

Balance between Formal and Informal Methods,
Engineering and Artistry, Evolution and Rebuild

Edward A. Lee, Professor, UC Berkeley, eal@eecs.berkeley.edu

Technical Memorandum UCB/ERL M04/19

July 4, 2004

Abstract

This paper is the result of a workshop entitled “Software Reliability for FCS” that was organized
by the Army Research Office, held on May 18-19, 2004, and hosted by: Institute for Software
Integrated Systems (ISIS), Vanderbilt University. I was given the charge of leading one of four
topic areas, and was assigned the title. This is my summary of the results of the workshop on this
topic.

It may well be that established approaches to software engineering will not be sufficient to avert
a software disaster in FCS and similarly ambitious, software-intensive efforts. This topic
examines the tension between informal methods, particularly those that focus on the human,
creative process of software engineering and the management of that process, and formal
methods, specifically those that rely on mathematically rooted systems theories and semantic
frameworks. It is arguable that, as these approaches are construed today by their respective
(largely disjoint) research communities, neither offers much hope of delivering reliable FCS
software. Although certainly these communities have something to offer, the difficulties may be
more deeply rooted than either approach can address. In this workshop, we took an aggressive
stand that there are problems in software that are intrinsically unsolvable with today’s software
technology. This stand asserts that no amount of process will fix the problems because the
problems are not with the process, and that today’s formal techniques cannot solve the problem
as long as they remain focused on formalizing today’s software technologies. A sea change in the
underlying software technology could lead to more effective informal and formal methods. What
form could that take?

1. Some Objectives of Formal Methods

An early conclusion in the workshop was the dispelling a widely held misconception that formal
methods have had little practical impact in software. Type systems are an example of a formal
method that is a centerpiece of all modern programming languages. They have a formal structure
that has influenced the design of languages and compilers and has proven scalable to extremely
large programs. They contribute enormously to software reliability and to the efficiency of the
software design process by exposing many programming errors early in the design process.

But type systems represent only the static structure of programs. They do not represent temporal
or concurrent behavior, for example. Could the equivalent of strongly typed interfaces be
developed to represent these other aspects? While there is research in this direction, it appears
inconclusive at this time.

Nonetheless, many formal methods demand a level of skill levels not normally found in software
development community to apply.

An examination reveals that formal methods have several objectives, and that depending on the
emphasis, the approaches may differ. In particular, formal methods have been proposed to
provide:

• semantic grounding for languages,
• precise specification,
• proof of properties,
• proof of correctness,
• improved understanding, and
• reduced need for testing.

It was argued in this workshop that of these, “proof of correctness” was probably the only
unattainable objective.

2. Programming Languages

Languages form the medium of expression for software design. In practice, most embedded
software is written in C, an ironic choice because of its complete lack of concurrent or temporal
semantics. Concurrency and time are essential aspects of software that engages with sensors and
actuators. What C does provide is excellent efficiency, access to hardware resources, and
familiarity to programmers.

Can new languages help with embedded systems? An interesting case study is the SCADE
system marketed by Esterel Technologies. This system is based on the synchronous language
Lustre, the formal properties of which strongly influenced the process that led to the certification
of the compiler for use in safety critical avionics software. This system is used in practice by
Airbus and others for embedded software design.

Another interesting case study is Simulink, from The MathWorks. Simulink has taken hold in
several communities, perhaps most notably in the automotive industry where it is widely used to
design and deploy embedded control software.

An issue that arises is that the introduction of new programming languages is difficult,
expensive, and risky. Even with a strong mandate for many years from DOD, Ada, which has
many desirable features for embedded software, has never been completely embraced by the
embedded software community. A focus on domain-specific languages and on languages with
visual syntaxes (SCADE and Simulink fit both) helps languages gain acceptance, because
domain knowledge and style can be built into the languages, and visual syntaxes meet less
resistance, presumably because the learning curve appears gentler (although in practice, it may
be just as steep).

