
 

Real-Time Systems Design in Ptolemy II: A Time-Triggered 
Approach 

 

 

N. Vinay Krishnan 
Research Project 

 
Submitted to the Department of Electrical Engineering and Computer Sciences, 
University of California at Berkeley, in partial satisfaction of the requirements for the 
degree of Master of Science, Plan II. 
 
Approval for the Report and Comprehensive Examination: 
 

Committee: 

 

Prof. Edward A. Lee 

Research Advisor 

 

 

* * * * * * 

 

Prof. Thomas A. Henzinger 

Second Reader 

 

 

 

Memorandum No. UCB/ERL M04/22 

12 July 2004 

 

ELECTRONICS RESEARCH LABORATORY 

College of Engineering 
University of California, Berkeley 

94720



 - 2 -



 - 3 -

Abstract 
 

In this report is described a software infrastructure to enable users to design hard 

real-time systems from Ptolemy II [1]. The Giotto [2] domain within the Ptolemy II 

design environment is made use of to model systems which are then compiled and 

executed on KURT-Linux [3], a real time flavor of Linux. 

The first stage of the software takes a graphical model as an input to generate 

intermediate code in the C language. This intermediate code consists of the task-code to 

be executed, as well as a representation of their timing requirements. 

The second stage, called the Embedded Machine [5] reads in the timing 

information and interprets it to release the tasks for execution as per the stated 

requirements. The released tasks can either be assigned to a standard scheduler such as 

EDF, or to a scheduling interpreter called the Scheduling machine, or S Machine. 

The S Machine was developed to gain fine grained control over the scheduling of 

tasks. The S Machine requires as input scheduling information that specifies a time line 

for the tasks involved thus giving the designer maximum flexibility over task scheduling, 

and consequently greater resource utilization. 

The E&S Machines when compiled along with the generated task and timing code 

for the KURT-Linux platform forms an executable that delivers predictable real-time 

performance. The benefit this approach offers is that the real-time tasks can run along 

with ordinary Linux tasks without the timing properties of the real-time tasks being 

affected. 

An audio application was designed to illustrate the effectiveness of this tool-flow, 

which achieved a timing uncertainty of less than ±30 microseconds in its task execution 

times. 
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1. Introduction 
The design of predictable real-time systems is an important field today due to the 

increasing employment of embedded systems in the time critical aspects of modern-day 

devices. Tools that help in the design of such systems are therefore growing in 

importance. The Ptolemy II [1] project addresses this and offers a modeling and 

simulation environment for real-time systems by including among its models of 

computation, the Giotto [2] model of computation. This project looks at extending the 

features of Ptolemy II from the simulation of real-time systems to the actual generation of 

executable code that exhibits the same properties that the initial model does. The goal is 

to develop a tool-chain that takes as its input a Ptolemy II graphical model of a real-time 

system and outputs a software application that has predictable performance. 

In designing the software, the results of three project efforts were incorporated 

and built upon, viz. Ptolemy II [1], Giotto [2], and KURT-Linux [3]. In the following 

section, an introduction to each of them is given with relevant concepts from the original 

papers being reproduced for the sake of self-containment. Section 2 describes the design 

of the software and specifies the algorithms used. Section 2.3 contains a description of 

how one might use the software by giving an example. An actual audio application built 

using the software is discussed in section 3. Section 4 lists some of the limitations of the 

software, and section 6 contains possible future extensions to the project. 

1.1. Background 

1.1.1 Giotto 
Giotto “provides an abstract programmer’s model for the implementation of 

embedded control systems with hard real-time constraints” [2]. The semantics it offers to 

express system properties are in close alignment with a mathematical model of a control 

system. This is desirable since control systems are often designed at a mathematical level 

of abstraction to facilitate effective optimization of control laws, and validate the 

performance and functionality of the model. The onus of translating a mathematical 

control model into software falls to the developer who has to create software tasks 

corresponding to the computations and assign priorities so as to meet the requisite time 
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constraints on the specific hardware. This is an ambiguous process with the desired 

results achieved through the use of an iterative process of testing and debugging. 

Giotto removes the ambiguity by providing the developer a formal, machine-

readable language in which to specify the system requirements that is easily verifiable by 

the system designer. Giotto follows the time-triggered design paradigm, making it 

particularly suited for embedded control systems which have hard real time constraints. It 

requires the specification of the functionality and timing of the computations of a system. 

The mapping of these properties on to a particular platform is a compilation issue which 

is kept independent from the specification. This gives Giotto one of its advantages, 

namely the separation of the design concerns from the platform dependent execution 

details. This makes it attractive as a language of communication during the initial stages 

of the design process. 

Once a software system is specified using Giotto, it remains to map this 

specification onto a hardware platform. This process can be largely automated through 

the use of compilers and virtual machines. One such method, which has been used in this 

project, is the Embedded Machine [5]. The compilation of Giotto guarantees the 

preservation of the functionality and timing, thereby producing an executable software 

application that remains faithful to the original mathematical model.  

Any control application consists of a set of periodic computations, with elements 

being added and deleted to the set as the system progresses. Giotto has a basic functional 

unit of a task representing a single periodic computation which is a piece of code written 

in a programming language like C. Modes represent a fixed set of such tasks. A Giotto 

program representing a system is a set of modes. It can be in one mode at any point in 

time, repeatedly invoking the corresponding set of tasks concurrently. A task can be 

present in multiple modes, with different timing properties in each, and switching 

between modes is how the addition and deletion of tasks in the system is accomplished in 

a Giotto program. 

Tasks communicate data through ports. Every task will have zero or more input 

ports from which it reads data upon being invoked, and feeds the result of its execution 

into zero or more output ports. Other than these task ports, a Giotto program also contains 

sensor ports which read values from sensors, and actuator ports. Sensors and actuators are 
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the means by which a Giotto program reads values from the external environment and 

conveys decisions to it. Every port is persistent in the sense that the port keeps its value 

over time until updated. Sensor ports are updated by the environment; all other ports are 

updated by the Giotto program. Task ports communicate data with each other, as well as 

with sensor and actuator ports, by drivers, which is code that transports and converts 

values between these ports. 

While tasks are segments of computation dispatched by a Giotto program to 

execute on the hardware platform with a finite non-zero amount of time, drivers are 

considered by Giotto to be instantaneous bits of code. They are called synchronously by a 

Giotto program in between dispatching tasks. To quote from [2], it is assumed that 

“drivers satisfy the synchrony assumption [13], that they can be executed before the 

environment state changes”. 

As mentioned above, all the scheduled computations, the synchronous 

communications between ports, and mode switching occur in real time, a consequence of 

the time-triggered nature of a Giotto program. “These time-triggered semantics enable 

efficient reasoning about the timing behavior of a Giotto program, in particular, whether 

it conforms to the timing requirements of a mathematical (e.g., Matlab) model of the 

control design.” [2]. 
 

An example time line for an invocation of a task t shown in Figure 1. 

 
Figure 1: Time line for the invocation of a Giotto task t (reproduced from [2]) 

 

The invocation starts at some time τstart with a communication phase in which the input-

port values are loaded. As per Giotto semantics, the communication phase —i.e., the 
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execution of the input port driver d — is performed in logically zero time. This 

synchronous communication phase is followed by a scheduled computation phase where 

the task t is carried out. At time τstop the state and output ports of t are updated to the 

result of the task computation. The length of the interval between τstart and τstop is 

determined by the frequency ωtask. This determines the number of times task t is 

executed over one Giotto period, specified in the program. Task t is said to be logically 

running from time τstart to time τstop. The Giotto abstraction does not specify when the 

actual computation of f is performed between τstart and τstop. However, the times at which 

the task output ports are updated are known, and therefore, “for any given real-time trace 

of sensor values, all values that are communicated between tasks and to the actuator ports 

are determined” [2]. Any Giotto realization has to be faithful to this abstraction; for 

example, task inputs may be loaded after time τstart, and the execution of f may be 

preempted by other tasks, as long as at time τstop the values of the task output ports are 

those specified by the Giotto semantics. 

