
Enumeration insidePorts()
Enumeration insideRelations()
Enumeration linkedRelations()

List connectedPortList()

List deepConnectedInPortList()
List deepConnectedOutPortList()
List deepConnectedPortList()

List deepInsidePortList()

List linkedRelationList()

List sinkPortList()

List sourcePortList()

NamedObj getContainer()

(a) Query Structure

int moveToFirst()

int moveToLast()

int moveUp()

int moveDown()

int moveToIndex(int index)

void insertInsideLink(int, Relation)
void insertLink(int, Relation)

void liberalLink(ComponentRelation)
void link(Relation relation)

void setContainer(Entity)
void setInput(boolean
void setMultiport(boolean)
void setName(String)

void setOutput(boolean
void unlink(Relation)

void unlink(int)

void unlinkAl11()

void unlinkAl1Inside()
void unlinkInside(Relation)
void unlinkInside(int)

(b) Modify Structure

InequalityTerm getTypeTerm()

List typeConstraintList()

Type getType()
booleanisTypeAcceptable()

void addTypeListener(TypelListener)
void removeTypeListener(Typelistener)

void setTypeAtLeast(InequalityTerm)
void setTypeAtLeast(Typeable)

void setTypeAtMost(Type)

void setTypeEquals(Type)

void setTypeSameAs(Typeable)

(c) Type System

Figure 6.10:Methods that can be invoked on tiigedIOPort class.
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void broadcast(Token)

void broadcast(Token(], int)
booleanisknown()
booleanisKnown(int)
booleanisKnownInside(int)
void send(int, Token)

void send(int, Token][], int)
void sendClear(int)

void sendClearInside(int)
void sendInside(int, Token)

void broadcastClear()
Token get(int)

Token getInside(int)
Token[] get(int, int)
booleanhasRoom(int)
booleanhasRoomInside(int)
booleanhasToken(int)
booleanhasToken(int, int)
booleanhasTokenInside(int)

(d) Actor Communication

List sourcePortList(Receiver)

void attributeChanged(Attribute) Receiver(][] deepGetReceivers()

Token convert(Token) Receiver|][] getInsideReceivers()

double getCurrentTime(int) Receiver(][] getReceivers()

String toString() Receiver(][] getReceivers(IORelation)
booleantransferInputs() Receiver(][] getReceivers(IORelation, int)
booleantransferOutputs() Receiver(][] getRemoteReceivers()

Receiver(][] getRemoteReceivers(IORelation)

(e) Miscellaneous

Figure 6.10:Methods that can be invoked on tigoedlOPort class.

desire to execute models of embedded software constructed using Ptolemy Il in embedded
Java environments. The Ptolemy Il libraries alone consume several Megabytelaet
files, and require significant run-time memory allocation. Large memory allocation adds
load to the garbage collector, reducing overall execution speed. Indirection adds overhead
to each operations, further reducing execution speed. As a result, using Ptolemy Il models
directly in an embedded system in resource-constrained embedded systems.

Copernicus leverages the fact that the memory and processing requirements of Ptolemy
Il models are in most cases dominated by the organizational complexity assocated with
generic and reusable actors. This complexity is an intrinsic part of Ptolemy Il actors, even
if the generic aspects of a component are not exercised through reconfiguration. Even in
models that do perform reconfiguration, it is typically limited to a relatively small portion
of most models. Copernicus specializes act8§ {ising a combination of partial evalu-
ation and generative programming to transform a model with Ptolemy Il abstractions into
self-contained Java code. Actor specialization allows access to design benefits of generic
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mechanisms, while incurring performance overhead only with these mechanisms are actu-
ally used in a model.

6.2.1 Code Generation from a Model

The code generator begins by generating a model suitable for specialization. Each actor
class instantiated in the model is duplicated in order to specialize each actor independently.
A new Java class is automatically generated for each hierarchical model. Constructor meth-
ods are automatically generated for each class that instantiate objects to represent ports and
parameters contained by each actor and model. The resulting Java code can be executed
using the Ptolemy libraries in much the same fashion as a model dynamically instantiated
from a MoML description.

The bulk of the complexity in Copernicus arises from specialization transformations
applied to the generated code. These transformations generate code that replaces method
invocations of methods in the Ptolemy Il APIs with specialized implementations. Meth-
ods on ports, parameters, and actors that are used to query the structure of the model are
replaced with direct references to the correct object instances. Methods on ports that com-
municate data are replaced with domain-specific code for communicaiéan objects
are replaced with primitive Java code that is behaviorally identical but does not require
object allocation. The resulting specialized code is entirely self-contained and does not
depend on the Ptolemy Il libraries.

6.2.2 Transformation Rules

We present the transformations applied in Copernicus in the style of rewrite rules. The
left side of the rule is repeatedly matched against the code, and each match is replaced with
the right side of the rule. In actuality, the transformations are implemented as transforma-
tions on abstract syntax trees, and we can generally interpret the rules below as tree rewrite
rules. For conciseness, these rules have been written with a mixtayataictic codeep-
resenting Java syntax trees tiypewriter font) andrewrite coderepresenting operations
applied during code generation poldface). For convenience, we will assume that rewrite
code for an object reference, suchaasorresponds to a reference to a uniquely identifi-
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able Java object that can be statically determined. Put anothebweaystring() is the

Java syntax tree corresponding to a method invocation on an unknown object, whereas
o.toString() is the string resulting from invoking theoString () method on a particular
objecto. For Java primitive types, the automatically generated code should be obvious (nu-
merical constants, String constants). Transformations have access to the functions listed
below that generate appropriate syntax trees.

The following functions are available as compile-time operations:

e objectReferenceNamedObj— AST (Returns an Abstract Syntax Tree that retrieves
a runtime reference to the given input object.)

e stringConstant:String — AST (Returns an Abstract Syntax Tree for the give input

string)

e typeConstantType — AST (Returns an Abstract Syntax Tree that creates a Type
object that is equivalent to the given input type.

6.3 Actor Specialization

As mentioned previously, Java specifications of Ptolemy Il actors define actor behavior
in a generic way. In order to generate dficgent implementation from a specification,
it is transformed into a new actor specification that is specialized to a partmuhdext
Such a context includes, for instance, assignments of values to parameters and assignments
of types to ports and parameters. While such a context could be specified explicitly, it is
usually more convenient to use the concentrate on using the implicit context that actors
acquire when composed in a model. In particular, the implicit context of an actor includes
information about data types and constant parameters in a model that can be automatically
inferred from a model.

This report considers four types of actor specialization: structural specialization, pa-
rameter specialization, type specialization, and domain specialization. The following sec-
tions describe, for each type of specialization, the possibilities for determining whether or

not the appropriate context of an actor can change. In each case, an actor specification can
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a = o.getContainer(s); := a = objectReference(o.getContainer(s))
a = o.getAttribute(s); := a = objectReference(o.getAttribute(s))
e = e.getEntity(s); := e = objectReference(e.getEntity(s))

p = e.getPort(s); := p = objectReference(e.getPort(s))

r = e.getRelation(s); := r = objectReference(e.getRelation(s))

Figure 6.11:Transformations applied during structural specialization.

be specialized if the appropriate context does not change. Additionally, parameter special-
ization can be performed even if parameter values are dynamically reconfigured by a modal
model. In all cases, it is assumed that the model is not dynamically reconfigured by any
means external to the model.

Note that we do not consider specialization of data generality from actors. In most
cases, actors used in models of embedded systems operate on unknown data, since they
are constantly receiving unknown data from sensors in the physical world. Hence, data
generality seems crucial to the notion of an embedded system. However, in some cases it is
useful to have actors internal to a model that produce sequences of constant or deterministic
data. In such cases it seems possible that classical compiler optimizations, such as constant
propagation and constant expression eliminatié) €ould be applied at the model level.
Although they are not described here, these specializations seem straightforward to apply.

6.3.1 Structural Specialization

Structural specialization of a model replaces methods that are normally used to traverse
hierarchy in a Ptolemy Il model. The Ptolemy Il base classes implement many of these
methods using dynamic data structures, such as lists. Since the structure of a model is
assumed to not change, then these data structures can be replaced with field references for
each contained or containing object.

