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Abstract—Prior work has shown that it is possible to design
microarchitectures called PRET machines that deliver precise
and repeatable timing of software execution without sacrificing
performance. That prior work provides specific designs for PRET
microarchitectures and compares them against conventional de-
signs. This paper defines a class of microarchitectures called
abstract PRET machines (APMs) that capture the essential
temporal properties of PRET machines. We show that APMs
deliver deterministic timing with no loss of performance for a
family of real-time problems consisting of sporadic event streams
with deadlines equal to periods. On the other hand, we observe
a tradeoff between deterministic timing and the ability to meet
deadlines for sporadic event streams with constrained deadlines.

I. INTRODUCTION

Cyberphysical systems (CPSs) involve software that interacts
with the physical world, often with timing-sensitive safety-
critical physical sensing and actuation. The timing of the
execution of the software in such systems matters quite a
bit because it matters in the physical world. Real-time software
is not just an information technology because delivering the
correct information is not sufficient. When the information is
delivered is also important.

Way back in 1988, Stankovic cataloged a few misinter-
pretations of the term “real time” and laid out a research
agenda that is dishearteningly valid today [1]. For example, he
points out that real-time computing is not just fast computing.
In fact, many real-time systems execute on decidedly slow
computers, such as low-end microcontrollers, and timing
precision, predictability, and repeatability are more important
than speed.

Exact timing in physical processes is difficult to define,
much less achieve. However, real-time systems may require that
events occur in a specified order given by some deterministic
model. And they may require that events occur sufficiently
close to a specified event in some time measurement device.
What is “sufficiently close” will depend on the application. A
control system engineer, for example, may use a Newtonian
model of time and, under this model, may be able to prove that

This work was supported in part by the iCyPhy Research Center (Industrial
Cyber-Physical Systems, supported by Denso, Ford, IHI, National Instruments,
Siemens, and Toyota), and by the National Science Foundation, NSF award
#1446619 (Mathematical Theory of CPS).

stability is maintained if events occur within some specified
latency after some stimulus.

No engineered system is perfect. No matter what specifica-
tions we use for what a “correct behavior” of the system is,
there will always be the possibility that the realized system will
deviate from that behavior in the field. The goal of engineering,
therefore, needs to be to clearly define what is a correct
behavior, to design a system that realizes that behavior with
high probability, to provide detectors for violations, and to
provide safe fallback behaviors when violations occur.

A straightforward way to define correct behavior is to specify
what properties the output of a system must exhibit for each
possible input. A repeatable property is one that is exhibited
by every correct behavior for a given input. This notion is
central to the idea of testing, where a system is checked to see
whether its reaction to specified test inputs yields the required
properties. For real-time systems, the timing of an output is
an essential property of that output. Edwards et al. argue that
“repeatable timing is more important and more achievable than
predictable timing” [2].

At a minimum, to achieve these goals for CPS, real-time
software methodologies rely on being able to bound the
execution time of sections of code. We may also need tighter
control over timing in order to ensure that the order of events
conforms to a specified correct behavior. A simple bound
on execution time may not be sufficient because finishing an
execution early may change the order in which events occur.

But even the minimal requirement, bounding execution time,
is difficult both in theory and in practice. In theory, we know
from Rice’s theorem that all nontrivial, semantic properties of
programs are undecidable [3]. Whereas timing is not a semantic
property of programs in any modern programming language,
it depends on nontrivial semantic properties of programs. For
example, it depends on halting, in that any program (or program
segment) that fails to halt has no bound on its execution time
unless execution is infinitely fast. Therefore, in theory, bounded
time is undecidable.

But “undecidable” simply means that no algorithm can
determine whether the property holds for all programs. In
practice, engineers routinely rely on execution-time analysis
that “solves” the halting problem, bounding the length of the
paths that an execution takes through a program.
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There are a number of reasons that timing properties are
difficult to make repeatable. At the microarchitecture level,
instruction set architectures (ISAs) define the correct behavior
of a microprocessor implementation in a way that makes timing
irrelevant to correctness. Timing is merely a performance metric,
not a correctness criterion. In contrast, arithmetic and logic
are correctness criteria. A microprocessor that fails to take
a branch when the condition evaluates to true is simply an
incorrect implementation. But a microprocessor that takes a
long time to take the branch is just slow. Computer architects
have long exploited this property, that timing is irrelevant to
correctness. They have developed clever ways to deal with
deep pipelines, such as speculative execution and instruction re-
ordering, and with memory heterogeneity, such as multi-level
caches. These techniques, however, introduce highly variable
and unpredictable timing. The goal is to speed up a typical
execution, not to make timing properties repeatable.

