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Abstract

In this paper, we consider concurrent models of computation where ”actors” (compo-
nents that are in charge of their own actions) communicate by exchanging messages. The
interfaces of actors principally consist of “ports,” which mediate the exchange of mes-
sages. Actor-oriented architectures contrast with and complement object-oriented models
by emphasizing the exchange of data between concurrent components rather than transfer
of control. Examples of such models of computation include the classical actor model,
synchronous languages, dataflow models, and discrete-event models. Many of these mod-
els of computation benefit considerably from having access to causality information about
the components. This paper augments the interfaces of such components to include such
causality information. It shows how this causality information can be algebraically com-
posed so that compositions of components acquire causality interfaces that are inferred
from their components and the interconnections. We illustrate the use of these causal-
ity interfaces to statically analyze discrete-event models for uniqueness of behaviors, syn-
chronous models for causality loops, and dataflow models for schedulability.

Key words: Actors, causality, dataflow, discrete-event models,
synchronous languages, compositional analysis, interfaces, behavioral
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1 Introduction

Although prevailing component architecture techniques in software are object ori-
ented, a number of researchers have been advocating a family of complementary
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approaches that we collectively call actor oriented [35]. In practice, the com-
ponents of object-oriented design interact principally through transfer of control
(method calls). The components are passive, and things get done to them, much
like physical “objects” from which the name arises. 2 “Actors” are concurrent, in
charge of their own actions. Their environment (which can include other actors)
provides them with data, and they react and possibly provide the environment with
additional data. As a component architecture, the difference is one of emphasis
and interpretation: objects interact principally through transfer of control, whereas
actors interact principally through exchange of data. An immediate consequence is
that actor-oriented designs tend to be highly concurrent.

Several distinct research communities fall within this broad framework. As
suggested by the name, the classical “actor model” [2,28] falls into this category.
In the actor model, components have their own thread of control and interact via
message passing. We are using the term “actors” more broadly, inspired the anal-
ogy with the physical world, where actors control their own actions. In fact, sev-
eral other communities also use similar ways of defining components. In the syn-
chronous/reactive languages [7], for example, components react at ticks of a global
clock, rather than reacting when other components invoke their methods. In the
synchronous language Esterel [11], components exchange data through variables
whose values are determined by solving fixed point equations. The Lustre [27] and
Signal [9] languages have a more dataflow flavor, where components consume in-
puts and produce outputs. Asynchronous dataflow models are also actor-oriented
in our sense, including both Kahn-MacQueen process networks [31], where each
component has its own thread of control, and Dennis-style dataflow [19], where
components (also called “actors” in the original literature) “fire” in response to the
availability of input data.

A number of component architectures that are not commonly considered in soft-
ware engineering also have an actor-oriented nature and are starting to be used as
source languages for embedded software [37,34]. Discrete-event (DE) systems, for
example, are commonly used in circuit design and in modeling and design of com-
munication networks [15,5]. In DE, components interact via events, which carry
data and a time stamp, and reactions are chronologically ordered by time stamp. In
continuous-time (CT) models, such as those specified in Simulink (from The Math-
Works) and Modelica [48], components interact via (semantically) continuous-time
signals, and execution engines approximate the continuous-time semantics with
discrete traces.

Surrounding the actor-oriented approach are a number of semantic formalisms
that complement traditional Turing-Church theories of computation by emphasiz-
ing interaction of concurrent components rather than sequential transformation
of data. These include stream formalisms [30,13,44], discrete-event formalisms
[52,33], and semantics for continuous time models [41]. A few formalisms are rich
enough to embrace a significant variety of actor-oriented models, including inter-

2 So called “active objects” add to the basic object-oriented model threads, but as a component
technology, active objects are primitive compared to the actor-oriented techniques we describe.
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action categories [1], behavioral types [40,4], interaction semantics [46], and the
tagged-signal model [39]. Some software frameworks also embrace a multiplicity
of actor-oriented component architectures, including abstract behavior types (com-
plementing the object-oriented abstract data types) [4], Reo [3], Ptolemy II [22],
PECOS [50], and Metropolis [25]. Finally, a number of researchers have argued
strongly for separation between the semantics of functionality (what is computed)
from that of interaction between components [14,32,26,49].