Basic structural specialization transformations dealing with methods for traversing the
model hierarchy are shown in Figudel 1l Structural specialization also replaces the meth-
ods shown in Figuréa) that query the structure between ports. Transformations for the

most common methods are shown in Fig@ré2



76 Chapter 6. Actor-Oriented Metaprogramming System

i = p.getWidthQ); := 1i = p.getWidth()

i = p.number0fSinks(); := i = p.numberOfSinks();

i = p.numberOfSources(); := i = p.numberOfSources();
b = p.isInput(Q); := b = p.isinput();

b = p.isOutput(); := b = p.isOutput();

b = p.isMultiport(); := b = p.isMultiport();

Figure 6.12:Domain-independent transformations for specializing connec-
tions.

Port inputl, input2, input3, output,;
public void fire() {
for(i = 0;1 < inputl.getWidth(); i++) {
if (inputl.hasToken(i)) {
output.send(0, inputl.get(i));
}
}
for(i = 0; 1 < input2.getWidth(); i++) {
if (input2.hasToken(i)) {
output.send(0, input2.get(i));
}
}
for(i = 0; 1 < input3.getWidth(); i++) {
if (input3.hasToken(i)) {
output.send(0, input3.get(i));

}

Figure 6.13:A merge actor.

The transformations above can result in significant code simplification for some actor
specifications. As an example, Figusel3 shows an actor that transmits data received
from any input port to its output port. This actor is specified in such a way that each of
the three input ports may or may not be connected. If any of the inputs are not connected,
then the corresponding loop will never actually consume any data. The above transforma-
tions enable the loop conditions to be statically evaluated, allowing for loop unrolling and
elimination of any loops corresponding to ports with zero width.



6.3. Actor Specialization 77

6.3.2 Parameter Specialization

Parameter specializatiotransforms an actor specification with unspecified parame-
ter expressions into a specification where parameter expressions are fixed. ffrentli
specializations are possible, depending on whether parameters are constant or not. If a
parameter value is constant, then its value is fixed throughout execution of a model and
gueries for the value of constant parameters can be replaced with the constant value of the
parameter. If a parameter is not constant then code can be generated from the expression
that allows the parameter value to be evaluated without the overhead of traversing a parse
tree at execution time.

In the context of this chapter, the reconfiguration analysis in Chdpdetermines the
binding times of parameters in the sense of a partial evaluator. Constant parameters are
similar to variables with static binding time, while parameters that are not constant are
similar to variables with dynamic binding time. In addition to identification of inherently
constant parameters, reconfiguration analysis also provides information about when para-
meters are reconfigured. This information can be used to further specialize the evaluation
of not-constant parameters.

Replacing Parameters

Objects representing parameters can be specialized using the transformation rules in
Figure6.14 These rules implementlazy evaluation strategy4f3], which is essentially
identical to the algorithm implemented by tRarameter class. The generated code, how-
ever, is specialized to a particular parameter expression and dependencies between parame-
ters. Prior to applying these transformations, fields are added to the actor class to represent
the value of the parameter and whether or not the value is valid. These fields are returned
by thetokenField andisValidField methods, which are functions that return an AST for
guerying the correct field for any parameters.

The lazy evaluation strategy, however, has several drawbacks. Every parameter requires
an additional field that represents the validity of the value which must be checked when-
ever the parameter is queried. For frequently changing parameters, the validity check will
usually returngRUE, while for infrequently changing parameters, this check usually return
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p.getName(); s = stringConstant(p.getName())

0
1l

p.getFullName(); := s = stringConstant(p.getFullName())

n
1l

s = typeConstant(p.getType()}

p.getType(Q;

1]
1l

s = p.getExpression(); := p.getToken().toString(Q);
p.setExpression(s); := error
t = p.getToken(); := if(lobjectReference(p.getContainer())isvValidField(p)) {

objectReference(p.getContainer())evaluateMethod(p)
attributeChanged(p)
objectReference(p.getContainer())isValidField(p) = TRUE;

3
t = objectReference(p.getContainer())tokenField(p);

p.setToken(t); := objectReference(p.getContainer())tokenField(p) =
(tokenField(p).type) typeConstant(p.getType()).convert(t)
foreach x in sort(dependents(p)) {
objectReference(x.getContainer())isValidField(x) = false;

}
attributeChanged(p);

Figure 6.14:Transformations applied during dynamic parameter specializa-
tion.

FALSE. Although many processor architectures include branch prediction hardware that can
adapt to the frequency branches are taken, it is still preferable to produce code where such
prediction is not necessary.

Fortunately, reconfiguration analysis provides exactly the information necessary to spe-
cialize actors morefiectively. Parameters which are constant or constant over firings of
an actor can be replaced with simpler code than the generic lazy evaluation strategy. These
transformations are shown in the following sections.

Replacing Constant Parameters

Objects representing constant parameters can be nffextieely specialized by com-
puting the constant value at compile time and replacing accesses to the parameter with
the constant value. Primarily, this results in the replacement of invocations of the parame-
ter'sgetToken() method, with a reference to a token object. Since tokens are immutable
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t = p.getToken(); := t = objectReference(p.getContainer())tokenField(p);

p.setToken(t); := objectReference(p.getContainer())tokenField(p) =
(tokenField(p).type) typeConstant(p.getType()).convert(t)
attributeChanged(p);

Figure 6.15:Transformations applied during parameter specialization.

public TypedIOPort input, output;

public Parameter arrayLength;

public void fire() {
int length = ((IntToken)arrayLength.getToken()).intValue();
Token[] valueArray = input.get(0, length);
output.send(0, new ArrayToken(valueArray));

Figure 6.16:Original code fronSequenceToArray.

objects, the expense of runtime allocation is reduced by creating the tokens during initial-
ization and storing a reference to the token in an automatically created field. The field is
initialized through an invocation of theetToken () method when the model is initialized.
The transformations are shown in Fig@d5 Note that no field is necessary to record the
validity of the parameter value.

As an example, consider tigequenceToArray actor specification shown in Figure
6.16 This actor consumes a number of tokens determined by the value afrélgeength
parameter and aggregates them into a single array token. This specification, specialized to
a constanarrayLength parameter value of 8, is shown in Figueel7.

Since tokens represent immutable values, some method invocations, such as the
intValue () method call in Figuré.17, can also be replaced using constant propagation.
The result is shown in Figur@. 18 In this case, since the parameter is not used elsewhere
in the actor specification, the field and token creation are dead and can also be removed
(see Sectio®.5.3.
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public TypedIOPort input, output;

public IntToken arrayLength_value = hew IntToken(8);

public void fire() {
int length = arrayLength_value.intValue();
Token[] valueArray = input.get(0, length);
output.send(0, new ArrayToken(valueArray));

Figure 6.17: The SequenceToArray actor after specialization witlar-
rayLength = 8.

Port input, output;

public void fire() {
int length = 8;
Token[] valueArray = input.get(0, length);
output.send(0, new ArrayToken(valueArray));

Figure 6.18: The SequenceToArray actor after additional specialization
with arrayLength = 8.
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t = p.getToken(); := t = objectReference(p.getContainer())tokenField(p);

p.setToken(t); := objectReference(p.getContainer())tokenField(p) =
(tokenField(p).type) typeConstant(p.getType()).convert(t)
attributeChanged(p);

After reconfiguration at quiescent points of actor A =
P={p:lp]=4&
foreach p in sort(P) {
objectReference(p.getContainer())evaluateMethod(p)

}

Figure 6.19:Transformations for parameter specialization using the Least
Change Context evaluation strategy.

Replacing Other Parameters

Parameters which are constant over the firings of an actor are guaranteed to not be
reconfigured during those firings. As a result, it isfigient to guarantee the validity of a
parameter that is constant over firings of an aetanly at the quiescent points of actor
a. This evaluation strategy will be calledieast change contexdvaluation strategy. The
corresponding transformations are shown in Fighufie

Although the least-change context evaluation strategy alone is not optimal, since it may
re-evaluate parameter values even when no reconfiguration has been performed, it does not
require separate checks for validity. #ybrid lazy/least-change context strategy is also
possible, where validity checks are inserted after reconfiguration occurs. Due to reconfig-
uration analysis, fewer validity checks are usually required in such a strategy than in the
purely lazy evaluation strategy, although code to set validity flags during reconfiguration is
still necessary. Depending on how often parameter values are reconfigured and the com-
plexity of computing new parameter values, either the least-change context evaluation or

hybrid strategies may be preferable.
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t = p.getToken(); := t = objectReference(p.getContainer())tokenField(p);

p.setToken(t); := objectReference(p.getContainer())tokenField(p) =
(tokenField(p).type) typeConstant(p.getType()).convert(t)
attributeChanged(p);

Figure 6.20:Transformations applied during dynamic parameter specializa-
tion.