The design of modern programming languages reflects the
microarchitectural choice, so timing is again irrelevant to
correctness. Hence, programmers have to step outside the
programming abstraction to control timing, for example by
writing to memory-mapped registers to set up a timer interrupt,
or more indirectly, by making operating system calls to trigger
context switches. The result is timing granularity that is much
more coarse than what is achievable in the hardware. More
important, since interrupts occur unpredictably relative to
whatever is currently executing, these techniques inevitably
make timing behavior nonrepeatable.

Despite these challenges, engineers have managed to make
reliable real-time systems. How? Techniques include:
1. overprovisioning,
2. using old technology,
3. execution time analysis, and
4. real-time operating systems (RTOSs).
Overprovisioning is common because Moore’s law has given
us impressively fast processors. If the execution of software is
essentially instantaneous with respect to the physical processes
with which it is interacting, then the timing of the software
becomes irrelevant. However, overprovisioning is becoming
increasingly difficult as the complexity of CPS applications
increases and as Moore’s law slows down. Moreover, many CPS
applications are extremely cost sensitive or energy constrained,
making overprovisioning a poor choice.

Using old technology is also common. Safety-critical avion-
ics software, for example, rarely uses modern programming
languages, operating systems, or even interrupts. Software is
written at a very low level, I/O is done through polling rather
than interrupts, and multitasking is avoided. Programmable
logic controllers (PLCs), widely use in industrial automation,
are often programmed using ladder logic, a notation that dates
back to the days when the logic of digital controllers was
entirely controlled with mechanical relays. Many embedded
systems designers avoid multicore chips because of problems
they introduce with timing [4], a strategy that is becoming
increasingly difficult as single-core chips become more rare.

And programmers often disable or lock caches, thereby getting
little advantage from the memory hierarchy.

The third approach, execution-time analysis, puts bounds on
the time it can take for sections of code to execute [5]. This
is fundamentally a hard problem because of Rice’s theorem.
However, even when the execution paths through the code can
be analyzed, often with the help of manual annotations such
as bounds on loops, the microarchitectural features mentioned
above can make analysis extremely difficult. The analysis tools
need a detailed model of the particular implementation of the
processor that will run the code, including every minute (and
often undocumented) detail. As a result, a program that has
been validated using execution-time analysis is only validated
for the particular piece of silicon that has been modeled.
Manufacturers of safety-critical embedded systems, therefore,
are forced to stockpile the hardware that they expect to need
for the entire production run of a product. This runs counter to
most basic principles in modern supply chain management for
manufacturing, and it makes it impossible to take advantage of
technology improvements for cost reduction, improved safety,
or reduced energy consumption.

Moreover, execution-time analysis tools often need to make
unrealistic assumptions, such as that interrupts are disabled, in
order to get reasonable bounds. Interrupts can disrupt the state
of the machine, for example by altering the cache or changing
the state of the branch predictor. If interrupts are enabled,
then analysis tools need to make pessimistic assumptions
about the state of the machine, resulting in loose bounds on
execution time [6]. If bounds are loose, then overprovisioning
is unavoidable.

In practice, designers either avoid interrupts altogether (as
commonly done in avionics) or attempt to keep program
segments short so that the time during which interrupts are
disabled is small. Both strategies are increasingly difficult as we
demand more functionality from these programs. As execution
time increases, either the polling frequency decreases or the
variability of the timing of other tasks that get locked out by
disabled interrupts increases.

The fourth technique, RTOSs, provides real-time scheduling
policies in a multitasking operating system. At the core, RTOSs
use timer interrupts and priorities associated with tasks. There
is a long history of strategies that can be proven optimal
under (often unrealistic) assumptions, such as no context-switch
overhead [7]. In simple scenarios, these strategies can yield
repeatable behaviors, but in more complex scenarios, they can
even become chaotic [8], which makes behavior impossible
to predict. Moreover, because of the reliance on interrupts,
RTOSs violate the typical assumptions made for execution-time
analysis. For such an approach to be sound, great care needs to
be taken to account for all overhead induced by context switches
including cache-related preemption delays [9]. A consequence
is that when RTOSs deliver predictable timing, the precision
of the resulting timing is several orders of magnitude coarser
than what is in principle achievable with the underlying digital
hardware.