A Giotto program can be realized on a particular program using a compiler and 

virtual machine such as the Embedded Machine, or E Machine [5]. The Embedded 

Machine is a virtual machine that aligns the real time interaction between software and 

physical processes. It separates the running of embedded programs into two phases. The 

first platform-independent phase interprets and runs E Code (code understood by the E 

Machine) which is compiled from Giotto programs by the E Machine compiler. E Code 

supervises the timing – not the scheduling – of application tasks. E Code is independent 

of any particular platform, and is therefore inherently portable. E Code also exhibits 

predictable timing and output behavior for a particular input behavior, making it a good 

choice to represent time-triggered Giotto programs. The generated E Code can be 

checked for schedulability using [6]. However, this requires knowledge specific to the 

platform such as the Worst Case Execution Times (WCET’s) which can optionally be 

supplied as annotations in the Giotto code. Once the E Code determines when the tasks 

have to be released for execution in a Giotto period, they are passed onto the platform 

dependent phase of the E Machine. 
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The platform dependent phase takes care of executing the released tasks on the 

underlying hardware. The tasks can be scheduled by the E Machine using any standard 

scheduler such as EDF. However, more fine-grained control is achieved through the use 

of the S Machine. 

The S Machine is a platform-dependent scheduling interpreter which interfaces 

with the E Machine. The tasks released by the E Machine are dispatched by the S 

Machine according to a schedule specified using a program called S Code. The S Code or 

Scheduling Code that is interpreted by the S Machine lays out the time line of the tasks to 

be executed. Due to the flexibility in scheduling policies it offers, it is inherently more 

expressive than any particular scheduler. It has been shown that using the S Machine 

results in an improvement in CPU utilization over the EDF scheduler [8]. In addition to 

providing the designer with flexibility over the task scheduling, the E Code and S Code 

can together be used to verify the schedulability of a set of tasks on a specific platform 

[7]. Since it is easier to verify the schedulability than to generate a feasible schedule, the 

E&S Codes, if distributed along with the tasks, relieve the user from having to come up 

with a feasible schedule. In essence they carry the proof of schedulability with them. In 

our design, the E & S Machine shall together be called the ES Machine. A further 

description of the ES Machine can be found in the Design section. 

This project uses Giotto as the model for the real-time systems designed using its 

software. The graphical modeling and simulation properties of the Ptolemy II framework 

are exploited by using its Giotto domain as the initial design interface. 

1.1.2 Ptolemy II 
Ptolemy II is the current software incarnation of The Ptolemy Project [1]. This 

project being carried out at UC Berkeley “studies modeling, simulation, and synthesis of 

heterogeneous concurrent systems, with a focus on Embedded Systems”. Ptolemy II is a 

graphical design tool for hierarchical and component based system models. Modeling a 

system in Ptolemy II lets us take advantage of the many features it offers viz. a graphical 

user interface, type-checking, simulation of the design, and so on. 

Ptolemy II follows the actor-oriented design approach. While the popular object-

oriented approach stresses on the structure of a model or program by offering such 

features as modularity and hierarchy, the actor-oriented approach stresses concurrency 
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and correctness making it well suited for the domain of embedded systems. The basic 

unit of computation in Ptolemy is the actor, which executes and communicates with other 

actors forming a model of a system. Modularity is offered by viewing each actor as an 

individual entity offering a set of features. Well-defined interfaces dictate how the actor 

communicates with the rest of the model and abstract away the internal workings. An 

interface consists of ports which represent “points of communication” for an actor, and 

parameters which allow the designer to fine tune the execution. 

A very powerful abstraction offered by Ptolemy is that of hierarchy. An actor 

may be an atomic unit of computation (atomic actor), but may also consist of other actors 

inside it, executing together to deliver some coherent functionality (composite actor). 

Such an actor may even contain a complete system model within it. To facilitate this, 

models also have ports and parameters distinct from those specific to any individual actor 

in a model. Such ports can be connected to any actor within the model. These model ports 

and parameters are connected to the ports and parameters of the actor abstracting this 

model. 

Every Ptolemy II model has a director, which dictates how and when the actors 

fire and interact with each other, and consequently, how the system behaves. It does this 

by following a set of rules called the model of computation of the system. “The model of 

computation is a description of the behavior of a system. A model of computation may 

even have more than one set of rules, in that there might be distinct sets that impose 

identical constraints on behavior” [1]. 

Various models of computation exist which lend various properties to the system 

by virtue of the restrictions they impose. Synchronous Data Flow (SDF), and Finite State 

Machines (FSM) are two examples. The choice of a model of computation for a system 

can give or take away useful properties which might in turn affect the usefulness of the 

model for verification or simulation. For embedded systems, the most useful models of 

computation handle concurrency and time. This is because embedded systems consist 

typically of components that operate simultaneously and often interact with the 

simultaneous events in the physical world. In addition, the responses of these components 

to the stimuli are often required within a fixed time frame after which their usefulness 
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degrades. From this perspective, the semantics of Giotto are very appropriate as a model 

of computation for designing Embedded Systems. 

The Giotto domain in Ptolemy II has actors representing the various tasks. The 

abstraction of hierarchy offers the actors the liberty of being models within themselves 

with any arbitrary model of computation. The concept of ports is similar in Giotto and 

Ptolemy, with input ports to the model representing sensors and output ports to the model 

representing actuators. The period of a Giotto iteration is specified using a parameter in 

the Giotto director, and frequency of the tasks are specified by parameters within the 

actors representing the tasks. Further details as to the implementation of this domain shall 

be discussed in the design section. 

The Ptolemy II Giotto model can be compiled down to a Giotto program and C 

code required for the ES Machine to run. The platform upon which the ES Machine 

executes is a real-time flavor of Linux developed in Kansas University, KURT-Linux [3]. 

1.1.3 KURT-Linux 
Linux as an operating system is gaining favor with the world because of its open-

source nature and the high level of customization it offers. Linux has been entering the 

domain of embedded systems as processors become strong enough to support 

multithreaded operating systems. With the increasing need for real time operating 

systems in embedded devices, it wasn’t long before real time versions of Linux started to 

appear. RTLinux [14] and KURT-Linux are two examples of such. KURT-Linux stands 

apart from RTLinux in the sense that RTLinux takes the “two executive” approach, i.e. 

RTLinux runs the regular Linux kernel as a virtual machine atop an RT Core, while 

KURT-Linux looks at modifying the Linux kernel to achieve real time performance for 

its tasks. The advantage of this is twofold. 

Firstly, the two executive approach places restrictions on the sharing of data 

between real time and non-real time tasks. Special actions such as saving to a file, IPC or 

sending a network packet are required. While this might not be an issue for normal 

computations, it would create stumbling blocks when trying to create GUI’s to display 

information on the status, or the results of real time task computations. Access to the non 

real time parts of the operating system was essential in the example audio application. 

The ALSA driver [11] for Linux was used as an interface between the real time tasks and 
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the sound card. The integration of the real and non-real sides of the operating system in 

KURT-Linux easily facilitated communication of data between the real-time application 

tasks and the non real-time ALSA API. Using RTLinux would have required the writing 

of special software for interfacing with the ALSA sound driver, or even writing a 

customized sound driver. 

The second advantage is in footprint size. While numbers vary, the average size 

of the RTLinux kernel is measured in megabytes. KURT-Linux has a footprint in the 

512KB area. The downside of KURT is that its performance numbers are below that of 

RTLinux. However, the results of some recent tests by the KURT-Linux group under 

Group Scheduling and the IRQ modifications indicate a performance envelope very close 

to that of RTLinux. 