6.3.3 Type Specialization

Actor specifications in Ptolemy Il are often type polymorphic, allowing them to oper-
ate equally well on integers, doubles, or more complex structured data types. This poly-
morphism is abstracted by tholemy.data package, which represents a set of common
type-independent operations. Although actors are generically typed, in most models actors
only ever receive or produce data of a single exact token type. By applying type-inference
applied to actor classes, exact types can usually be inferred where they are not completely
specified. Type specializatiortransforms a type-polymorphic specification to a specifi-
cation that only operates on a single type. When combined with token unboxing, type
specialization removes the indirection caused by usingtblemy.data package.

Inferring Token Types in Java Actor Specifications

In a model, the Ptolemy Il type system infers the types of ports using type constraints for
actors that are specified by actor writers and assumed to be correct. Types assigned to ports
and parameters determine where in a model automatic type conversions occur. Propagating
these types through Java code requiresftemdint type inference procedure for several
reasons. Most importantly, type conversions cannot always be inserted into an actor class
while preserving the behavior of the actor code. Additionally, although tokens represent
immutable values, some data structures used in actor code, such as arrays of tokens, are
mutable. Inference of the types of such structures must consider the possibility of aliased
references. Lastly, Java allows for local variables and fields to refereffeeedt token
types in diferent control paths. To recover exact types, such cases must be eliminated.
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@@@

Figure 6.21:The type lattice used for inferring token types in Java code.

Basic Type Inference

Since automatic type conversions cannot be inserted into Java code, the type lattice
in Figure 6.3 does not represent the correct relationship between types. Type inference
for Java code is performed using the type lattice shown in Figu2é This lattice is
similar to the automatic conversion type lattice, except that exact types are considered to
be incomparable.

The primary token type inference algorithm computes a type for each local variable and
class field that refers to a token object, including arrays of tokens. The types of ports and
parameters of the actor are fixed based on types inferred from the model, as are the types
of newly created tokens. Assignments require that types on both sides of the assignment
are equal, in order to capture constraints between aliased objects. The type inference rules
are shown in Figuré.22

Types and Control Flow

It is important to note that, unlike the type checking systems applied to Java source
code or Java bytecode, this system requires variables to have the same type at all points
in a method. If a variable referencegtdrent token types at flierent points in a method,
then no solution will be found to the constraints above. In contrast, the type system applied
to Java source code during compilation allows variables to refer to objectdfefedit
classes, as long as they are all subclasses of the declared type. The type system applied to
Java bytecode is also more lenient, since it allows a variable to be assidgiezdrdiexact
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A = B; = TypdA) = TypgB)

A = (fo0)B; = TypdA) = TypgB)
A[i] = B; = TypdA) = TypgB)
A = B[i]; = TypdA) = Typ€B)

A[i] = B[il; = TypdA) = TypgB)

A = P.getToken(); = TypdA) = TypdP)
A = P.get(1); = TypdA) = TypgP)
T = P.getType(); = T =TypdP)

A = T.convert(B); = TypdA) =T

Figure 6.22:Rules for inferring token type constraints in Java code.

types at diferent points in a program. The type system used here emphasizes the discovery
of exact types in the presence of type declarations and considers code that assigns multiple
token types to a single variable to be illegal.
As an example, consider the specification of the Ramp actor in Fgj@B2where the
value of theinit parameter is amtToken, and thestep parameter contains Bouble-
Token. Based on the type constraints declared by this actor, the type of the output port is
double. On the first firing, the fieldstate refers to anntToken, which is the value of
theinit parameter. Since the output port has type doublelrifieken is converted to a
DoubleToken in the process of being sent. After thestfire() method is invoked, the
_state field refers to @oubleToken, which results from adding the initiétToken to the
value of thestep parameter (DoubleToken). The token type inference system will flag
this as a type error, although it is valid Java code and executes without error in simulation.
There are dferent ways of modifying th®amp actor class to obtain code with exact
token types. One solution is to strengthen the type constraints on the actor, declaring that
the types of the parameters and the types of the output port must all be the same. In this
case, the value of thiait parameter will be automatically converted int@aubleToken
before being queried, and exact types are present. Another solution, shown in@=igflire
is to manually insert code into theitialize () method to convert the value of the initial
token to the type of the output port. Note that neither of these solutions can be applied
automatically, since they have the potential to change the behavior of the program.
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TypedIOPort output;

Parameter init;

Parameter step;

private Token _state;

public void initialize() {
_state = init.getToken();

}

public void fire() {
output.send(0, _state);

}
public void postfire() {

_state = _state.add(step.getToken());
}

(@)

Typdoutpu) = double
Typ€init) = int

Typdstep = double
Typd_statg = Typdinit)
Typdoutpu) = Typd_statg
Typd_statg =

Faa(Type_statg, Typgstep)
(b)

Figure 6.23: A Ramp actor specificatior{a) which does not have exact

token types, as shown by the inconsistent type constrairits.in

TypedIOPort output; /double
Parameter init;/int
Parameter step; /double
private Token _state;/double
public void initialize() {
_state = step.getType().convert(
init.getToken());

}
public void fire() {
output.send(0, _state);

public void postfire() {
_state = _state.add(step.getToken());
}

(@)

Typdoutpu) = double
Typdinit) = int

Typdstep = double
Typd_statg = Typdstep
Typdoutpu) = Typd_state
Typd_statg =

Faa(Type_statg, Typgstep)
(b)

Figure 6.24: A Ramp actor specificatior(a) with exact token types, as

shown by the consistent type constraintghin
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public TypedIOPort inputl, input2, output;
public void fire() {
super.fire();
if ((inputl.getType() instanceofArrayType) &&
(input2.getType() instanceofArrayType)) {
_arrayFire();
} else if((inputl.getType() instanceofUnsizedMatrixType) &&
(input2.getType() instanceofUnsizedMatrixType)) {
_matrixFire();
} elsef
throw new IllegalActionException("Invalid_types");

}

Figure 6.25:Code from theDotProduct actor.

Type-controlled Conditionals and Recursion

In Figure6.23 the code cannot be specialized since no solution to the type equations
can be found. However, the lack of a solution does not necessarily indicate that special-
ization is impossible. For instance, in actors where code is only conditionally executed,
no solution may exist due to type constraints from code that is never executed. This sec-
tion presents a more detailed type analysis that can be used to identify dead code, with the
goal of obtaining code which can be type specialized. The more detailed analjwsis di
primarily in that it computes the type of variables at every statement.

For example, consider the code in Fig@é.@5taken from theDotProduct actor. This
code performs two completely féierent operations, depending on the types of the input
ports. The type of data received is determined at run time, using Jaxvtanceof opera-
tor. However, the type of the input ports can be statically determined through type inference
on the model. By propagating this information through the actor classirteanceof
operations can be evaluated as constant expressions and the unexecuted branch eliminated.

A more complex example is the actor specification shown in Figu2é This actor
takes an input, which can be eitherfAamayToken or numeric token, and multiplies it by the
parametetfactor. If the input is anArrayToken, then the output is also akrrayToken.

In this case, the scaleOnLeft() is called recursively on each element of the array, if
necessary.
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TypedIOPort input,output; /array(double)
Parameter factor;/double
public void fire() {
if (input.hasToken(0)) {
Token in = input.get(0);
Token factorToken = factor.getToken();
Token result = _scaleOnLeft(in, factorToken);
output.send(0, result);

}

private Token _scaleOnLeft(Token input, Token factor) {
if (input instanceofArrayToken) {
Token[] argArray = ((ArrayToken)input).arrayValue();
Token[] result = newToken[argArray.length];
for (int i =0; 1 < argArray.length; i++) {

result[i] = _scaleOnLeft(argArray[i], factor);
}
return new ArrayToken(result);
} elsef

return factormultiply(input);

}

Figure 6.26:An actor that scales its input.