Taken together, these techniques do make it possible to



design safety-critical real-time embedded software, but their
weaknesses suggest that it may be time to step back and reexam-
ine the problem of real-time computing with fresh eyes. After
all, microprocessors are realized in a technology, synchronous
digital logic, that is capable of realizing sub-nanosecond
timing precision with astonish reliability and repeatability. It
is the layers of abstraction overlaid on this technology, ISAs,
programming languages, RTOSs, and networks, that discard
timing.

In this paper, we focus on timing precision, predictability,
and repeatability. We build on prior work that shows that
it is possible to design microarchitectures called PRET ma-
chines that deliver precise and repeatable timing of software
execution without sacrificing performance. That prior work
has demonstrated this by providing specific designs for PRET
microarchitectures and comparing them against conventional
designs. This paper defines a class of microarchitectures called
abstract PRET machines (APMs) that capture the essential
temporal properties of PRET machines. We prove that APMs
deliver deterministic timing with no loss of performance
by considering a family of real-time problems consisting of
sporadic event streams and time-critical reactions to those
events. Moreover, we show that for some workloads, APMs
can achieve better performance than a conventional machine
by eliminating pipeline bubbles and requiring less pessimistic
bounds on execution time.

II. BACKGROUND WORK

In 2007, Edwards and Lee introduced the term PRET
machines for precision timed machines and argued for their
use in real-time applications. At the time, they admitted that
“the revolution may take decades” [10]. Indeed, the revolution
is off to a slow start, though there are some signs of interest
in industry.

A. Processors

XMOS (http://www.xmos.com/), founded in 2005, has
produced since 2008 multicore processors with deterministic
timing aimed at high-performance audio applications. XMOS
coined the term “software defined silicon” to capture the fact
that the software in these processors can interact with hardware
at a level of precision comparable to hardware.

ARM Holdings (http://www.arm.com/), a leading producer
of embedded processors now owned by SoftBank, announced
in 2016 an ARM Cortex-R52 processors that claims “hard
determinism” and appears to have some PRET-like features
[11]. Specifically, the architecture is optimized to avoid variable
time, nondeterministic operations and is also optimized quick
interrupt entry and context switching.

De Dinechin et al. [12] describe the KALRAY MPPA R©-256,
a many-core processor specifically designed to be suitable for
time-critical computing. It consists of 16 clusters, which each
contain 16 in-order VLIW cores. Each of the clusters also
contains 16 SRAM banks, which can be flexibly allocated to
the 16 cores of the respective cluster to eliminate interference
between processes on different cores.

There are also commercial specialized coprocessors with
some PRET-like features. One example is Qualcomm’s
Hexagon, used as a digital signal processor (DSP) in the
Qualcomm Snapdragon SoC. Another example is NXP Semi-
conductors’ second-generation Enhanced Time Processor Units
(eTPU2), used for timing control in microcontrollers. These
units support 32 channels that can each process an input signal
and generate an output signal, with a priority-based hardware
scheduler to support concurrency.

PRET machines have also been a subject of study in research
labs. Our Berkeley team has developed three generations of
PRET architectures, the third of which forms the foundation
for this paper. Schoeberl has developed a Java processor and a
family of techniques for managing memory hierarchies in a
deterministic way [13], [14]. Hahn et al. [15] show to build a
pipelined processor without timing anomalies [16], [17]. On
the software side, Andalam et al. have proposed a language
called PRET-C which they evaluated on a dedicated target
architecture called ARPRET, a modified version of the Xilinx
MicroBlaze with some PRET-like features [18].

B. Execution-Time Analysis

Execution-time analysis is a challenging problem [5]. In
addition to solving the undecidable problems of program flow
analysis, accurate determination of worst-case execution time
(WCET) requires detailed modeling of the processor imple-
mentation, including all details of the memory system, pipeline,
and instruction set realization. A state-of-the-art industrial tool,
AbsInt’s aiT (https://www.absint.com/ait/), was used on the
Airbus A380 for analyzing safety-critical software. Open-source
research tools such as platin [19] and GameTime [20] illustrate
creative innovations that are possible. GameTime, for example,
combines flow analysis with empirical measurements on a
particular processor implementation.