KURT-Linux achieves real time performance by primarily modifying the 

scheduling algorithm of the Linux kernel. Any and all tasks registered as real time tasks 

are offered priority over ordinary Linux tasks. Since interrupt requests can disrupt the 

normal scheduling routine, KURT-Linux has modifications built into the interrupt 

handlers to block interrupts pertaining to ordinary Linux tasks until the real time tasks 

have finished execution.  

KURT-Linux also offers extensive profiling mechanisms in the guise of DSKI 

(Data Stream Kernel Interface) and DSUI (Data Stream User Interface) [12]. These are 

API’s provided whereby a user can place hooks called instrumentations points in his code, 

that cause event logs with the timestamp to be recorded. DSKI is meant to be used in 

kernel programs and DSUI in user programs (applications). These low overhead data 

collection mechanisms proved extremely useful in measuring the timeliness of 

applications generated using the tool chain. 

KURT offers a variety of scheduling options to the application designer, from 

earliest deadline first to round robin to explicit plan. In fact, the presence of the explicit 

plan scheduler was what made KURT an attractive choice for being the E Machine 

platform. 

The explicit plan scheduler is one among the default schedulers offered as part of 

the group scheduler package in KURT-Linux. Group scheduling [9] is a hierarchical 

scheduling abstraction. It brings in the notion of grouping together tasks which are 
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similar, e.g. the processes of an application. A member of a group can be either a process 

or another group, thus bringing about the notion of hierarchy. Each group has a 

scheduling decision function associated with it. 

The explicit plan scheduler is one such scheduling decision function. Rather than 

relying on priority based scheduling or strictly periodic schedules, KURT schedules are 

explicitly specified by the application programmer. When using the explicit plan 

scheduler, the application designer submits a plan laying out the time schedule of the 

application threads or processes in nanoseconds. This gives the designer very fine-

grained control over the scheduling of tasks, which is what S Code requires. Given the 

features of the explicit plan scheduler, it was the scheduler of choice to write the S Code 

interpreter. A downside of harnessing the power of the explicit plan scheduler was that 

one of the requirements of S Code semantics had to be modified. This will be detailed in 

the design of the scheduling interpreter. 

2. Design 
The tool flow design is divided into two parts. The first part reads in a graphical 

Giotto model designed in Ptolemy II and generates code suitable for the ES Machine to 

read. This shall be called the ES Machine Code Generator. 

The second part of the design consists of actually designing the ES Machine on 

the KURT-Linux platform which can then interpret the E Code and S Code generated by 

the first part and run the tasks according to the timing characteristics specified by this 

code. 

The ES Machine shall be described first since the design of the framework code 

generator is dependent on the ES Machine design. 

2.1. The ES Machine 

2.1.1 Introduction 
The detailed design of the E Machine is given in [5]. First a few basics necessary 

to understand the design of the E Machine are presented, followed by a description of 

how the KURT API was used to implement the interpreters. 
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Figure 2: The E Machine and S Machine 

 

The E Machine accepts inputs from two sources, the environment and the tasks. 

The environment feeds it inputs through sensor ports which can result in either the E 

Machine changing modes, i.e. changing the timing properties of the tasks it controls, or 

just forwarding the sensor values on to the tasks. The tasks communicate, through task 

ports, maintenance information and their outputs. Consequently, the task ports are also 

called the output drivers of the various tasks. The S Machine feeds information as to 

whether tasks have completed execution or not (signifying a deadline violation) through 

the completion ports. 

The E Machine communicates to the environment through actuator ports. The 

intention is to convey data to actuators that carry out tasks external to the E Machine 

system. Driver ports are used to pass on output data received through task ports as input 

data to other tasks. Therefore the driver ports are also called the input drivers of the tasks. 

The E Machine also communicates to the S Machine the tasks that it has released for 

execution via the release ports. 

The S Machine uses the data received from the E Machine via the release ports 

along with the S Code to decide when to dispatch tasks. It does this through the dispatch 

ports using the features offered by the specific platform. 

 The E Code [5] and S Code [7] instructions would have to be understood to 

explain the design of the E Machine. A description of the relevant instructions is given 

below. 

E Code has three primary instructions taking care of task execution 
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1. Call driver: Synchronous system level call to initiate the execution of any driver. 

A driver could indicate a task output, task input, sensor, or actuator driver. 

2. Schedule task: Signals the S Machine via the release port that a task is ready for 

execution. 

3. Future time, E Code: Marks a block of E Code for execution at a future time. It 

has two parameters- a trigger and the address of the E Code from where to begin 

execution next. Although the E Code syntax allows for a trigger to take any 

arbitrary form, as in a sensor input, since we are following the time-triggered 

paradigm, all triggers are constrained to be time triggers. The unit of time in this 

design is milliseconds. 

In addition to these three instructions there are also if-then-else constructs and the 

unconditional jump instructions. 

S Code again has three instructions used to decide task schedules.  

1. Dispatch task: Initiates task execution. The task wakes up, executes the 

instructions required of it in that invocation, and then puts itself to sleep. 

2. Idle Time: The Idle instruction divides up S Code into blocks in a similar 

fashion to how the future instruction divides up E Code into execution blocks. 

It indicates the time to wait for the tasks dispatched in the block above to the S 

Code interpreter. Each task dispatched gets an equal fraction of the time 

specified (in milliseconds) in the Idle instruction. If, however, non-uniform 

distribution of execution time is desired, it can be achieved by staggering Idle 

statements and Dispatch statements. 

3. Fork and Return Address: These are two separate instructions that when used 

together constitute a Goto instruction. If a fork statement is used by itself to 

point to another block of S Code, it implies that that block execute 

concurrently with the block following the fork statement. This introduces non-

determinism as we cannot then determine the exact time line of the tasks from 

then on. Therefore, usage of the fork instruction without the return instruction 

is prohibited. 
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2.1.2 Design of the ES Machine 
The ES Machine primarily consists of the E & S Code interpreters. The Explicit 

Plan Scheduler was used to realize the interpreters. 

The Explicit Plan Scheduler 
This scheduler accepts a data structure containing the following fields for every 

task: 

typedef struct interval { 

 int processor; 

 struct timespec begin; 

 struct timespec end; 

 int repeat; 

 struct timespec period; 

} interval_t; 

The first field processor is aimed at SMP systems and can be ignored. The 

second and third fields begin and end are used to specify the beginning and end times 

of the task relative to the time of submission. repeat specifies the number of times the 

interval shall repeat with a period given by period relative to the begin time. All 

times are specified in nanoseconds. 

When a task is invoked by the scheduler, it carries out the functionality required 

of it for that invocation and goes back to sleep. It does this by a system call which 

suspends the task. If the task has not finished execution by the time the end time is 

reached, it gets suspended by the explicit plan scheduler. Therefore, it is important that 

the time given to the task to execute exceeds the WCET of the task. A task suspended in 

the course of its execution by the scheduler finishes the remainder of its execution upon 

its next invocation before suspending itself. In doing so, it has fallen back one iteration. 

As can be seen, the exact time of each and every invocation of a task must be 

specified with this scheduler. This creates a problem. The original S Code semantics 

proposed by Kirsch, et. al. [7] would wait for the completion of the dispatched task 

before continuing. To give an example, the S-Code  

r:Dispatch A 

Dispatch B 
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Idle 6 

Fork r 

Return 

would result in the two tasks A and B executing with a total time of execution of 6 ms. 

However, the exact invocation time of B, and the execution times of A and B are not 

individually known. The S-Code ‘waits’ till A finishes execution before invoking B. 

Therefore, A can execute for 1 ms leaving B 5 ms for executing. On the other hand, A 

could take 5 or even 6 ms leaving B 1 ms or no time at all to execute. 

However, the usage of the explicit plan scheduler forces the specification of an 

end time for the task in advance. Incorporating the ‘wait’ feature into the S Code 

interpreter while using the Explicit Plan Scheduler would result in an awkward and 

inefficient design. A possible circumvention would be to design a new scheduler and plug 

it into the KURT kernel. While this might resolve the problem, a concern is that the strict 

adherence to the absolute time scale which the explicit plan scheduler brings about would 

be lost. Therefore, a decision was made to go ahead with the explicit plan scheduler. 