In object-oriented partial evaluation systems, this situation is often addressed by dupli-
cating the method for each possible input type, a technique knoywaolggariant special-
ization However, this technique generally requires complex inter-procedural analysis that
crosses method calls, in order to discover the required types. Rather than building such an
analysis, Copernicus inlines non-recursive method invocations thatTb&ea classes as
arguments or return types. This approach is simpler, although slightly less robust since it
assumes that recursion is governed according to the argument type (asStalbhactor)
and inlining code can potentially increase code size.

Type Specialization Transformations

Inference of token types within Java code leads to several automatic transformations.
Primarily, Java fields which maintain the state of the actor, such as the §etde in Fig-
ure6.24 can be given new Java types that more accurately reflect the data they reference.
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Similar transformations can be performed on Java arrays of tokens. These transformations
often require the insertion of Java casts to ensure that the specification is still properly typed

under the Java type system. Although these transformations do not significantly modify the

behavior of the code, they enable the unboxing of tokens, described in Séeti@n

6.4 Domain Specialization

Domain specializatiortransforms an actor specification that is constructed using the
domain-polymorphic interfaces into a new actor specification that is fixed to a particu-
lar model of computation. Unlike other forms of actor generality, domain polymorphism
seems unique in that it does not enable useful dynamic reconfiguration of a model. That
is, we have not seen instances where is it useful to change the model of computation of a
model while the model is executing. Hence, we assume that the context of an actor specifies
a single, fixed model of computation.

Domain specializationfectively replaces the director and receiver objects in a model.
This results in moreféicient execution since the code in theector andReceiver classes
can be specialized to the structure of a particular model. Additionally, the communica-
tion methods of théort class can be replaced with domain specific code, eliminating an
unnecessary level of indirection.

Copernicus implements domain specialization using specialized code generators for
each model of computation. Given the complexity of code, particularly insidbitkeetor
class for a model of computation, specialized code generators provide a pragmatic path to
more dficient code at the expense of duplicating some of the logic that already exists in
the domain-specific classes. Additionally, the use of specialized code generators allows for
implementation-specific communication libraries to be used, where possible.

6.4.1 Dataflow Scheduling is Model Specialization

Copernicus primarily supports domain specialization for sequentialized execution of
synchronous dataflo6DF) models. We concentrate on these models to get a sense of the
performance limits of the specialization approach, since SDF models can be implemented
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efficiently. In a practical design flow, sequentialized execution of SDF models would likely
be combined with concurrent execution and other timed and untimed models of computa-
tion. Copernicus is architected to allow exactly such a scenario.

Part of the éiciency of SDF models can be seen easily by considering SDF as a special-
ization of generic, dynamically scheduled dataflow models. Fi¢L2& shows a generic
algorithmic framework for run-time scheduling of dataflow models. The scheduling logic
is encapsulated in theelectNextActor function, which returns the next actor to execute.
The code for executing a particular finite-length dataflow schedule can be derived from this
algorithm by generalized partial evaluation, including loop unrolling and function inlining
[46].

The key constraint on SDF models is that temsumption andproduction functions
are no longer functions of state, enabling the elimination otthresumes function, which
never changes. This allows tlselectNextActor function to be partially evaluated with
respect to theonsumes function, resulting in a function of only the number of tokens
in each channel. The loops can be unrolled, taking care to unroll the while loop only as
necessary. At this point, all functions have only constant arguments and can be evaluated
at compile time, resulting in the code in FiguBe28 This specialization could be per-
formed automatically by a generalized partial evaluator, given suitable formulation of the
selectNextActor function.
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Given:A,S,C,
consumption: S— A - C - N,
production: S— A - C —» N,
initialState : A — S,
fre:A >S— S
selectNextActor: (C > N) - (A—->C->N)->A > B

force Cdo
tokens(c) =0
od
forae A do
state(a) = initialState(a)
od
forae A do
consumes(a) = consumption(state(a), a)
od

(a, dong = selectNextActor(tokensconsumeys
while (dong do
force Cdo
tokens(c) = tokens(c) — consumption(state(a), a) + production(state(a), a)
od
state(a) = fire(a, state(a))
consumes(a) = consumption(state(a), a)
(a, don@ = selectNextActor(tokensconsume)s
od

Figure 6.27:An algorithm for sequential execution of dataflow models.

Given:A,S,fire:A—>S—> S

while (TRUE) do
state(FIR) = fire(FIR, state(FIR))
state(FIR2) = fire(FIR2, state(FIR2))
state(FIR2) = fire(FIR2, state(FIR2))
state(FIR2) = fire(FIR2, state(FIR2))
od

Figure 6.28:Specialized execution code for the model in Fig2u® derived
from the code in Figuré.27by specialization.
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6.4.2 Domain Specialization Transformations

In an SDF model, all execution and communication can be statically scheduiled [
Appropriate code is generated directly from the Synchronous Dataflow schedule to exe-
cute the fire method of each actor and communication between ports is implemented using
fixed length arrays and circular addressing. To reduce thermyg requirements, the com-
munication bitfers are shared in cases where data is broadcast to multiple receiving ports.
Invocations of theget () andsend() are replaced with array reads and writes and circu-
lar buter addressing. The length of each array is statically computed by simulating the
execution of the schedule. The corresponding transformations are shown in €igfre
The bufferArrayField function returns an AST that references an array of communica-
tion bufers for a particular port, while thedexArrayField function returns an AST that
references an array of the circular addressing indexes used to index intoffieat bu

Note that if the channel argument to thet () or send () method can be statically de-
termined, then indexing into the array offters for each port is not required. In such cases,
Copernicus creates an additional field for each communication channel that points directly
to the correct bfier, eliminating an array index operation. An additional optimization can
be performed if the length of the fier for a particular operation is known to be one. In
such a case, the circular addressing operation is trivial and can be eliminated entirely.

The code in Figuré.30illustrates the resulting transformed code for 8exjuence-
ToArray actor in the example model. This code contains references to the arrays of tokens
for the input and output bters. It also contains a reference to the array of indices into
the input bdfer which is updated as data is read from thédau Note that the channel
indexes are known statically, eliminating the need for an array fiétsj and that no array
of indices is created for the outputfier, which contains only a single location.

6.4.3 Token Unboxing

The boxing and unboxing of data is a well-known technique used in the implementation
of functional languages, such as ML({. In functional languages, the goal of unboxing is
to be able to pass numeric types to type-polymorphic functions. The functions themselves
are written to handle arbitrary objects, but are unable to handle numeric vdoasig
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b = p.hasToken(); := b = true;
b = p.hasRoom(); := b = true;
p.send(c,t); = a = objectReference(p.getContainer())

index = a.indexArrayField(p) [c];
buffer = a.bufferArrayField(p) [c];
buffer[index] = t;
a.indexArrayField(p) [c] = (index + 1) % buffer.length;
p.broadcast(t); := foreach c between 0 and p.getWidth(){
a = objectReference(p.getContainer())
index = a.indexArrayField(p) [c];
buffer = a.bufferArrayField(p) [c];
buffer[index] = t;
a.indexArrayField(p) [c] = (index + 1) %
buffer.length;
}
t = p.get(c); == a = objectReference(p.getContainer())
index = a.indexArrayField(p) [c];
buffer = a.bufferArrayField(p) [c];
t = buffer[index];
a.indexArrayField(p) [c] = (index + 1) % buffer.length;

Figure 6.29:Domain specialization transformations for actors in SDF mod-
els. ThesendInside() andgetInside() methods are replaced similarly
to thesend () andget () methods.
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// The byfer for the input port.
DoubleToken[] _relation_0_double;
// The current read index for the input port.
int[] _index_input;
// The byfer for the output port.
ArrayToken[] _relation3_0__double_;
public void fire() {
// Code replacing the input.get() method
DoubleToken[] doubletokens = _relation_0_double;
int index = _index_input[0];
Token[] tokens = new Token[8];
for (inti=0;1<8;i++)({
tokens[i] = doubletokens[i];
index = ++index % 8;
}
_index_input[0] = index;
ArrayToken arraytoken = new ArrayToken(tokens);
// Code replacing the output.send() method
ArrayToken[] arraytokens = _relation3_0__double_;
arraytokens[0] = arraytoken;

Figure 6.30:The SequenceToArray actor, with optimized communication.
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refers to the process of automatically encapsulating a numeric value in a wrapper object so
that it can be passed to such a type-polymorphic method. When the number is eventually
passed to another method that requires the numeric value, it is automatically removed from
its wrapper througlunboxing This transformation happens within the execution engine
for the language and is totally transparent to the programmer.