Assessing the effectiveness of these tools is challenging.
Wägemann et al. describe a tool called GenE that synthe-
sizes benchmarks whose flow facts are known [21]. These
benchmarks can be used to test WCET tools because the
actual worst-case flow path is known by construction. They
use the tool to evaluate aiT and platin, showing that for most
benchmarks, aiT comes impressively close to the actual WCET,
whereas platin does not do as well. However, their synthesized
benchmarks also discovered programs for which aiT’s WCET
estimate was less than the actual execution time, revealing a
bug in the tool’s modeling of the ARM Cortex-M4 platform
(which was later fixed, according to AbsInt). Such bugs seem
inevitable because, as expressed by Wägemann et al. “the most
accurate execution-time model is the processor itself” (which
arguably is not a model), and the processor itself is rarely fully
documented. PRET machines help to correct this problem by
including certain timing properties in the very definition of the
ISA. They become part of what it means to correctly realize
the processor architecture.

Another key property of PRET machines is that the execution
time of each instruction is independent of execution history.
Conventional processors do not have this property, which



reduces repeatability and increases the complexity of timing
analysis. For example, whether a memory instruction misses in
a cache and takes long to execute depends on the state of the
cache, which depends on the execution history. Capitalizing on
this property, Reineke and Doerfert [22] introduce architecture-
parametric WCET analysis, which bounds a program’s WCET
in terms of architectural parameters, such as the scratchpad or
the DRAM latency, which may vary from one generation of a
PRET architecture to the next.

C. Berkeley PRET Machines

We base this paper on the latest of three generations of
PRET machines developed at Berkeley. The first generation,
which was never realized in silicon, uses a SPARC-based
processor model to demonstrate the ideas of using hardware
multithreading, scratchpad memories, and scheduled access to
main memory in PRET machines [23]. The second generation,
PTARM, which was realized as an FPGA implementation,
was an extension of an ARM instruction set [24]. This project
demonstrated that with sufficient concurrency in the application,
achieving repeatable timing behavior does not come at a
performance cost. Reineke et al. also used this architecture
to show that variable latencies in DRAM memories could be
managed by bank privatization [25].

The third generation, FlexPRET, is an open-source RISC-
V architecture with a variable number of hardware threads
[26], [27]. FlexPRET can operate as a conventional RISC-
V processor with only one thread, a mode in which its
performance is comparable to a conventional in-order processor.
But an application can define hard-real-time threads that, when
active, occupy a fixed, deterministic schedule of execution with
repeatable timing. FlexPRET thereby supports a mixture of
timing-critical and best-effort software tasks, opportunistically
devoting to the best-effort tasks all cycles that are unused by
the timing-critical tasks. Kim et al. describe a memory con-
troller that supports such mixed criticality systems, preserving
timing determinacy for timing-critical tasks without sacrificing
performance for the best-effort tasks [28].

All Berkeley PRET machines use fine-grained multithreading
(interleaved multithreading, barrel processor), a technique
dating back to the CDC 6600 and also found currently in
XMOS processors. In fine-grained multithreading, instructions
from different hardware threads are interleaved in the processor
pipeline. When a pipeline only executes instructions from a
single hardware thread, resolving dependencies between in-
structions in different pipeline stages requires either speculation
or not performing useful work for a cycle or more. Each wasted
cycle is called a pipeline bubble. Increased spacing between
dependent instructions, introduced by interleaving, reduces or
eliminates both speculation and pipeline bubbles. The costs of
such interleaving are concurrently storing state for all hardware
threads, each of which requires its own register set; reduced
throughput of any particular hardware thread; and fine-grained
sharing between threads of cache or scratchpad memory. For
this price, the timing of program execution becomes much

more deterministic, and strong assurances can be provided of
meeting hard-real-time deadlines.

The SPARC-based PRET machine and PTARM use fixed
round-robin scheduling between the hardware threads, even
if a hardware thread is idle waiting for an event, to provide
predictable and repeatable timing. In other words, each hard-
ware thread executes at a fixed, constant rate, for example,
once every four cycles. The XMOS XS1 processor supports
round-robin scheduling between all active hardware threads,
which allows a hardware thread to wait for an event without
using any pipeline cycles. The drawback for timing precision is
that the rate at which a hardware thread executes then depends
on the number of active threads at each clock cycle. FlexPRET
offers the best of both by supporting an arbitrary interleaving
of fine-grained threads with a flexible scheduler.