In the object-oriented world, a great deal of time and effort has gone into defin-
ing interfaces for components. Relatively little of this has been done for actor-
oriented models. In [51] Xiong extends some basic object-oriented typing concepts
to actor-oriented designs by clarifying subtyping relationships when interfaces con-
sist of ports (which represent senders or receivers of messages) rather than methods.
This is extended further in [36] with inheritance mechanisms.

A very general way of talking about interfaces for actor-oriented designs is in
the notion of interface theories [18]. Some concrete applications of such theories
are given in resource interfaces [16] and behavioral type systems [40].

This paper concentrates on a particular family of interface theories that capture
causality properties of actor-oriented designs. Causality properties reflect in the
interface the dependence that particular outputs have on particular inputs. The
work here is closest in spirit to the component interfaces of Broy in [12], where
causality properties of stream functions are formalized. In this paper, however, we
follow the spirit of de Alfaro and Henzinger’s interface theories [18] to create a
rather specialized theory (of causality only) that is orthogonal to other semantic
properties. So, whereas the work of Broy is tightly coupled to stream semantics,
ours here can be applied to streams as well as to other concurrent semantics such
as that of the synchronous languages, discrete-event models, and continuous-time
models.

As in object-oriented design, composition and abstraction are two central con-
cepts in actor-oriented design. Actors can be composed to form new actors, which
are called composite actors. Actors that are not composite actors are called atomic
actors; they may be predefined (as is typical, for example, in the synchronous
languages), or they may be user-defined, as is typical in coordination languages
[3,43,17]. In a compositional formalism, a composite actor is itself an actor, and
hence its interface(s) must be those of an actor. A major focus of this paper is on
how causality properties of composite actors can be determined from their compo-
nent actors.

Following [18] and common practice in object-oriented design, an actor can
have more than one interface. We consider actors with input and output ports,
where each input port receives zero or more messages, and the actor reacts to these
messages by producing messages on the output ports. One interface of the actor
defines the number of ports, gives the ports names or some other identity, and con-
strains the data types of the messages handled by the port [51]. Another interface
of the actor defines behavioral properties of the port, such as whether it requires
input messages to be present in order to react [40].
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In this paper, we consider a particular kind of behavioral interface that we call a
causality interface. A causality interface declares the dependency that output mes-
sages have on input messages. How this information is used depends on the model
of computation. In stream-oriented dataflow models, it can be used to analyze com-
positions of actors for deadlock or livelock [13,38]. In discrete-event models, it can
be used to ensure deterministic processing of simultaneous events [33,52]. In syn-
chronous languages, it can be used to identify whether a combinational cycle has
a reactive and deterministic behavior for all possible combinations of input values
[45,10,20]. In all three cases, the causality properties of components determine
existence and uniqueness of the behavior of a particular composition.

2 Causality

We begin by reviewing a formal structure for actors that is sufficiently expressive
to embrace all of the models of computation of interest. We then discuss briefly
syntaxes that are amenable to actor models and define the visual syntax used in this
paper. We then define causality interfaces and show how they can be used in the
models of computation of interest.

2.1 The Tagged Signal Model

The tagged-signal model [39] provides a formal framework for considering and
comparing actor-oriented models of computation. It is similar in objectives to the
coalgebraic formalism of abstract behavior types in [4], interaction categories [1],
and interaction semantics [46]. As with all three of these, the tagged signal model
seeks to model a variety of interaction styles between concurrent components. Our
notation here is adapted from [8].

Interactions between actors are tagged signals, which are sets of (tag, value)
pairs. The tags come from a partially or totally ordered set T , the structure of
which depends on the model of computation. For example, in a simple (perhaps
overly simple) discrete-event model of computation, T might be equal to the set
of non-negative real numbers with their ordinary numerical ordering, representing
time. In such a DE model, interactions between actors consist of time, value pairs.

An event is a pair (t, v), where t ∈ T and v ∈ V , a set of values. The set of
events is E = T × V . A signal s is a subset of E . So the set of all signals is P(E),
the power set. A functional signal s is a partial function from T to V , meaning that
if (t, v1) ∈ s and (t, v2) ∈ s, then v1 = v2. We denote the set of all functional
signals by S = [T ⇀ V ]. We will only consider functional signals here, so when
we say “signal” we mean “functional signal.”