Copernicus performs a transformation similar to unboxing: it replaces token objects
(an abstract wrapper for a data object) with the value that the token contains. Similarly,
operations on the token (i.e., method calls) are replaced with native numeric operations.
For instance, théntToken.add () method, which adds the values contained in two integer
wrapper objects, is replaced with a simple integer addition. In most Java implementations,
this greatly reduces the overhead involved in the operation. More importantly, the overhead
of allocating and garbage collecting the wrapper object for the result is also eliminated.

It is important to notice that token unboxing is not possible in the presence of type-
polymorphic actor specifications. Token unboxing is possible during code generation be-
cause the Ptolemy Il type system emphasizes models where types are exactly determined
and type-polymorphic actor specifications have been specialized to those exact types.

So, for a particular type of token, which native numerical type and operations should
it replaced with? One possibility is to use a fixed and hardcoded replacement relation
between a type of token and a native numerical tygig. [ Unfortunately, this limits the
ability to add new data types to the Ptolemy Il framework, as the operations for each token
must be essentially reimplemented in the code generation framework. We must also have
some way of transforming structured token types that are not directly replaced with native
types. This is not easily handled by a small set of hand-written rules.

We have implemented a technique for transforming tokens that does not rely on hand-
written replacement rules. Instead of reimplementing each token operation, we make use
of the specification of each token operation that already exists in the corresponding token
class. Wherever a method is invoked on a token class, this method is inlined from the
correct token class. Each token variable and field that refers to a token is replaced with
variables and fields corresponding to the fields of the token class. Arrays of tokens are
replaced with multiple arrays for each field of the token class. Additionally, a boolean field
is created that tracks whether the original token referenemid. This flag is used to
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properly replace comparisons between the tokennarid. Note that because objects and
arrays in Java have a 16 byte overhead for the object header, token unboxing applied to
short arrays of tokens can result in the instantiation of more objects and a small increase in
memory usage.

Token unboxing is similar to object inlining transformatio2§,[27]. These transfor-
mations are based on analysis to detewt-to-one containedbjects. The data represen-
tation for such objects can be optimized to eliminate an object indirection. As noted by
Laud [60], object inlining can be easily applied when objects epastantand cannot be
modified after creation, since aliasing and siffe&s can generally be ignored. Token un-
boxing can be safely applied to token classes, since these classes are constant to reflect the
abstraction of immutable tokens. The relationship between immutable objects and aliasing
is also leveraged by Guavé]to optimize object allocation foralue objectshat are copied
on assignment. If a value object is immutable, then copying need not be performed, since
aliasing cannot cause sidfexts.

Token unboxing is generallyffective for all numeric token types. Furthermore, it does
not preclude optimized transformations for specific numeric types, such as those for fixed-
point types $2], or for record types. It is also applicable for structured types as well,
such as arrays and records. For instance Atih@yToken class aggregates a set of other
tokens and indexes them using integers. Since one field of the class contains an array of
other tokens, unboxing the array token replaces it with an array of tokens. These tokens
(regardless of their type) can then be unboxed by applying the above procedure recursively.

6.5 Application Extraction

Copernicus includes several Java-level static analyses for optimizing the resulting gen-
erated code. These analyses and the transformations that use them resemble those used in
applications extraction9d]. The analyses and transformations presented here all rely on
the fact that Java code generated by Copernicus is self contained and unknown libraries
are not loaded dynamically. The first static analysis detects invocations of methods whose
return value is not used and can be guaranteed to have noffedese Such method invo-

cations often arise from accessor methods whose return values are no longer needed after
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specialization. The second static analysis estimates the set of reachable methods which
can be invoked during execution of the code. This analysis is used to automatically prune
classes with no reachable methods and to remove unreachable methods from classes that
cannot be pruned. Based on the reachable classes, Copernicus creates a self-contained
. jar archive for the generated code.

6.5.1 Reachable Method Analysis

A Java method iseachableif can be invoked through a sequence of method calls from
program’smain() method. Specialization often results in many unreachable methods and
removing such methods can greatly reduce the size of generated code. Reachable method
analysis computes a functiesReachable: methods— B. This function is defined by the
least solution to the following set of constraints, computed on the lattice of boolean values
B whereFALSE < TRUE:

e m, invokesm, — isReachablém,) < isReachablém,)
e Mis a program entry point= TRUE < isReachable(m)

In practice, the implementation of reachable method analysis is slightly simplified to
give good results in a reasonable amount of time. Primarily, method invocation through re-
flection can enable invocations of any method in a program, often resulting in every method
in a program being reachable. Copernicus assumes that reflection only occurs within the
standard Java libraries and that methods in generated code are not invoked through reflec-
tion (other than the standapaiblic void main() entry point). Secondarily, since ana-
lyzing the standard Java libraries can be expensive, Copernicus assumes that every standard
Java method is reachable. Reachability constraints from method invocations originating
from the standard libraries are captured by assuming that methods that implement standard
Java interfaces are program entry points.

Copernicus uses reachable method analysis to remove any methtitst are not
reachable, i.e.isReachable(m)= FALSE. This transformation is safe because the gen-
erated Java code is known to be self-contained and Java’s dynamic class loading and reflec-
tion facilities are not used in the generated code.
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6.5.2 Side-Hecting Method Analysis

A Java method haside gfectsif it is capable of performing one of the following prim-

itive operations:

e Store a value in a field of an object.
e Store a value in a static field of a class.
e Store a value into an array.

e Perform thread synchronization. (i.e., the method is declayedhronized, or
contains asynchronized block)

Additionally, a method has siddtects if it invokes any method that has sidéeets.
Side dfect analysis computes a functibasSideHfects : methods— B. This function
is defined by the least solution to the following set of constraints, again computed on the
lattice of boolean valueB whereFALSE < TRUE:

e M, can be invoked byn, = hasSideHfect{m,) < hasSideHfectqm)

e mcan perform a primitive sidefiecting operation— TRUE < hasSideHfectgm)

The practical implementation of sidéfect analysis makes use of two simplifications.
Primarily, only reachable methods need to be considered in the analysis, which limits the
domain for which thehasSideHfecty) function needs to be computed and reduces the
set of methods that can be invoked at any invocation site. Secondarily, native methods
and methods in the standard Java libraries are assumed to always haviesitse &his
restriction avoids analyzing the code of such methods to determine what methods can be
invoked, which is diicult for native methods and expensive for Java library methods given
the large number of reachable methods. Note that this treatment of Java library methods
also assumes that any method invocation through the Java reflection API is assumed to
invoke a method that has sidfects.

Copernicus uses siddfect analysis to remove method invocations that target methods
without side-éects, i.e.hasSideHfects(m)= FALSE. Additionally, for methods invoca-
tions that return a value, that return value cannot be used. Such invocations often occur due
to accessor methods in object-oriented frameworks, such as Ptolemy II.



98 Chapter 6. Actor-Oriented Metaprogramming System

The side &ect analysis presented here is rather simple form of di@eteanalysis tar-
geted for elimination of dead-code method invocations. In particular, the analysis does
not consider the presence of data reads and analyzes methods instead of individual state-
ments within the method. This additional information could be used to perform additional
optimizations, such as loop-invariant code motion, as describeldjn [

6.5.3 Dead Field Analysis

A Java field isdeadif its value is set, but never read. Dead field analysis computes a
functionisDead: fields— B. This function is defined by the least solution to the following
constraints, computed on the lattice of boolean vakiggereTRUE < FALSE:

e Methodmreads the value of fieli — FALSE < isDeadf)

Static and non-static fields that are de@miDéad(f) = TRUE) can be removed, along with

any instructions that store to the field. As with other application extraction analyses, the
implementation of dead field analysis is simplified by assuming that the public fields of
generated code are not accessed by the standard Java libraries.

6.5.4 Obfuscation

Another optimization that occurs in step fivealsfuscatiorof the generated code. Ob-
fuscation replaces the names of all methods with shorter strings. This is important since,
in Java bytecode, methods are referred to by the complete signature of the method. Hence,
unlike statically linked C or €+ executables, the names of methods often have a signifi-
cant impact on the size of compiled Java classes. Copernicus applies the obfuscator in Jode
[41], an open source decompilation tool.