The semantics of the S Code was modified to make the execution times of the 

tasks explicit. As stated in the explanation of the Idle instruction above, each idle 

instruction results in the time specified as the argument to it being divided up equally and 

distributed among the tasks involved. The above S Code would result in the two tasks A 

and B each being given 3 ms to execute. This makes the variations in task dispatch 

patterns carried out by S Code running on this interpreter a stricter subset of that initially 

proposed. However, these semantics are more deterministic, in a sense. Kirsch’s S Code 

gives no indication as to the invocation time of B, nor does it give an idea of how much 

time the tasks would run for. The advance knowledge of invocation times of tasks can in 

certain places be desirable. A good example of such an application is the audio one 

discussed in the Results section, which had periodic feeding of data to an I/O device at 

fixed intervals. 

These semantics also allow less overhead on the part of the interpreter. Previous 

designs of the interpreter [8] and the possible new scheduler of KURT to incorporate this 

feature would have the S Machine waking up after the execution of every task to 

schedule the next. In the present design, once the timelines for all the tasks are submitted 
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to the scheduler, the interpreter can sleep until all tasks have been invoked and executed, 

reducing overhead. However, the modified semantics requires more work on the side of 

the compiler generating the S Code as it will have to calculate the time line of each task. 

Since the interpreters know the whole timeline of execution, including when they 

themselves should execute succeeding blocks of E Code or S Code, an optimal design 

would have been a self-scheduling ES Machine, where the interpreters schedule the tasks 

and suspend themselves setting their next invocation when the next block of E Code or S 

Code should be read. However, such a design has a problem. 

As mentioned above, all times specified in the explicit plan structure are relative 

to the submission time. If the interpreter submits it, the time of submission is an uncertain 

quantity as the time taken by the ES Machine to reach the submission routine would 

depend on the number of instructions it has read through and interpreted until then, which 

depends on the code being read. Therefore, figuring out a method of dispatching tasks 

with respect to an absolute time line would have been hard. To surmount this, the present 

design was developed: 

The Heartbeat Thread 
At the heart of the ES Machine lies a timer thread, a heartbeat, which is set up 

during initialization with a recurring execution and a fixed interval. The heartbeat thread 

serves as a reference thread. Since it is set up with a fixed interval in the beginning, the 

explicit plan scheduler invokes it with precision each time. Thus the exact time of 

submission is a known quantity as the only instruction this heartbeat executes is the 

submission of the schedule created by the interpreters. 

The Thread Structure 
The primary heartbeat thread is set up during initialization of the E Machine to 

repeat with a fixed interval. The interval is given by the SMACHINE_EXEC_INTERVAL 

macro which is part of the S Code program and is the highest common factor of all the 

different intervals of execution of the S Code. To give an example, if in an S Code 

program there are idle instructions having times of 16 and 20 milliseconds, then 

SMACHINE_EXEC_INTERVAL can have a maximum value of 4. The rationale behind 

having the heartbeat thread dependent on the S Code is as follows. The E Machine 
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releases tasks to the S Machine. The S Machine divides up the interval specified by the E 

Machine, within which all the released tasks must execute, into finer time slices and 

assigns them to tasks. Therefore the S Machine must necessarily have a higher frequency 

of invocation than the E Machine. 

Now the heartbeat thread must be invoked after every S Machine execution to 

submit the schedule generated. Therefore the largest possible value of 

SMACHINE_EXEC_INTERVAL is the highest common factor of all the possible 

intervals of the S Machine. Since each invocation of the heartbeat causes a certain 

overhead on the system, it is in the interests of performance to have the heartbeat as low 

as possible, and consequently, for SMACHINE_EXEC_INTERVAL to be as high as 

possible. Since the recurring schedule of the heartbeat thread has to setup during the 

initialization phase, it forces a static value of SMACHINE_EXEC_INTERVAL. This is ok 

as the E/S Code is being compiled in with the ES Machine, forbidding run-time 

modifications to the E/S Code invocation times. 

The second system thread, called the ES Machine thread, has the interpreters for 

both E Code and S Code. This is invoked for every S Machine execution. By design, the 

E Machine execution time should coincide with one of the S Machine execution times. 

During an invocation of this thread, Algorithm 1 is executed. 

 

if E Machine execution time has passed then 
 throw illegal time line exception 
else if at least one E Machine trigger is active then 
 call E Code Interpreter 
end if 
call S Code Interpreter 
suspend self 

Algorithm 1: The ES Machine Thread 

 

The above algorithm introduces the concept of triggers. A trigger is what 

activates a particular block of E Code and starts its interpretation. Since we are 

considering a time-triggered architecture, all triggers are time triggers. A trigger is a tuple 
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consisting of the address of an E Code location, and a positive integer denoting the time 

the E Code at the address becomes active. The time is calculated relative to the time of 

submission. The E Machine maintains a queue of such triggers in chronological order, 

and the first trigger in the queue is checked by the ES Machine thread in it decision to 

wake up the E Code interpreter. 

E Machine – The E Code Interpreter 
The algorithm for the E Code interpreter is described already in [5]. A simplified 

version is given in Algorithm 2 for the sake of being self-contained. 

while ProgramCounter != END_OF_PROGRAM 
i = instruction (ProgramCounter) 

ProgramCounter = next (ProgramCounter) 

if i = call(d) then 
  if driver d accesses a port of a task that has 

been released but not completed then 
   throw time safety execution 
  else execute d 
 else if i = schedule(t) then 
  if task t has been released but not completed  
  then throw time safety execution 
  else release t to the S Machine 
 else if i = future(pc,time) then 
  append (pc,time) to trigger queue 

end if 
end while 

Algorithm 2: The E Code Interpreter 

S Machine – The S Code Interpreter 
The algorithm for the S Code interpreter is given by Algorithm 3. 
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while ProgramCounter != END_OF_PROGRAM 
i = instruction (ProgramCounter) 

ProgramCounter = next (ProgramCounter) 

if i = dispatch(t) then 
 if t Є task set released by E Machine then 
  remove t from task set released by E Machine 

  add t to task dispatch set 

 else if t is not finished executing 
  add t to task dispatch list 

else if i = idle(time) then 
 n = no. of tasks in task dispatch set 

 time per task = (time – ES Machine time) / n 

 time line = | 

 counter = 0 

 while (task dispatch set != Ø) 
  remove the first task t from task dispatch list 

  time line = time line U {t, counter : counter+n } 

  counter = counter + n 

 time line = time line U ES Machine time 

 set up time line to be submitted to the Explicit Plan 

 scheduler upon the next invocation of the timer thread 

else if i = fork (pc) then 
 if next(i) = return then 
  set ProgramCounter = pc 

 else 
  throw illegal opcode exception 
else 
 throw illegal opcode exception 
end if 
end while 

Algorithm 3: The S Code Interpreter 
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In this algorithm the time ‘ES Machine time’ is a macro in the code which is 

platform specific and has to be set by the user of the ES Machine. It indicates the time 

taken by the ES Machine to execute. Presently, a generous worst case execution time of 

600 microseconds has been set. This is the time given for the execution of both the 

interpreters as well as the timer thread. The time actually taken by these tasks when we 

instrumented them was not more than 60 microseconds. This number can change 

depending on the data types the drivers, which execute in a synchronous fashion, deal 

with. As shall be explained later, drivers have to copy data between arrays which has an 

impact upon the interpreters’ execution time. The figure of 60 microseconds was 

obtained with simple integer data types. Therefore, a safety factor of 10 was built in. 