Actors receive and produce events on ports. Thus, a port is associated with a
signal, which is a set of events. Given a set P of ports, a behavior is a function

σ: P → S.

That is, a behavior for a set of ports assigns to each port p ∈ P a signal σ(p) ∈ S.
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An actor a with ports Pa is a set of behaviors,

a ⊂ [Pa → S],

where [X → Y ] denotes the set of (total) functions with domain X and range
contained by Y . That is, an actor can be viewed as constraints on the signals at its
ports. A signal s ∈ S at port p is said to satisfy an actor a if there is a behavior
σ ∈ a such that s = σ(p).

A connector c between ports Pc is also a set of behaviors,

c ⊂ [Pc → S],

but with the constraint that for each behavior σ ∈ c, there is a signal s ∈ S such
that

∀ p ∈ Pc, σ(p) = s.

That is, a connector asserts that the signals at a set of ports are identical.
Given two sets of behaviors, a with ports Pa and b with ports Pb, the composi-

tion behavior set is the intersection, defined as

a ∧ b ⊂ [(Pa ∪ Pb) → S],

where

a ∧ b = {σ | σ ↓Pa∈ a and σ ↓Pb
∈ b},

where σ ↓P denotes the restriction of σ to the subset P of ports.
A set A of actors (each of which is a set of behaviors) and a set C of connectors

(each of which is also a set of behaviors) defines a composite actor. The composite
actor is defined to be the composition behavior set of the actors A and connectors
C.

In many actor-oriented formalisms, ports are either inputs or outputs to an actor
but not both. Consider an actor a with ports Pa = Pi ∪ Po, where Pi are the input
ports and Po are the output ports. The actor is said to be functional if

∀ σ1, σ2 ∈ a, (σ1 ↓Pi
= σ2 ↓Pi

) ⇒ (σ1 ↓Po= σ2 ↓Po).

Such an actor can be viewed as a function from input signals to output signals.
Specifically, given a functional actor a with input ports Pi and output ports Po, we
can define a function

Fa: [Pi → S] ⇀ [Po → S].(1)

This function is total if any signal at an input port satisfies the actor. Otherwise it
is partial. If the function is total, the actor is said to be receptive. A connector, of
course, is functional and receptive.

An actor with no input ports (only output ports) is functional if and only if its
behavior set is a singleton set. That is, it has only one behavior. An actor with no
output ports (only input ports) is always functional.

A composition of actors and connectors is itself an actor. The input ports of such
a composition can include any input port of a component actor that does not share
a connection with an output port of a component actor. If the composition has no
input ports, it is said to be closed. A composition is determinate if it is functional.
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Fig. 1. A composition of three actors and its interpretation as a feedback system.

A key question in many actor-oriented formalisms is, given a set of total functional
actors and connectors, is the composition functional and total? This translates into
the question of existence and uniqueness of behaviors of compositions. It deter-
mines whether a composition is determinate and whether it is receptive.

2.2 Syntax

Actor-oriented languages can be either self-contained programming languages (e.g.
Esterel, Lustre) or coordination languages (e.g. Simulink, Ptolemy II). In the for-
mer case, the “atomic actors” are the language primitives. In the latter case, the
“atomic actors” are defined in a host language that is typically not actor oriented
(but is often object oriented). Actor-oriented design is amenable to either textual
syntaxes, which resemble those of more traditional computer programs, and visual
syntaxes, with “boxes” representing actors and “wires” representing connections.
The synchronous languages Esterel, Lustre, and Signal, for example, have textual
syntaxes. Ports and connectors are syntactically represented in these languages by
variable names. Using the same variable name in two modules implicitly defines
ports for those modules and a connection between those ports. Visual syntaxes
are more explicit about this architecture. Examples with visual syntaxes include
Simulink, LabVIEW, and Ptolemy II.

A visual syntax for a simple three-actor composition is shown in figure 1(a).
Here, the actors are rendered as boxes, the ports as triangles, and the connectors
as wires between ports. The ports pointing into the boxes are input ports and the
ports pointing out of the boxes are output ports. A textual syntax for the same
composition might associate a language primitive or a user-defined module with
each of the boxes and a variable name with each of the wires.