Yet the success of Simulink and SCADE is the exception, not the rule. Simulink succeeds in part
because it is not recognized by engineers as a “language.” It is, first and foremost, a modeling
tool. It just happens to be extremely convenient that models can be compiled (“code generated”)
into deployable code. Whereas modeling has traditionally been used as part of the requirements
definition process, in this case the requirements turn out to be a compilable implementation. The
distinction between “model” and “program” disappears.

Neither Simulink nor SCADE emerged from the mainstream programming languages research
community. It was argued in the workshop that language research is stalled in part because
language researchers tend to promote “universal” solutions, languages that completely replace
their predecessors. Simulink most notably does not do this; it fully embraces C as a mechanism
for defining primitive components and as a target for code generation, and therefore offers the
key advantages of C, access to hardware resources and code efficiency, but offers them within a
framework that has a clean semantic notion of time and concurrency. Simulink also leverages the
task scheduling provided by real-time operating systems (RTOS’s), but does not expose to the
designer the features that are difficult to use correctly, such as priorities. Priorities are used by
the code generator (with preemptive multitasking) to synthesize a correct implementation of the
Simulink semantics, but what the designer works with is the Simulink semantics, not the
abstraction of processes with priorities that RTOS’s depend on.

3. Platforms

Describing Simulink as a programming language is a stretch, since the role it plays in design
differs somewhat from the role that languages have traditionally played. A better conceptual
framework in which to consider design alternatives is to leverage the notion of “platforms.” A
platform is a set of designs. A programming language (e.g. Java) is a platform (the set of all Java
programs). The set is described by describing the syntax and some of the semantics of Java,
which defines what it means to be a member of this set. Java byte code is a platform. The Intel
x86 architecture is a platform (the set of all x86 programs). A compiler or an interpreter is a
translator from a design in one set to a design in another.

Simulink is a platform (the set of all Simulink diagrams). A code generator is a translator that
converts a member of this set into a member of the set of C programs. If we change the question
from “what programming language(s) should we use?” to “what platform(s) should we use?”
then we are likely to get much better answers because we haven’t prejudiced the answer with
preconceptions about what constitutes a “language” (e.g., it has to have a syntax that can be
given in BNF). Moreover, platforms can work in concert at different levels of abstraction (e.g.
Simulink with C).

4. Actor Orientation

It was argued in the workshop that concurrency and time play central roles in embedded
software, and yet are almost entirely absent in the semantics of prevailing programming
abstractions. When present, as in the threading model of Java, they are reflections of very old
and very low-level mechanisms. Java’s threads and monitors date back to the 1960’s, and as a
concurrency model, are actually extremely difficult to use reliably.

Many flaws in software are ultimately due to concurrency errors, and these flaws are difficult to
find. They manifest themselves rarely in an execution, so verification based on testing often fails
to find them. Code can be exercised in deployed form for years before a design flaw appears.
Static analysis techniques can help (e.g. Sun Microsystems’ LockLint), but these methods are
often thwarted by conservative approximations and/or false positives.

Worse, programs that use threads and monitors can be extremely difficult for programmers to
understand. It was argued at the workshop that if a program is incomprehensible, then no amount
of process improvement or schedule extensions will make it reliable. In fact, schedule extensions

are as likely to degrade the reliability of programs that are difficult to understand as they are to
improve it.

Formal methods can help detect flaws, and in the process can improve the understanding that a
designer has of the behavior of a complex program. But if the basic mechanisms fundamentally
lead to programs that are difficult to understand, then these improvements will fall short of
delivering reliable software.

Simulink and SCADE both offer concurrency models that are much easier to understand than
threads or processes that interact via monitors and semaphores. Both are based on a synchronous
abstraction, where components conceptually execute simultaneously, aligned with one or more
interlocked clocks. SCADE relies on an abstraction where components appears to execute
instantaneously, whereas Simulink is more explicit about the passage of time and supports
definition of tasks that take time to execute and execute concurrently with other tasks. In both
cases, every (correctly) compiled version of the program will execute identically, in that if it is
given the same inputs, it will produce the same outputs. In particular, the execution does not
depend on extraneous factors such as processor speed. Even this modest objective is often hard
to achieve using threads and monitors directly.