In the algorithm, the line  

 time line = time line U ES Machine time 

hides behind it a few implementation specific details such as setting up the ES Machine 

for execution while giving the recurring timer thread enough space such that the time line 

of the ES Machine does not intrude into that of the timer thread. All these parameters 

such as the time required by the interpreters, timer threads etc are platform specific and 

are declared as macros in the file os_interface.h in the c_platform/emachine 

subdirectory under the root ES Machine directory. A look at the file reveals the macros: 

#define TEST     (0) 
#define SCALE_DOWN    (1) 
#define ES MACHINE_EXEC_TIME  (400 * SCALE_DOWN) 
#define ADMIN_THREADS_EXEC_TIME (600 * SCALE_DOWN) 
#define INTERVAL_START_DELAY  (50) 
#define TIMER_EXEC_TIME   (200 * SCALE_DOWN) 
 

TEST is used for testing purposes without making use of the KURT API. In that 

mode it displays the interval times calculated and waits for user inputs to execute each 

block of E Code and release tasks. 

SCALE_DOWN is to slow down the ES Machine, again for testing purposes 

ES MACHINE_EXEC_TIME is the time given to the E&S Code interpreters to 

execute 

TIMER_EXEC_TIME is the time given to the timer thread to run 
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ADMIN_THREADS_EXEC_TIME is the sum of the above two times 

INTERVAL_START_DELAY is the offset given to all the task and ES Machine 

time lines when they are calculated. The schedule for the tasks and the ES Machine 

thread is submitted sometime during TIMER_EXEC_TIME. However, the submitted 

invocation times should occur only once TIMER_EXEC_TIME has expired. This offset 

makes sure of that. 

All the times are specified in microseconds. 

2.1.3 Step-Through - An example Iteration 
A typical timeline of ES Machine execution is outlined below. 

Initialization 
When the ES Machine is in the initialization phase, it creates the E Machine 

group required by the group scheduler, affiliates it to the Explicit Plan scheduling 

decision function; initializes task semaphores required for maintenance and information 

gathering; creates the interpreter thread and the various task threads. 

The main ES Machine thread then becomes the timer thread and enters the 

heartbeat loop. It does this by setting itself up for periodic invocation every 

SMACHINE_EXEC_INTERVAL microseconds, each invocation being of 

TIMER_EXEC_TIME microseconds duration. It also sets up the ES Machine 

interpreters’ thread for it’s the execution of the first blocks of E Code and S Code. 

The ES Machine Thread 
The ES Machine thread first calls the E Machine or E Code interpreter. The E 

Code interpreter peruses the E Code calling the initialization and input and output drivers 

of the various tasks synchronously. Each time a schedule task command is reached, it 

adds it to the list of released tasks to hand over to the S Machine. This continues until the 

future command is encountered. Then the next invocation time of the E Machine is stored 

and control is returned to the ES Machine thread. 

The S Machine or S Code interpreter is then called. It reads the S Code following 

the algorithm outlined in Algorithm 1, creating the time line structure from the time of 

the interval submission (i.e. the next invocation of the timer thread) to the next invocation 

of the ES Machine thread. The time line structure, in addition to containing the 
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invocation times of the dispatched tasks, must also contain the next invocation of the ES 

Machine thread so that the next block of E or S Code can be processed. 

The Timer Thread 
The timer thread then gets invoked and submits the time line created by the S 

Machine to the explicit plan scheduler, following which it suspends itself until invoked 

again due to its recurring schedule. 

The Task Threads 
Once the interval is submitted, the tasks which had been dispatched by the S 

Machine are invoked and carry out one iteration of their routine each before suspending 

themselves. 

 

This cycle repeats with the ES Machine thread getting invoked and creating the 

time line for the next invocation of the task threads and itself. 

An Example 
Consider two tasks A and B with A generating data and feeding it to B. Let’s 

suppose B has a frequency twice that of A. Assume a Giotto period of 10ms and A 

having a frequency of 1 and B, 2. i.e. A has a period of 10ms, while B has 5. 

The E Code for such a system will be:- 

Various S Codes are possible. The simplest one would be: 

r:Dispatch A 

Dispatch B 

p:Call output driver A 

Call output driver B 

Call input driver A 

Call input driver B 

Schedule A 

Schedule B 

Future 5, q 

Return 

 

q:Call output driver B 

Call input driver B 

Schedule B 

Future 5, p 

Return 
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Idle 5 

Fork r 

Return 

 

 This code would result in the following time line: 

No. Time(in µs) Task 

1 t ES Machine execution 

2 +400 Timer thread interval submission 

3 +200 Task A 

4 +2200 Task B 

5 +2200 ES Machine Execution 

6 +400 Timer thread interval submission 

7 +200 Task B 

8 +4400 ES Machine Execution 

 

The 2 cycles (1-4 & 5-7) shall repeat if task A has completed execution during the 

first cycle itself. However, if during the invocation of the ES Machine in the second cycle, 

it sees that A has not completed, it is scheduled again, resulting in the first cycle (1-4) 

repeating itself. This is in keeping with the semantics of Giotto, as A has a time period of 

10ms, and therefore has 10ms to finish one invocation. This however results in the 

invocation times of B being staggered if A finishes execution in time. The intervals 

between B’s invocation times can vary between 2800µs (4-7) and 7200µs (7-8, 1-4). 

Though the task finishes within the deadline (assuming, of course, a WCET<2200µs), it 

might be desirable to have tasks begin on a periodic basis too. If such is the case, then an 

alternate block of S Code such as the one below can be used :- 

r:Dispatch A 

Idle 2.5 

Dispatch B 

Idle 2.5 

Fork r 

Return 
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This code would result in the following time line 

No. Time(in µs) Task 

1 t ES Machine execution 

2 +400 Timer thread interval submission 

3 +200 Task A 

4 +1900 ES Machine Execution 

5 +400 Timer thread interval submission 

6 +200 Task B 

7 +1900 ES Machine Execution 

8 +400 Timer thread interval submission 

9 +200 <idle> 

10 +1900 ES Machine Execution 

11 +400 Timer thread interval submission 

12 +200 Task B 

13 +1900 ES Machine Execution 

 

Here we obtain periodic execution times for task B with constant intervals of 

5000µs between invocations. The price paid is that if A needs only 1900µs or less to 

complete its execution, then one slot of 1900 will lie empty every alternate cycle. Also 

both tasks get a reduced execution time (from 2200µs to 1900µs). 

2.1.4 Conclusion 
The ES Machine when run on the KURT-Linux platform displays timing 

properties stated in the original model. However the ES Machine can only execute the 

tasks in real-time if the timing requirements stated in the original Ptolemy II model allow 

the tasks to finish execution. To verify the time safety of the model, the WCET of the 

tasks have to be provided to the Giotto compiler as annotations in the Giotto code. This 

will have to be calculated on a per-platform basis and supplied separately by the designer. 

The ES Machine requires as input to it 

• The task code in C 

• E Code 
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• S Code 

• Framework code consisting of driver code for all the ports 

 

In the next section which details the first stage of implementation, it shall be 

shown how these are generated. 

2.2. The ES Machine Code Generator 

2.2.1 Introduction 
The ES Machine code generator generates code for the ES Machine starting from 

a Ptolemy II Giotto model. A sample Ptolemy II Giotto model is shown in figure 3. 

 

 
Figure 3: Sample Ptolemy II Giotto model 

 

As mentioned in the introduction, Ptolemy actors represent Giotto tasks. The 

ports of the actors are analogous to the ES Machine ports, with the output ports 

representing the task ports, and input ports the driver ports. An input port into the model 



 - 32 -

is used to represent a sensor and an output port, an actuator. The relations show the 

communication of data between ports, from sensors and to actuators.  

The Ptolemy II model can simulate the behavior the final executable will display. 

The Giotto director takes care of scheduling the actors (tasks) as per the Giotto semantics. 

2.2.2 Design Considerations 
The ES Machine requires 4 pieces of code from the Code Generator to function. 

The Framework Code requires analysis of the structure of the model to generate 

the appropriate driver code to transfer data between tasks, from the sensors and to the 

actuators. 