6.6 Performance

To analyze the performance of Copernicus, it was applied to 184 synchronous dataflow
models. These models were originally created as tests for various features of Ptolemy I
and utilize a wide variety of data types and library actors. Code was successfully generated
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for 130 models. The remaining 54 models use features of Ptolemy Il that are not currently
supported by Copernicus, such as record data types and programmatic traversal of a model.
In most cases, the models were executed for 100000 iterations, corresponding to several
seconds of simulation for the original Ptolemy Il models on a 1.8 GHz Pentium M processor
using Sun’s JDK1.4.2_06. Due to large execution times, some models were executed for
fewer iterations. Four models were not scalable to a reasonable execution time due to the
design of the model or available input data and are not included in the performance data.

Figure6.31shows the speedup achieved Copernicus, comparing the execution time of
generated code relative to the original simulation time. Models with low speedup generally
use actors that limit the execution rate of the model, such aSldep actor. Other models
with low speedup use coarse-grained actors, type-specific actors with relatively little com-
munication (such as theFT and RecursiveLattice actors). On the other hand, applying
Copernicus to models with fine-grained actors, especiallyEtt@ession actor resulted
in significant speedups. This data was collected with a large initial heap size in order to
emphasize the speedup from reduced method indirection in the generated code, rather than
the speedup from reduced load on the garbage collector.

Figures6.32and6.33shows the improvement in memory usage achieved using Coper-
nicus. Figures.32shows thestaticmemory usage, consisting of memory allocated during
execution of the model that cannot be garbage collected after execution. Static memory
usage is a rough measure of object allocated during initialization, along with values that
are computed and cached during execution. Figus8shows thelynamicmemory usage,
consisting of memory that is allocated and later freed by the Java garbage collector. Note
that in some models that make use of arrays, it is possible for memory usage to increase (see
section6.4.3 In both cases, this data was collected by instrumenting the garbage collector
using the-X1oggc command-line flag.

Figure6.34shows the size of the generated self-containgatr file for each profiled
model. The generatedjar file depends only on the standard Java libraries for execu-
tion. For comparison purposes, code generation with instrumentation for a minimal model
requires 5156 bytes or 2734 bytes with obfuscation. Minimgdr files for the origi-
nal models were also created tsgeshakinghe models. Treeshaking involves executing

the models using theverbose:class command-line flag to report loaded classes and
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discarding any others. The minimajar files ranged from 710 to 770 Kilobytes. Note

that theMatrix1 model, whose generated code requires over 700 Kilobytes, illustrates a
case where residual dependencies on the Ptolemy Il framework have not been removed
by Copernicus. In this case, a method of 8@FDirector class is invoked directly by an

actor in the model and not correctly removed by Copernicus, despite the fact that the code
executes without error.

6.6.1 FIR Filter

A more in-depth example of specialized code generated by Copernicus is shown in
Figure6.35 which shows a simple model that applies a symmetric 31-tap filter to a simple
generated signal. Ideally, execution of this model would roughly correspond to the hand-
written code in Figuré&.36

The main loop of the source code used forHiR filter in Figure6.37. The correspond-
ing code generated from Copernicus is shown in FiguB& This code was generated by
decompiling Java bytecode generated by Copernicus using 4dtfda[Java decompiling
utility. Although this code appears complex, the infier loop is very similar to the hand-
written inner loop. Much of the apparent complexity arises from the fact that a single Java
statement can compile into several bytecode instructions and this structure cannot be easily
recovered from the resulting code. Additionally, token unboxing results in many boolean
flags representing whether variables reference an objectldr. In this code, the flags
happen to always bERUE and are unnecessary, but this fact is not yet being leveraged by
Copernicus. The performance of the generated code is shown in Eig&e

For comparison, Figuré.40 shows the C language filter code generated for a sim-
ilar model constructed in Simulink, a commercial tool built by The Mathworks. This
code stores the previous filter inputs in thiel ter_STATE array and the filter taps in the
Filter_C array. Although this code makes use of several C language features that are
not available in Java, such as pointer arithmetic and implicit comparisons with zero, the
structure of the basic loop is very close to the code generated by Copernicus.
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Figure 6.31:A graph of the speedup achieved by Copernicus, when applied

to a number of test models.
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Percent Reduction in Static Memory Usage Acheived Using Copernicus
(sorted by speedup without obfuscation)
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Figure 6.32:A graph of the reduction in static memory usage achieved by
Copernicus, when applied to a number of test models.
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Reduction in Dynamic Memory Usage Acheived Using Copernicus

(sorted by speedup without obfuscation)
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Minimal Jar Size Acheived Using Copernicus
(sorted by speedup without obfuscation)
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Figure 6.34: A graph of the minimal. jar size achieved by Copernicus,
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Figure 6.35:A model of an FIR filter system. For the purposes of profiling,
the output is simply discarded.

6.6.2 Adaptive FIR Filter

Another example of how specialization can improve performance is shown in Figure
6.41 This model shows a simple model containing an Least Mean Square (LMS) Adaptive
Filter, implemented by extending the Java class that defines the basic FIR filter. The same
algorithm is shown implemented using a synchronous dataflow model in Fogielde-
ally, there would be no performancefldrence between the code generated from the two
different implementation of theMSAdaptive actor.

Figure6.43compares the performance of the generated code for the two filter imple-
mentations. Copernicus reduces execution time and memory usage of both implementa-
tions immensely, although the hierarchically modeled filter remains somewhat slower than
the filter implemented in Java code. The most significafiectnce between the two is the
significant dynamic memory usage of the hierarchically modeled filter, even after applying
Copernicus. This diierence is because the modeled filter createayToken objects to
represent the filter taps. Although Copernicus unboxegthayToken objects, it does not
eliminate the freshly allocated array contained byAh&yToken.
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public classFilterTest {
static double_state_Ramp = 0.0;
static double_state_Ramp2 = 0.0;
static doublg]] _taps = new doublg31];
static doubld]] _delay = new doublg31];
static double_output = 0.0;
public static void main( String[] args ) {
/* Initialize =/
_state_Ramp = 0.0;
_state_Ramp2 = 0.0;
_taps[0] = 0.013689;
/ Remaining _taps initialization not shown.
for (inti=0;i<31;i++){ _delay[i] =0;}
for (int i =0;1i <800000;i++){
doublesinl = Math.sin( _state_Ramp );
double sin2 = Math.sin( _state_Ramp?2 );
double sum = _sinl + _sin2;
_delay[0] = sum;
for (doubled = 0.0,int j =0; j < _taps.length; j++){
d += _taps[j] * _delay[j];
}
_output =d;
/+ State updatey/
_state_Ramp = _state_Ramp + 0.3455751918948773;
_state_Ramp2 = _state_Ramp2 + 0.9424777960769379;
System.arraycopy( _delay, 0, _delay, 1, _delay.length-1);

Figure 6.36:Hand optimized FIR filter code.
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public TypedIOPort input, output; /double
public Token[] _data;
public Token[] _taps;
public Token _zero;
public void fire() throws I1legalActionException {
super.fire();
// Shift the delay line
System.arraycopy( _data, 0,_data, 1, _data.length — 1);

_data[0] = input.get(0);
Token outToken = _zero;
for (int i =0;1 < _data.length; i++) {
Token tapItem = _taps[i];
Token dataltem = _data[il;
dataltem = tapItemmultiply(dataltem);
outToken = outToken.add( dataltem);

}

output.send(0, outToken);

Figure 6.37: Original code from an actor representing a single-rate FIR
filter.
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public void fire() {
boolear] bools = _CG__data_isNotNull;
double[] ds = _CG__data_value;
int i =ds.length — 1;
System.arraycopy(bools, 0,bools, 1,1);
System.arraycopy(ds, 0,ds, 1,1);
boolear] bools_3_ = _CG__data_isNotNull;
double[] ds_4_ = _CG__data_value;
FilterTestModel filtertestmodel = _CGContainer;
boolear] bools_5_ = filtertestmodel._CG__relation3_0_double_isNotNull;
doubl€]] ds_6_ = filtertestmodel. _CG__relation3_0_double_value;
doubled = ds_6_[0];
bools_3_[0] = bools_5_[0];
ds_4_[0] = d;
booleanbool = _CG__zero_isNotNull;
doubled_7_ = _CG__zero_value;
for (i =0;1 <ds_4_.1length; i++){
bool = _CG__taps_isNotNull[i];
doubled_8_ = _CG__taps_value[i];
bool = bools_3_[i];
d=ds_4_[i];
d_8_x=d;
d_8_=d_7_+d_8_;
bool = true;
d_7_=4d_8_;
}
bools_5_ = filtertestmodel._CG__relation4_0_double_isNotNull;
double[] ds_9_ = filtertestmodel._CG__relation4_0_double_value;
bools_5_[0] = bool;
ds_9_[0]=d_7_;

Figure 6.38:Code generated by Copernicus by specialization of a generic
single-rate FIR filter.
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Figure 6.39:Performance comparison of FIR filter implementations. Pro-

filing was taken over 800000 processed samples. The unusually long exe-

cution time for the obfuscated version of the handwritten code is apparently

due to a bug in the Java just-in-time compiler.