2.3 Semantics

The composition in figure 1(a) can be redrawn as shown in figure 1(b), which sug-
gests the abstraction shown in figure 1(c). It is easy to see that any block diagram
of this type can be redrawn in this way and abstracted to a single actor with the
same number of input and output ports, with each output port connected back to a
corresponding input port.
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It is also easy to see that if actors a1, a2, and a3 in figure 1(b) are functional, then
the composite actor a in figure 1(c) is functional. Let Fa denote the function of the
form (1) giving the behaviors of a. Then the behavior of the feedback composition
in figure 1(c) is a function

f : {p1, p2, p3} → S

that is a fixed point of Fa. That is,

Fa(f) = f.

A key question, of course, is whether such a fixed point exists (does the composition
have a behavior?) and whether it is unique (is the composition determinate?).

For some models of computation, a unique semantics is assigned even when
there are multiple fixed points by associating a partial order with the set S of signals
and choosing the least or greatest fixed point. For dataflow models [30,13,38], a
prefix order on the signals turns the set of signals into a complete partial order
(CPO). Given such a CPO, we define the semantics of the diagram to be the least
fixed point. The least fixed point is assured of existing if a is monotonic, and a
constructive procedure exists for finding that least fixed point if a is also continuous
(in the prefix order) [30]. It is easy to show that if a1, a2, and a3 in figure 1(b) are
continuous, then so is a in figure 1(c). Hence, continuousness is a property that
composes easily.

However, even when a unique fixed point exists and can be found, the result
may not be desirable. Suppose for example that in figure 1(c) Fa is the identity
function. This function is continuous, so under the prefix order, the least fixed point
exists and can be found constructively. In fact, the least fixed point assigns to each
port the empty signal. We interpret this result as deadlock, because an execution
of the program cannot proceed beyond the empty signals. Whether such a dead-
lock condition exists is much harder to determine than whether the composition
yields a continuous function. In fact, it can be shown that in general this question is
undecidable for dataflow models [38]. The causality interfaces we define here pro-
vide sufficient conditions that will often determine whether a composition yields a
deadlock condition.

In synchronous/reactive models (as in the synchronous languages Esterel and
Lustre), the problem of existence and uniqueness reduces to determining existence
and uniqueness at each tick of the global clock, rather than over the entire execu-
tion. In this case, we can use a flat CPO (rather than one based on a prefix order)
and similarly assign a least fixed point semantics [45,10,20]. In this CPO, all mono-
tonic functions are continuous. As in the dataflow case, continuity composes easily,
but does not tell the whole story. In particular, the least fixed point may include the
bottom⊥ of the CPO, which represents an “unknown” value. When this occurs, the
program is said to have a causality loop. Whether a program has a causality loop
can be difficult to determine in general, but one can define a conservative “con-
structive semantics” that enables a finite static analysis of programs to determine
whether a program has a causality loop [10]. One can further define a language
that needs to know very little about the actors to determine whether such a causal-
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ity loop exists [20]. The required information is exactly what is represented by our
causality interfaces.

In discrete-event models, it is customary to define semantics somewhat differ-
ently, by defining a metric space on the set S of signals [52,33]. We are interested
in existence and uniqueness of the behavior of a feedback composition like that in
figure 1(c). It is sufficient for the composite actor a to be functional and for the
function Fa to be a contraction map in the metric space. Our causality interfaces
help determine whether a composition yields a contraction map.

In all three cases (dataflow, synchronous, and discrete-events), the difficulty
that can arise in figure 1(c) is a dependency cycle that is not inductive (a causality
loop), and our causality interfaces are specifically intended to help to determine
when such causality loops exist.

2.4 Causality Interfaces

A causality interface for an actor a with input ports Pi and output ports Po is a
function

δ: Pi × Po → D,(2)

where D is an ordered set with two binary operations ⊗ and ⊕ that satisfy the
axioms given below. First, we require that the operators ⊕ and ⊗ be associative,

∀d1, d2, d3 ∈ D, (d1 ⊕ d2)⊕ d3 = d1 ⊕ (d2 ⊕ d3),

∀d1, d2, d3 ∈ D, (d1 ⊗ d2)⊗ d3 = d1 ⊗ (d2 ⊗ d3),

commutative,

∀d1, d2 ∈ D, d1 ⊕ d2 = d2 ⊕ d1,

∀d1, d2 ∈ D, d1 ⊗ d2 = d2 ⊗ d1,

and distributive,

∀d1, d2, d3 ∈ D, d1 ⊗ (d2 ⊕ d3) = (d1 ⊗ d2)⊕ (d1 ⊗ d3).