Simulink and SCADE both offer a software component model that is significantly different from
the object-oriented component model. Whereas in Java and C++ components interact with one
another primarily through method calls, in Simulink and SCADE they are concurrent
components that send messages via ports. This style of component interaction has been called
actor oriented, and it can complement and co-exist with object-oriented components. The key
feature of actor-oriented models is that they emphasize concurrency, and typically offer
concurrency mechanisms that are easier to understand than threads.

Many actor-oriented languages also offer a notion of time built-in to their semantics. Imperative
languages (C, C++, Java) abstract away the notion of time, and temporal properties have to be
specified indirectly by invoking operating system features (such as setting priorities). Simulink
models, for example, explicitly specify temporal behavior, and any (correct) implementation of
the Simulink model must conform to that specification.

There is much discussion of integrating “non functional” and “quality of service” aspects into
program specifications. Time is a key one of these aspects. However, much of this work
approaches the problem by adding expressiveness through APIs to object-oriented languages. It
was proposed at the workshop that together with adding expressiveness, it is also necessary to
create constraints. A clean semantics for time and concurrency cannot emerge simply as a design
pattern in languages that fundamentally lack time or concurrency in their semantics.

Actor-oriented modeling is an active, albeit somewhat immature, area of research. Computer
Science, as a discipline, has had only modest and sporadic interest in domain-specific languages,
and most actor-oriented languages in use today are domain specific. Investment in research in
this area (such as the DARPA MoBIES program) can strongly affect the level of activity in the
research community.

It was argued at the workshop that actor-oriented design has the potential for impact on the scale
that object-oriented has had. But much more work is needed, for example in modularity

techniques (classes, inheritance, interfaces, type systems, aspects), models of computation, and
visual notations.

5. Model Transformations and Multi-View Modeling

Modeling has always played a role in software design, but it has its pitfalls. Models can diverge
from an implementation over time, and they are frequently at a higher level of abstraction.
Introducing details later can introduce bugs and complexity. Moreover, models can be incorrect
and code synthesizers can be incorrect. Interaction with legacy or handwritten code can introduce
errors.

These problems are mitigated (but not eliminated) by blurring the distinction between the model
and the program. A Simulink model, for example, is both an (abstracted) model of a control
system and the source code for the embedded software.

With the distinction between models and programs becoming blurred, it becomes useful to have
multiple models/programs for the same design. This fact is well recognized in the object-oriented
programming community, where the various UML languages are used in concert to complement
source code specification and to describe, for example, static structure and sequential behavior.
Actor-oriented technique could similarly benefit from multi-view modeling. Research is needed
however in how to maintain coherence and consistency, how to integrate code generators, how to
weave specifications of diverse aspects, and how to leverage descriptions of the modeling
paradigms themselves (so called “meta modeling”).

6. Visual Notations

Visual notations have a checkered history in computer science, but have always played a role in
design. In mainstream design today, the various UML visual languages are often extensively
used to complement textual programs and specifications. Highly concurrent models seem to
benefit particularly from visual notations (e.g., Simulink). But there are questions about scaling
and about expressiveness that need to be addressed. For example, is the prevalent use of
hierarchy as the principle (or only) abstraction mechanism sufficient?

Visual notations should be used to express aspects of design that are not well expressed by text,
such as static structure and concurrency. They should not be used to replace text where text does
well, as in flowcharts, and certain elements of executable UML.

7. Conclusion

Bad design can be done in any language. No amount of formal analysis will turn a bad design
into a good design. No amount of schedule slippage or process planning will turn an
incomprehensible design into a reliable one. Bad designs evolve into worse designs, never into
good designs.

Artistry is the essence of good design. Languages are the medium of expression, and hence
greatly affect the product. High quality medium is essential for durable art. Tools (formal and
informal) are just tools, and high quality tools facilitate but do not guarantee artistry.