Code Size Execution Time| Memory Usage
(bytes) (ms) (Kbytes)

Static | Dynamic

Ptolemy Il 743687 40217 324 | 1011032
Copernicus 23326 2590 112 189
with obfuscation] 11237 2631 109 135
Handwritten Code 1770 1482 91 56
with obfuscation] 1057 7031 87 38

int_T output;

{

int_Tnx = 30;

real_T #x = &rtD.Filter_STATE[O];
real_T =Cmtx = &rtP.Filter_C[O];

while (nx—-) {

output += (xCmtx) = (xx++);

Cmtx +=1;

Figure 6.40:C code for an FIR filter generated from Simulink.

SDF Director
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LMSAdaptive

tapValues

AddSubtract

SampleDelay

Figure 6.41:A model of an adaptive FIR filter system.
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input DelayLine SDF Director
Jﬁ 16 DotProduct S
1 {0} P _
SampleDelay?2 _ = {,,..}
{repeat(numTaps,0.0)... * oldinputs) EXPression

ST oldTaps + oldInputs.elementMultiply(mu*error)

error SampleDelay tapValues

{initialTaps}

Figure 6.42:A model of an adaptive FIR filter.

Figure 6.43:Performance comparison of LMS adaptive filter implementa-

tions. Profiling was taken over 800000 processed samples.

Code Size Execution Time| Memory Usage
(bytes) (ms) (Kbytes)
Static | Dynamic
Ptolemy II 738847 2103 326 | 195891
Copernicus 24434 297 113 151
with obfuscation| 10753 290 110 106

(a) LMSAdaptive actor implemented in Java code

Code Size Execution Time| Memory Usage

(bytes) (ms) (Kbytes)
Static | Dynamic
Ptolemy II 758073 6596 461 | 580523
Copernicus 47398 661 116 | 175244
with obfuscation] 19150 664 113 | 175159

(b) LMSAdaptive actor implemented in a hierarchical model
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Chapter 7
Conclusion

This thesis has addressed issues relating to the use of generic, parameterized actor-
oriented components in hierarchical dataflow models. An actor-oriented component can
be instantiated in dierent models, which allows for convenient design reuse and library-
based design. Actor-oriented components can also be reconfigured during execution, which
allows for many complex systems to be expressed easily. In many models, it becomes im-
portant to constrain how an actor can be reconfigured in a model. We treat constraints
on reconfiguration as safety requirements which guarantee the absence of certain kinds of
modeling errors. We have presented an analysis framework for verifying these reconfig-
uration constraints, which has been implemented in Ptolemy II. We have also leveraged
information from the analysis in a metaprogramming system that transforms Ptolemy Il
models into self-contained Java code with improved performance.

Reconfiguration analysis is described in terms of a formalized mathematical frame-
work. This framework abstracts the behavior of an actor-oriented model. One portion
of this framework describes the dependencies between actor parameters dffectiseoé
reconfiguration in the style of an attribute grammar. The remainder of the framework de-
scribes the sequencing constraints on the execution of an actor oriented model implied by
the hierarchical structure of the model. This portion of the framework leverages the lattice
structure of quiescent points in a model, implied by the fact that actor-oriented models are
hierarchically reactive.

The reconfiguration analysis we have presented unifies many concepts in the dataflow
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literature. In particular, a source of reconfiguration, which we call a change context, is
always associated with a single actor in a hierarchical model. This is true regardless of
whether reconfiguration is specified using finite state machines, reconfiguration ports, or
other syntaxes. The formal framework also unifieSedent types of safety constraints,
allowing them to be considered in a generic way. These safety constraints may include both
requirements that parameters do not change and requirements that parameters change only
at particular points in the execution of a model. This second type of requirement allows
verification of complex behavioral properties, such as the local synchrony constraint for
parameterized synchronous dataflow scheduling.

The reconfiguration analysis depends on two conservative approximations in order to
make the analysis problem tractable afficeent. Firstly, the theory analyzes the behavior
of the model based on all possible executions of a model. If a reconfiguration constraint
might be violated during any execution of the model, the theory assumes that the model is
invalid. Secondly, the theory approximates the set of change contexts for a parameter by
the least change context. The least change context approximation allowsdemne type
checking, but might result in no information about reconfiguration. We show, however,
that the least change context approximation f&sent to check interesting semantic con-
straints. Because the reconfiguration analysis checks safety properties of an actor oriented
model using #icient approximations, we call the analysis a behavioral type system.

In Ptolemy Il, generic, parameterized actors are implemented in Java using an object-
oriented framework. This framework supports reconfiguration at run-time using indirec-
tion. Unfortunately, each level of indirection introduces overhead into every operation.
This overhead can befticult to see, however, since it is hidden in the implementation and
interaction of methods in fferent classes. To expose this overhead, we have developed
a variation of UML class diagrams specifically to describe indirection in object-oriented
frameworks such as Ptolemy |II.

The thesis also describes a metaprogramming system called Copernicus that transforms
Ptolemy Il models into self-contained Java code. Copernicus analyzes an actor-oriented
model to determine whether the context of an actor in the model changes due to reconfig-
uration. This context includes the structure of the model, the model of computation, data
types, and parameter values. The Java code for each actor is then transformed to be spe-
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cific to this context, allowing the indirection to be removed. Conceptually, a generic actor
specification is specialized to a particular role in the model.

After specialization, the generated code is significantly méieient than the original
Ptolemy Il model in terms of code size, memory usage, and execution speed. For small
examples, this generated code approaches the resource usage of handwritten Java code. We
anticipate that thisféicient generated code, together with appropriate models of computa-
tion for specifying real-time behavior could eventually form a basis for embedded system

implementation.
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Appendix A
Mathematical Background

The mathematics required to understand this thesis is not complicated, however it may
be unfamiliar to some readers. In the interest of self containment and notational clarity,
this appendix will present a brief introduction to the mathematics of partially ordered sets
as used in this thesis. Those readers interested in more detailed understanding are highly
recommended to read Davey and Priest2y],[although trees are treated only in a brief
exercise.

Notationally, elements in a set are usually written in lower case let&rsets are
written in capital letters:A, and sets of sets are written in boldface capitédls: The set
of natural number$0, 1, 2, ...} and the set of boolead$RUE, FALSE} are writtenN andB,
respectively. The fact that an elemenis contained in a seA is written: a € A. The set
A x B, called theproduct sets the set of pairs of elements, b) wherea € A andb € B,
which might also be written as set closuféa,b) : a € A,b € B}. A setA is asubsetof
another seB, written A C B, if every element oA is an element oB. This fact can also
be written asA € B < VYa € A a € B. Note thatA might contain exactly the same
elements oB. If there is some element & which is not contained i\, thenA is astrict
subsetof B, written A c B. This fact can also be writteA:c B < db € B,b ¢ A
Given two set andB, theirunionis written AU B and theirintersections written AN B.