In addition, we require an additive and multiplicative identity, called 0 and 1, re-
spectively. That is

∃ 0 ∈ D such that ∀ d ∈ D, d⊕ 0 = d

∃ 1 ∈ D such that ∀ d ∈ D, d⊗ 1 = d

∀ d ∈ D, d⊗ 0 = 0

∀ d ∈ D, d⊕ d = d

The ordering relation < on the set D is a total order, meaning, as usual,

∀d ∈ D, d ≮ d

∀d1, d2 ∈ D, d1 ≮ d2 and d2 ≮ d1 ⇒ d1 = d2

∀d1, d2, d3 ∈ D, d1 < d2 and d2 < d3 ⇒ d1 < d3.
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As usual, the = relation is ordinary equality, d ≮ d is shorthand for an assertion
that d < d is false, and d1 ≤ d2 is shorthand for (d1 < d2) ∨ (d1 = d2).

Finally, the key axioms of D relate the operators and the order as follows.

∀d1, d2 ∈ D, d1 ≤ (d1 ⊗ d2)

∀d1, d2 ∈ D, (d1 ⊕ d2) ≤ d1

The elements of D are called dependencies, and δ(p1, p2) denotes the dependency
that port p2 has on p1.

We will be interested in two specific cases. In the boolean dependency case,
D = {true, false}, ⊕ is logical and, ⊗ is logical or, false < true, 0 = true, and
1 = false. With these definitions, all of the above axioms are satisfied.

In the weighted dependency case, D = R+ ∪ {∞}, the non-negative real num-
bers plus infinity, ⊕ is the min function, ⊗ is addition, < is ordinary numerical
ordering, 0 = ∞, and 1 = 0 3 . Again, with these definitions, all of the above
axioms are satisfied.

2.5 Composition Analysis

Given a set A of actors, a set C of connectors, and the causality interfaces for the
actors, we can determine the causality interface of the composition. Consider the
example in figure 1. To determine the causality interface of the composite actor a,
we need to determine the function

δa: {p1, p2, p3} × {p4, p5, p6} → D.

To do this, we form a graph of ports, and observe that the paths between ports
traverse both actors and connectors. To determine the value of δa(p1, p4), for ex-
ample, we need to consider all the paths between p1 and p4. A path consists of
links provided by connectors and actors. The dependencies of the links and actors
are combined using the ⊗ operator for series compositions and the ⊕ operator for
parallel compositions.

Consider the example in figure 1. From figure 1(b) we can immediately con-
clude that

δa(p1, p5) = δ1(p1, p5),

where δ1 is the causality interface of actor a1. Where there are no dependencies,
the causality interface yields the additive identity, so

δa(p1, p4) = 0.

Suppose for example that figure 1 represents a synchronous program in, say,
Lustre. For synchronous programs, we use boolean dependencies, where D =
{true, false}. For ports p and p′, δ(p, p′) = false is interpreted to mean that at a tick
of the clock, the value at p′ depends on the value at p. A dependency value true
is interpreted to mean that there is no such dependency. Suppose we annotate the

3 In this case, the dependency set is also called a min-plus algebra [6].
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Fig. 2. The composition of figure 1 annotated with boolean dependencies. If the dependen-
cies in (a) are given, the dependencies in (c) can be systematically inferred.

diagram as shown in figure 2, where a solid line denotes a dependency with value
false, a dashed line denotes a dependency with value true, and no line denotes a
dependency with value 0 = true. Hence, for instance, the dashed line between p2
and p4 might mean that there is a “pre” operator, which decouples the value at p4
from that at p2 in each tick of the clock. The dashed line, therefore, is equivalent
to no line. Then the causality of the interface of the composite actor a becomes as
shown in 2(c).