The E Code can be generated by the Giotto compiler developed in the Giotto 

project, by compiling a Giotto Program. Therefore, it is enough to generate a Giotto 

program from the model. 

The S Code requires a scheduling algorithm to come up with a feasible schedule 

for the set of tasks. However, this is not the focus of this project. There already exists a 

good body on work on the topic of scheduling. For a simple schedule an extension of the 

first S Code given in the example in section 2.1.3 can be applied. For now, it shall be 

assumed that the designer writes the S Code. 

The Task Code is a problem of compiling a Ptolemy II model down to C code. 

There is an ongoing effort in the Ptolemy project to generate code from graphical models 

using the Copernicus tool developed by Stephen Neuendorffer. It is focused on the 

generation of java code. Extending this tool to generate C-code could be one possible 

solution to generating task code. However, another design methodology has been adopted 

that shall be described in the next section. 

2.2.3 Design 

CActors and CPorts 
A new actor termed CActor is introduced to be used in Giotto models. This actor 

is a Ptolemy II wrapper for functions written in C. Software developers are required to 

link each of their tasks written in C with an instance of CActor. This actor is then added 

to a library of such actors. 
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In order for the actors and the ports to lend themselves to having framework and 

Giotto code be generated, a few specific parameters are required. They are listed as 

follows. 

Model Parameters 
period: The time period of one iteration of the Giotto model. This Giotto super-

period is specified in the director. It defaults to 1.0 second. 

frequency: The number of times a task is executed in the time period period. This 

is specified in the actor representing the task. It has a default value of 1. 

_type: The type of the output port. Presently data types of int and double and their 

arrays are supported. Input ports do not have to specify a type as it is taken to be the same 

as that of the output ports they connect to. 

The above three parameters are required by the Giotto code generator. The 

following two parameters are required by the Framework code generator to generate C 

code and are ES Machine specific. 

initialOutputValue: The initial value which an output port shall have before the 

first execution of the task it belongs to assigns it one. This is necessary in case a task 

having this port as one of its inputs executes before the task which assigns the port a 

value. It defaults to 0. 

arrayLength: The number of elements in the array if the port type happens to be 

one. If the port type is not an array this parameter is ignored. It defaults to 1. 

Since the designed application is intended to be a real time system, dynamic 

memory allocation should not be used. Static allocation of the memory before the model 

runs requires a-priori knowledge of the maximum number of elements the array might 

have at any point during the execution of the model. This is a figure only the developers 

of the tasks would know and so this parameter was introduced to inform the framework 

code of the array sizes. The framework code then takes care of statically allocating the 

requisite memory spaces. All tasks are passed pointers to the allocated regions. This 

prevents the user having to worry about allocating memory and makes it easier for the ES 

Machine to manage data. 
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Data Transfer Control 
As per Giotto semantics the data output by a task is visible to other tasks and the 

outside world only at the end of the task time period. Since a task can only read visible 

input data, only those tasks which get invoked after the time period of a task execution 

ends can read the data from that invocation. This is implemented by maintaining multiple 

copies of each data element. 

Copy1, or the output copy, is visible only to the output port of the task that 

provides the data. 

Copy2, or the global copy is visible to the entire system. 

Each input port that connects to that output port has a copy which is visible only 

to the port. 

Transferring data in a timely manner between these copies is the task of the ES 

Machine.  

Whenever a task is invoked, it is given a pointer to all its output and input ports. 

The E Code calls the output driver of a port when the time period of the task containing 

that port has expired and the input driver of a port when the corresponding task’s time 

period is about to begin. 

The framework code maintains a memory area for each copy of the data. The 

output copy is initially made to point to memory 1, the global copy, memory 2, and the 

input copies made to point to their separate memory areas. When the output driver is 

called, the pointers of the output and global copy are simply swapped, thus making the 

output data visible, and giving the task a fresh slate to write the data on for the next time 

period. 

Whenever the input driver is called, however, a memory copy from the global 

copy to the local memory pointed to by the input port is performed. A pointer swap here 

would prevent multiple tasks from acquiring the same data should they all be connected 

to the same output port. 

The same mechanism is applicable to both single data elements like double, as 

well as array data types. Synchronization is not a concern as only the interpreter calls the 

various driver functions. 
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Giotto Code Generation 
There already exists in Ptolemy II a Giotto code generator which would take in a 

Giotto model and display Giotto code in a text window. This was sufficient for the most 

part. Therefore it was sublcassed and modified. 

 The derived class is called GiottoCEmachineFrameworkGenerator and supports 

arrays and integer data types in addition to the double data type supported by the base 

class. While extending support to integers was trivial, support for arrays was 

accomplished by defining a new data type for each array type in the Ptolemy II model. 

An array type is declared in Ptolemy II by enclosing the data type of the array 

elements within ‘{‘ and ‘}’. This was transposed to a data type whose name consisted of 

the elements’ data type followed by the string ‘array’. For example, an array of integers is 

declared in Ptolemy II with the string {int}. In the generated code, this will result in a 

data type intarray being declared. This data type is declared in a header file in the 

framework code. 

The second modification was altering the original functionality of displaying the 

Giotto code in a text window, to asking the user for a directory to place files in and 

writing the code to a file. 

Framework Code Generation 
The framework code generator produces 3 files. 

f_code.c: This file contains all the driver code. This includes the initialization 

code which assigns the initial values for the output ports, code to allocate memory for all 

ports and input and output driver code for data transfer. 

f_code.h: This file contains the declarations of all the functions defined in 

f_code.c, and all data type declarations. 

task_code.h: This file contains the declarations for the task functions. This is 

mainly done so that the developer who writes the C-code for the functions can know the 

exact signature of the functions. 

2.3. Putting it together: An Example Run-Through 
Consider the sample model shown in figure 3. 
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Figure 3: Sample Ptolemy II model using CActors 

 

In the figure, we have 4 tasks (Sound_Gen0 – Sound_Gen3) generating data and 

feeding it into the 5th task (Mixer). All the 5 tasks are instances of the CActor class. This 

actor class uses instances of the CPort class as its input and output ports. A look inside 

the configuration dialog of the output ports of any one of the generator tasks reveals, in 

figure 4,  

 

 
Figure 4: Configure Dialog of an output port 

 

a data type of {int}, which is an array of type integer, of length 1500. All the ports are of 

this data type. 



 - 37 -

The model has a super-period of 3.2 seconds, and the generator tasks are given 

varying frequencies of 2, 4, 5 and 10. The mixer task, however, is given a high frequency 

of 100. The reason for this is given in the next section, results, where we explore an 

interesting interfacing aspect of this application. 

Once the blue button labeled ‘Double Click to Generate Code’ is pressed, a dialog 

box opens up requiring the user to select a directory. The user selects it and then clicks 

the Generate Files button. That results in the Framework Code Generator creating the 

required files. In the directory chosen by the user, the code generator shall create a 

directory of the same name as the model. Within it, it creates the Giotto file, again with 

the model name. A directory structure of c_functionality/fcode is also created within the 

same directory and the three files f_code.c, f_code.h and task_code.h are placed in it. This 

directory structure has been chosen so as to mirror that of the ES Machine. 

The user is then expected to feed the Giotto file to the Giotto compiler which shall 

compile it down to E Code and the function table mapping the E Code function calls to 

their corresponding driver functions. These are generated and placed in the ecode and 

ftable directories respectively within the c_output directory.  

The tasks divide up the super period of 3.2 seconds into periods of 1.6 seconds 

(frequency 2), 0.8 seconds (frequency 4), 0.64 seconds (frequency 5), 0.32 (frequency 10) 

and 32ms (frequency 100). Since 32ms also divides the remaining time periods evenly, E 

Code blocks every 32ms to schedule tasks are sufficient to represent this design. Two 

block from the generated E Code, representative of the whole, are reproduced below. The 

whole E Code is not reproduced for the sake of brevity. 