A relation between a s& and a seB, is simply a subset oAx B. Fora e Aandb € B,
the fact that is in a relationR is equivalently written{a, b) e RoraR h The opposite fact
is written: (a,b) ¢ R. A relation might also be a subsetAfx A, in which case it is simply
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arelation overA. You are probably already familiar with tha@entity relation over a seé,
written =,, but you are probably used to ignoring the original set and just writiniglany
relations are distinguished in some way. A relati®averA is:

e reflexiveif and only ifYvae A,aR a

irreflexiveif and only if Ya e A, (a,a) ¢ R

symmetriagfand only ifYa, e Aa,ce AaysRa < a,Ra.

antisymmetrigfand only ifYa, e Aaye AasRarasRa = a = a.

transitiveifand only ifVa; e Aa, e Aase AaaRaAa, Raa = aRa&.

The reflexive closureR’ of a relationR over A is defined to beR | J =a. Note that the
reflexive closure is reflexive by construction. Tin@nsitive closureR* of a relationR over

Ais defined to be smallest set that contdysvherea; Rfa, Aa, R"a; = a; R"az. Note

that the transitive closure is transitive by construction. Tefeexive, transitive closures

R* | J =a, and is both reflexive and transitive.

Any transitive, irreflexive, antisymmetric relation over a #etan be interpreted as a
strict partial order of elements, and is usually written with the familiar symbal: The
reflexive closure of a strict partial order, often just called a partial order, is written with a
similar symbol:<. A special kind of partial order where every element is related to every
other elementya; € A,a, € Aja; < a, V a; > &) is called atotal order. Unfortunately,
partial orders and total orders are usually written in the same way, so total orders will
always be noted explicitly. A pa{tA, <a) of acarrier setand a partial order over the set is
called apartially ordered setor simply aposet

It is customary to draw simple posets irHasse diagramwhere each element of the
carrier set is represented by a dot and lines are drawn between comparable elements. Al-
though in simple cases, the order is often inferred from the vertical position of two con-
nected dots in a diagram, it is less confusing to indicate the order explicitly. Example of
Hasse diagrams is shown in Figukel. *

Lincidentally, explicitly specifying the order is also consistent with a categorical interpretation of posets
[84].
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The upsetof an element is the set of all elements that are greater tharsimilarly,
the downsetof an element is the set of all elements that are less tlaanThe greatest
lower boundof a setA, writtenmA, is the unique element that is a lower bound for the set
(i.e., is less than every element in the set) and also greater than every other lower bound.
Conversely, théeast upper bounaf a setA, written LA, is the unique element that is an
upper bound of the set and also less than every other upper bound. In an arbitrary order, the
greatest lower bound and least upper bound of a set do not necessarily daiceds a
special partial order where every subset of the lattice has a least upper bound and a greatest
lower bound.

It is often important to consider posets with certain properties, or subsets of posets with
certain properties. Ahainis a simple name for a countable, totally ordered set. It is often
useful to consider subsets of a poset which are also chains. Some partial orders have a top
element, writtern, that is greater than every other element, or a bottom element, written
1, that is less than every other element.top-rooted treas a poset with a top element,
where the upset of every element is a chain. Symmetricabigttom-rooted treés a poset
with a bottom element, where the downset of every element is a chain. An example of a
tree is shown in Figuré.1d.
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Figure A.1: Two diagrams illustrating partially ordered sets. The order is
indicated with arrow between elements of the set, and redundant relations
in the set are not shown explicitl{c) is not a tree or a lattice, whil@) is a

top-rooted tree.
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Appendix B

Summary of Theorems

Definition 1 . . . . . . e

Consistent valuation function:
A valuation functionv is consistent if and only i¥p € P, p is dependent

= constraing(v(domairf), ..., V(domair})) = v(p)

Definition 2 . . . . . e

Constant parameter:
Parametep is constantf and only if
Yae A,¥qe @, p ¢ R(Q).

Definition 3 . . . . . . e

Constant parameter over actor firings:
Parametep is constant over firings of actarif and only if
Yae A,Vqe Q% peR(Q) = qe Q.

Theorem 1 . . . . . . e

p is constant impliep is constant over firings of any actor.

Proof: Let c be an arbitrary element &t
Vxe A,Vge Q% p ¢ R(Q)
¥Yxe A,Vqe Q5 pe Rza) — qeQ°
p is constant over firings af

L4l

L4l

. Al
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Theorem 2 S ¥ |

p is constant over firings af andc > aimplies p is constant over firings .

Proof: ¥xe A,¥Vqe Q%,p¢ RM(a) = e Q°
Qc?
¥Yxe A,Vqe Q% pe Rza) = (e @
p is constant over firings &

Definition 4 Y 4
Reconfiguration Requirement:
A reconfiguration requiremenh a modelmis a statement of the forng'is con-
stant,” or “p is constant over firings of acta” where p anda are in the model.

Definition 5 ' 9724

Reconfiguration Safe:
An execution of a model with a set of reconfiguration requiremeritsreconfig-
uration safef the execution satisfies each requiremen®in

Definition 6 S 4G |

Change context:
An actora is a change context of a parameggmwritten a m» p, if and only if
peR.

Definition 7 S 1 |

Inherently constant parameter:
Parametep is inherently constanif and only if
Yae A,anw p.

Definition 8 2 1 |

Inherently constant parameter over actor firings:
Parametep is inherently constant over firings of actatif and only if Yce A, c

~»p = Cka.

Theorem 3 N G |



120 Appendix B. Summary of Theorems

p is inherently constant impligg is constant during any execution.

Proof: ¥xe A, Xt p
VXeA,p¢ I%
VxeA,Vqe QX,REE]) - R*
¥Yxe A,Vqe Q5 p¢ Rza)
p is constant

Theorem 4 2 1 |

p is inherently constant over firings of actoimplies
p is constant over firings of actarduring any execution.

Proof: Yxe A,xm» p = XBC
VxeA,peI;l;‘ = XD>C
VXEA,VQEQX,RZEI)Qﬁ;(
VxeA,quQX,peRza) — XR>C
X>c = Q*cQ°
VxeA,quQX,peRN(a) = (e Q°

p is constant over firings of actar

Definition 9 A Lo

Least change context of a parameter:

The least change context of a paramedglrp], is an element oA where|p] =
MaeA]l:aeAAam p}

Or equivalently,

T iffaeA:arm> p}=0

if facA:ams p}#0and
lpl=<sMaceA:am p} )
M{ae A :ams p}exists

1 otherwise

Theorem 5 Y L o
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Lp] = T implies p is inherently constant.

Proof: {facA:arms p} =0
Yaec A,anw p
p is inherently constant

Theorem 6 < [ o

Lp] € A implies pis inherently constant over firings op).

Proof: |pl=m{ae A:ams p}
YacA:am p = a> |p]
p is inherently constant over firings pp|

Theorem 7 R o 4

p is inherently constant ovexctor(p) implies that| p] # L.

Proof: By cases.
Let p be an arbitrary element &f
Case 17c € A such that ~ p
= pJ=T
Case 23 uniquec € A such that ~» p
= |pJ=c
Case 3dJAC A suchthatfce A,c~ p
¥Yc e A, c > actor(p)
(A,=) is a chain

dce A¥xe A X>cC
= |p/=cC

Theorem 8 N 4
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p1 ~> pp implies| py] &7 [Pzl

Proof: Let p; andp, be arbitrary elements ¢t
YaeA,arms pp = arms Py
{aeA:am pJCl{acA:am py}
{aeAltacAnram pfClacAltacArnam P}
MaeAl tacArarms pij] M{acAl tac AAams Py}

Lpal =] Lp2)

Theorem 9 < o 4
p € Rimpliesc>] |pl.

Proof: Let c be an arbitrary element @& andp be an arbitrary element &
pe R
Cm P
cef{aeA:am p}
cefae Al tam p}
c>] nfae Al :ams p}

c>] Lpl

Definiton10 . . . . . . . . . ... .. . e e A9
Conditional Reconfiguration Function:
A conditional reconfiguration functiof,..., : (P — V) x (P = A7) — {a, T} for
an actora and a parametgris monotonic function, wheré?(vo, |-]) = aif in any
execution beginning with parameter valugsyq € Q2 p € R(q).

Definiton11 . . . . . . . . . . ... .. A9
Conditional Dependence Function:
A conditional dependence functidy,..,, : (P — V) x (P —- A]) — A] for
parametergp; and p, is monotonic function, wheré, ..,,(Vo, [-1) = Lpa] if in
any execution beginning with parameter valugsreconfiguration ofp, requires

evaluation ofconstraint,
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