Connectors have particularly simple causality interfaces. A connector c ∈ C
linking output port p and input port p′ yield the dependency

δ(p, p′) = 1,

the multiplicative identity.
We can now analyze the feedback composition for causality loops. A causality

loop exists if the dependency between any port and itself is false. Consider for
example port p4. Using the fact that connectors yield the multiplicative identity for
dependencies, we can write this as

δ(p4, p4) = δ1(p1, p5)⊗ δ2(p2, p4)

= false⊗ true

= true

where we have used the fact that in boolean dependencies, ⊗ is logical or. We
can similarly check every port to determine that this composition has no causality
loops.

Consider the same diagram, but now representing a discrete-event model. For
discrete-event models, we use a weighted dependency model, where D = R+ ∪
{∞}, the non-negative real numbers plus infinity, ⊕ is the min function, ⊗ is ad-
dition, < is ordinary numerical ordering, 0 = ∞, and 1 = 0. Each dependency
represents a time delay. In figure 2, we now interpret solid lines to represent a delay
of zero, so for example

δ1(p1, p5) = 0.
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Fig. 3. A more complicated composition.

Fig. 4. Dependencies for the composition in figure 3. If the dependencies in (a) are given,
the dependencies in (c) can be systematically inferred.

A causality loop occurs if the dependency from any port to itself is zero. A similar
analysis again yields the fact that the model in figure 2 has no causality loops.

Consider the slightly more complicated composition shown in figure 3. This
example has a more complicated link, joining ports p5, p2, and p7. It also has
parallel paths. Suppose that the dependencies are as shown in figure 4. Then we
can perform the composition analysis to determine that port p4 has a causality loop.
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In particular, assuming a synchronous model,

δ(p4, p4) = δ1(p1, p5)⊗ (δ2(p2, p4)⊕ (δ3(p7, p6)⊗ δ2(p3, p4)))

= false⊗ (true⊕ (false⊗ false))

= false.

Just as the⊗ operator is used to compose causality of chained links, the⊕ operator
is used to compose causality of parallel links. The same analysis would reveal a
causality loop in a discrete-event model.

2.6 Dynamic Dependencies

In the above examples, the dependencies are static (they do not change during ex-
ecution of the program). This situation is excessively restrictive in practice. One
simple way to model dynamically changing dependencies is to use modal models
[24]. In a modal model, an actor is associated with a state machine, and its interface
can depend on the state of the state machine. In particular, the actor could have a
different causality interface in each state of the state machine. In particular, let X
denote the set of states of the state machine. Then the causality interfaces are given
by a function

δ′: Pi × Po ×X → D.

A simple conservative analysis would combine the causality interfaces in all
the states to get a conservative causality for the actor. Specifically, for an input port
pi ∈ Pi and an output port po ∈ Po,

δ(pi, po) =
⊕
x∈X

δ′(pi, po, x).

This is conservative because causality analysis based on this interface may reveal
a causality loop that is illusory, for example if the state in which the causality loop
occurs is not reachable.

Depending on the model of computation and the semantics of modal models,
the reachability of states in the state machine may be undecidable [24]. Hence,
a more precise analysis may not always be possible. Nonetheless, it is easy to
imagine circumstances in which a precise analysis could be carried out. We leave
this to the imagination of the reader.

2.7 Determining Causality Interfaces for Atomic Actors

The causality analysis technique we have given determines the causality interface
of a composition based on causality interfaces of the components and their inter-
connections. An interesting question arises: how do we determine the causality
interfaces of atomic actors? If the atomic actors are language primitives, as in the
synchronous langauges, then the causality interfaces of the primitives are simply
part of the language definition. They would be enumerated for use by a compiler.
However, in the case of coordination languages, the causality interfaces might be
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difficult to infer. If the atomic actors are defined in a conventional imperative lan-
guage, then standard compiler techniques such as program dependence graphs (see
for example [23,29,42]) might be usable. However, given the Turing completeness
of such languages, such analysis is likely to have to be conservative. A better alter-
native is probably to use an actor definition language such as Cal [21] or StreamIT
[47] that is more amenable to such analysis.

3 Conclusion

We have given an interface theory that abstractly represents causality of actors and
that easily composes to get causality interfaces of composite actors. The theory
appears to be applicable to a wide range of actor-oriented models. We have given
examples of its application to synchronous languages and to discrete-event models,
and have suggested how to apply it to dataflow models.
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