 
/* 27 */  IF(0,28,30)        /* If task driver: condition_Mixer_Mixer_driver */, 
/* 28 */  CALL(8)          /* Call task driver: driver_Mixer_Mixer_driver */, 
/* 29 */  SCHEDULE(4,0,131072)       /* Schedule task: task_Mixer, release 
time: 0, relative deadline: 32 */, 
/* 30 */  FUTURE(0,32,32)      /* Triggered jump to mode: sound_gen, unit: 3 */, 
/* 31 */  RETURN()          /* From mode: sound_gen, unit: 2 */, 
 
/* 32 */  CALL(7)          /* Call output port copy driver: 
driver_Sound_Gen3_output1_copy_intarray for task: task_Sound_Gen3 */, 
/* 33 */  SCHEDULE(3,0,131072)       /* Schedule task: task_Sound_Gen3, release 
time: 0, relative deadline: 32 */, 
 
/* 34 */  IF(0,35,37)        /* If task driver: condition_Mixer_Mixer_driver */, 
/* 35 */  CALL(8)          /* Call task driver: driver_Mixer_Mixer_driver */, 
/* 36 */  SCHEDULE(4,0,131072)       /* Schedule task: task_Mixer, 
release time: 0, relative deadline: 32 */, 
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/* 37 */  FUTURE(0,39,32)      /* Triggered jump to mode: sound_gen, unit: 4 */, 
/* 38 */  RETURN()          /* From mode: sound_gen, unit: 3 */, 

 

 

As can be seen, the FUTURE statements (lines 30, 37) both have times of 32ms 

(third argument) for scheduling the next block of E Code. This pattern can be seen 

repeated throughout the E Code. 

The first block of E Code shows a scheduling of the Mixer task, while the second 

task shows both the Sound_Gen3 task and Mixer task being scheduled. Most of the code 

is similar to block 1, a result of the high frequency of the Mixer task. 

Lines 27 and 34 are conditional checks inserted by the E Code generator that call 

a function implemented by the designer to determine whether the task should be 

scheduled at all. In the present tool flow, however, this feature of the E Code is not 

required, resulting in the function always returning true. 

Lines 28 and 35 call the input driver for the mixer task. 

Lines 29 and 36 show the scheduling of the mixer task, with a deadline of 32 ms 

(third argument) relative to the start time. 

Lines 30 and 37 direct the interpreter to schedule the next blocks (32, 39) of E 

Code after 32ms. 

Lines 31 and 38 indicate the end of the E Code execution block, resulting in the 

interpreter waiting until the next scheduled block of E Code become active. 

Lines 32 and 33 show, similarly, the scheduling of the Sound_Gen3 task. This 

does not have the input driver being called as it does not have input ports. Line 32 is a 

call to the output driver which copies the results of the previous execution of this task to a 

globally visible area. This is to comply with the Giotto semantic that the results of a task 

execution become available only at the end of its time period. 

As can be seen, the second block schedules both the Mixer task as well as the 

Sound_Gen3 task. However, while the mixer task must finish execution in this time 

period, the Sound_Gen3 task has until its next scheduling to finish its execution. The 

allocation of time to these tasks is the responsibility of the S Code. A simple S Code to 

the effect of 
r: Dispatch Sound_Gen0 

Dispatch Sound_Gen1 
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Dispatch Sound_Gen2 

Dispatch Sound_Gen3 

Dispatch Mixer 

Idle 32 

Fork(r) 

Return 

 

will result in the Mixer task getting 32ms to execute in the first E Code block specified 

above, but only 16ms in the second block, the remaining 16 being allocated to the 

Sound_Gen3 task, as shown in figure 5. 

 
Figure 5: Timeline of the two E Code blocks 

 

The mixer task required less than 2ms in this application, and so this S Code 

would have been sufficient resource allocation-wise. Similarly at every 1600 

milliseconds, all the 5 tasks will be scheduled at once. This will result, with the present S 

Code, in each task getting only 6ms to execute. This, again, is sufficient for the Mixer 

task. The other tasks have opportunity to execute in following 32ms time spans, and 

therefore completing in time. 

However, the Mixer task was interfacing with external devices and it was 

desirable that its invocation times were periodic. Towards that purpose, a modified S 

Code of  
r: Dispatch Sound_Gen0 

Dispatch Sound_Gen1 

Dispatch Sound_Gen2 

Dispatch Sound_Gen3 

Idle 28 

Dispatch Mixer 

Idle 4 

Fork(r) 

Return 
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was used. 

 Here, if none of the Sound_Gen tasks needed to run, then the first period of 28ms 

would have the system being idle. This is not a waste, as the Mixer task will anyway use 

only 2ms. However, this S Code has the benefits of the exact invocation times of the 

Mixer task being known, it being regular, and the Mixer task getting 4ms regardless of 

the number of other tasks that need to run. Further fine graining the S Code is definitely 

possible, but was not required for this application. The timeline now obtained is shown in 

figure 6. SG0-3 represent tasks Sound_Gen0-3 and M represents the Mixer task. 

 

 
Figure 6: Timeline of the tasks in the example application 

 

The last stage in the run through is to copy the generated files and place them 

within the ES Machine directory structure. Since the generated files have all followed the 

directory hierarchy all that needs to be done is to copy the c_output and c_functionality 

directory. The S Code file is located in c_output/scode/smachine_code.c and will have to 

be modified by hand presently. There exists a default S Code which simply assigns each 

task an equal time slice. If further fine tuning is required, the file can be edited. The E 

Code interpreter can be found in c_platform/emachine/e_machine.c, and the S Code 

interpreter in c_functionality/scode/s_interface.c. The platform specific parameters to 

tweak the timing of the E&S Machines can be found in 

c_platform/emachine/os_interface.h. 

The task code also needs to be copied, preferably into c_functionality/fcode. Their 

corresponding header files should include task_code.h. 

Once the files are copied, they can be compiled on KURT-Linux using KURT 

libraries (-lkurt option in gcc) to provide the executable. 
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3. Results 
The ES Machine was instrumented using the DSUI feature provided with KURT. 

Measurements showed that all the threads, including the task, ES Machine and timer 

threads were being invoked at the expected times with a jitter of ±30µs. 

A Discussion on interfacing the ES Machine with I/O 
An example application was developed and run to measure the effectiveness of 

the tool chain. The Ptolemy II model is the same one shown in figure 3. The Sound_Gen 

tasks generate sound data in PCM format corresponding to the plucking of a string. They 

utilize the Karplus-Strong algorithm [10] to do so. The Karplus Strong periods are 

different for each task thereby producing sounds of different pitches. The data from these 

four tasks are fed into the mixer. The purpose of the mixer is to merge the audio data to 

produce one final PCM waveform which has sounds from all the generators. The mixing 

is weighted to give the sound from generator 3 a slightly higher volume. This will help 

the listener hear the beat from generator 3 more clearly and can be used to verify the 

timing of the task. The mixer task interacts with the sound card using the ALSA driver 

[11] which provides a low level API with low latencies. 

The model had a super-period of 3.2 seconds, and the generator tasks were given 

varying frequencies like 2,4,5 and 10 to try out different beats. The mixer task, however, 

was given a high frequency of 100. This was primarily to test the capability of the 

application in keeping up with timing requirements. The mixer task would operate with a 

period of 32ms. Correspondingly, the ALSA API was set up to receive sound samples 

every 32ms. 

Setting up ALSA required setting up the buffer and periods to receive data in 

frames. A frame consists of the data equivalent of one PCM sample per channel. For a 

stereo system (2 channels) receiving PCM data sampled at 16 bits, the frame size is 4 

bytes. Sound data in frames is given to the ALSA driver through the buffer. The buffer is 

the memory area allocated by the ALSA driver to read data from. A buffer is divided into 

periods. Data is read and written on a per-period basis. The driver locks a period while 

reading from it preventing applications from writing to it. Therefore, ALSA has a 

minimum requirement of two periods such that an application can write to one while 

ALSA reads from the other. 
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Once the driver is initialized, it lies idle until the first period is written into. Once 

it receives data, the driver starts to read it and feed the soundcard continuously until an 

API call is made to stop. Once the reading has begun, the ALSA driver must necessarily 

receive enough data to have a non-empty buffer. If the buffer ever becomes empty, the 

driver responds with a buffer underrun error message. 

The application ALSA setup consisted of the following: 

• A PCM Rate of 16000Hz 

• A buffer of 1024 frames consisting of two periods of 512 frames each. 

This configuration requires a period to be filled every 32ms. The mixer task that 

writes into the buffer does so every 32ms with 512 frames of data; in other words, just 

enough data to prevent the driver from starving. If the data was late by more than the time 

required by the ALSA driver to read one sample, which in the case of this configuration 

is 62.5µs, the driver would report a buffer underrun. 

Running this application resulted in errors every time. ALSA kept reporting 

buffer underruns. DSUI instrumentation of the application showed timely executions. The 

jitter factor of 30µs was within the forgiveness time of the ALSA driver (62.5µs). After 

repeated testing, the only feasible reason remaining was clock drift, i.e. the CPU and 

soundcard clocks are different which could result in underruns if the soundcard clock ran 

at a slightly higher rate than the system clock. One of the proposed solutions to counter 

clock drift was as follows: 

The application was redesigned with the mixer task running with a period slightly 

less than that required by the ALSA driver. The ALSA driver was also setup to run in the 

blocking mode. This means that if there is not enough free space available, a call to write 

into the buffer blocks until space is freed up by the ALSA driver as it reads out data. 

An upper bound of the rate difference between the two clocks of 1 in 32 was 

assumed. The created Giotto model therefore had the frequency of the mixer task set to 

31ms while writing 32ms worth of sound data each time to the ALSA buffer. This was 

accomplished by having a Giotto period of 3100ms and a mixer task frequency of 100. 

An underrun is obvious with a rate difference greater than 1 in 32 in favor of the 

soundcard clock. However, what happens if the rate difference is less than 1 in 32? The 
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paragraphs below make an argument that the above model is enough to prevent underruns 

in such a case. 

The criterion for an underrun is to have an empty buffer for longer than 62.5µs. In 

the scenario where the model has just begun executing, an underrun cannot happen for 

two invocations of the mixer task since they will occur before the ALSA driver can finish 

reading the written data. The buffer has then filled up blocking the mixer task when it 

makes the third write call. That will result in the mixer task being suspended until the 

next iteration. Upon being dispatched again by the S Machine, the mixer task simply 

finishes the writing process and suspends itself. It has now missed one time period. This 

is the only possible case when an underrun can occur. A closer look at this case reveals 

the following: 

 

 
Figure 7: Timeline of the Mixer task in the ALSA example 

 

In figure 7, each rectangle represents one hundredth of a Giotto period with the 

solid black bars inside representing the execution of the mixer task. t1,t2,t3, etc are the 

begin times of the mixer task invocation and are therefore separated by 31ms each. The 

worst case scenario we can imagine at t1 is the ALSA buffer having one period 

completely full and the other one with one frame of data, which is being read by the 

driver. This will prevent data being written to the buffer and the mixer task call to write 

shall block. 
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After 31ms (minus the execution time of the mixer task), at t2, the buffer will 

have one period empty and the other one with more than one sample remaining, as a 

result of the boundary condition of the drift being less than 1ms. Even assuming a mixer 

task execution time of zero, and a clock rate difference only infinitesimally smaller than 1 

in 32, there must be at least one sample in the buffer. i.e. there cannot be an empty buffer 

at t2. Once the mixer task has finished this second execution, there again will remain a 

buffer that has one period full with the other period having one sample. At t3 and further 

time periods, the situation will still be that which existed at t2. 

Thus the only way for an underrun to happen is if the timing inaccuracy measured 

using DSUI of a maximum of 30 µs results in two invocations being separated by an 

extra 60µs which means that the rate difference becomes more than 1 in 32. In other 

words, if the frequency of execution of the mixer task is such that it feeds in data to the 

ALSA buffer at a rate greater than the read rate of the driver, then we shall have no 

underruns. 

The application thus created was executed and no underruns were observed. 

However, it is only fair to mention that readings were only taken for an hour. This 

approach to having 2 asynchronous systems communicate with each other without the use 

of any explicit feedback mechanism shows how skipping a deadline can in some cases 

aid in the proper functioning of a real-time system. 

4. Limitations 
The software in its present incarnation has a few limitations 

- The present design requires the usage of the heartbeat or timer thread. This was 

necessary because when submitting Explicit Plan schedules, a reference time is required. 

All times are relative to the time of submission requiring the need for a reliable ‘tick’ to 

calibrate the submission. This can be seen as a suboptimality in the design of the ES 

Machine as there can be unnecessary invocations of the timer thread taking CPU time 

away from the tasks. 

- Instrumentation using DSUI is not possible in some cases as certain function 

calls made when the instrumentation mechanisms are active cause the system to hang. An 

example is the strdup call or the snd_pcm_open call when ALSA is compiled in along 

with DSUI. The reason for this was not clear at the moment this report was written. 
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5. Summary 
This project report describes an extension to the Ptolemy II modeling and 

simulation software. The added functionality generates an executable from a Ptolemy II 

Giotto model that when run on the KURT-Linux platform exhibits timing characteristics 

faithful to the requirements of the original model. Applications produced using this 

software showed an error in the timing characteristics of less than ±30 microseconds. 

Also described is an example application which interfaced the ES Machine with 

the ALSA audio driver to produce rhythmic string-plucking sounds. A problem faced in 

spite of correct software design due to the peculiarity of the hardware underneath was 

stated, and a possible software solution to it was described. This approach showed how 

missing of deadlines by software tasks might in some cases be necessary for the proper 

functioning of the system as a whole. 

6. Future Work 
Extensions to the Giotto model in Ptolemy II involve the development of a 

suitable scheduling algorithm can also be imported and modified to automate the writing 

of S Code. 

A longer term extension to this work is the inclusion of code generation 

mechanisms to generate task code in C. Once that is incorporated, the Ptolemy II model 

simulation can be made to occur in two ways. 

Presently various Ptolemy II actors from the existing library are used to create a 

model. The present simulation occurs with these actors that can be compiled down to 

tasks in C code and then associated with CActor instances. By placing these CActors in 

the Giotto model, the Giotto director can possibly be extended to simulate this model 

wherein the execution of C-code shall take place through a JNI interface. 

Other extensions include adding support for sensors, actuators and multiple 

modes. Multiple modes are presently not supported by the ES Machine code generator. 

The ES Machine, however, supports it. The reason why it was not included in this version 

is that the notion of modes in Ptolemy II and Giotto are different. Ptolemy II purports a 

hierarchical notion of modes, while Giotto does not have a notion of hierarchy. The 

incorporation of modes into a Ptolemy II model as Giotto specifies it requires a model 
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utilizing the FSM model of computation with each of its states being a Giotto model. 

These states then represent the different modes in which the Giotto model can be. This 

however represents only a subset of the Giotto specification as the changing of modes in 

the middle of a Giotto iteration is not supported. It can be argued that such a constraint 

actually frees the designer from creating a potentially error prone design. According to 

Giotto, if a mode changes in the middle of the execution period of a task, then the new 

mode must contain the same task with the same execution period. Constraining mode 

changes to occur only in between periods removes this constraint. Two possible 

approaches to include modes are either redesigning the ES Machine code generator to 

recognize the above mentioned hierarchy and translate it to how Giotto understands it, or 

to redesign Giotto itself to include a hierarchical notion of modes. 
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