In FlexPRET, hardware threads are classified as either hard-
real-time threads (HRT) or soft-real-time threads (SRT). The
scheduler issues instructions from HRTs at a fixed, constant
rate, so the timing of these threads is not affected by anything
else going on in the machine. Only in a cycle that is not
reserved for an HRT will the scheduler issue an instruction
from an SRT. SRTs can also reserve cycles to maintain a
minimum rate, but otherwise the scheduler uses a round-robin
selection between all active SRTs. The number of HRTs and
SRTs is variable but bounded by the number of register sets
provided by the hardware. Of course, both HRTs and SRTs
can perform conventional multitasking, so the total number
of threads in the application is not limited by the hardware.
A FlexPRET configured with a single SRT is, effectively, a
conventional RISC-V processor.

The FlexPRET thread scheduler was designed to provide
flexibility with low complexity, but other implementations could
also provide properties useful for PRET machines. In this paper,
we ignore the potential complexity of the scheduler, defining
abstract PRET machines to be flexible enough to achieve any
specified duty cycle for HRTs.

All Berkeley PRET machines also add temporal properties
to some instructions in the ISA to make timing behavior
a property of a program instead of a side effect of the
implementation. The challenge is to introduce timing control
without preventing performance optimizations by compilers
and processor architects. One example is a deadline instruction
that waits until a counter, decremented every cycle, reaches
zero and continues if the deadline has already expired [29].
The units of the counter can be either clock cycles or time. A
more interesting and stricter version of this instruction, called
MTFD [30], guarantees that the deadline has not expired when
the instruction executes. Timing analysis is then needed for a
program to run correctly on a particular processor.

III. ABSTRACT PRET MACHINES

In this paper, we introduce abstract PRET machines
(APMs) based on the FlexPRET architecture described in
the previous section. An APM issues a single instruction each
cycle, and its pipeline supports all possible interleavings of



instructions from hardware threads. By using an idealized case,
we evaluate an entire family of concrete PRET machines.

Let T denote the set of all hardware threads. Then N =
|T | is the number of hardware threads, or equivalently, the
number of sets of machine registers. At any given time t,
H(t) ⊆ T denotes the set of active hardware threads that are
designated hard-real-time threads. The dispatch unit dispatches
instructions from these threads into the execution unit according
to a fixed periodic schedule. Any cycles that are left unused
by this schedule are used by any active soft-real-time threads
in T \H(t).

Each HRT h ∈ H(t) has a periodic schedule for dispatching
its instructions into the execution pipeline. We assume that
this periodic schedule is sparse enough that there will never
be pipeline bubbles that prevent the dispatch of an instruction
from an HRT into the pipeline or that when bubbles do
occur, they occur deterministically, independent of the data.
Under this assumption, the execution of an HRT exhibits
deterministic timing at the precision of a clock cycle. This
assumption is easy to achieve in practice. The FlexPRET
microarchitecture presented in [26], [27] never experiences
pipeline bubbles when an instruction is issued every fourth
clock cycle. Furthermore, if instructions are issued more
frequently than this, a pipeline bubble in FlexPRET reduces
overall throughput but not determinism because FlexPRET
forgoes optimizations like branch prediction and speculative
execution.

Let ph(t) denote the duty cycle or fraction of dispatch
cycles used by thread h at time t. E.g., if ph(t) = 0.25, then
the schedule for h may dispatch an instruction every fourth
clock cycle. Clearly, 0 ≤ ph(t) ≤ 1 for all t. No HRT may
use more than 100% of the available cycles in the machine.

The fraction of cycles used by all HRTs at time t is

uH(t) =
∑

h∈H(t)

ph(t). (1)

We call this the HRT utilization. We similarly require that
uH(t) ≤ 1 for all t. The ensemble of HRTs cannot use more
than 100% of the available cycles. But in addition to this trivial
constraint, there is a more complicated constraint that HRTs
must make mutually exclusive use of hardware resources. This
is easily accomplished by a brute-force method of constraining
the values of ph(t) to a few possibilities (e.g., 1/2, 1/4, 1/8,
1/16) and then performing a round-robin policy. But optimizing
the schedule with more allowable values of ph(t) is likely to
be challenging. For our discussion of APMs, we ignore this
nontrivial scheduling problem, but any concrete implementation
will require some mechanism for constructing the schedules
for HRTs (see section VII below).

If uH(t) = 1 for any t, then at that time, no cycles are
available for SRTs. Many applications will strive to avoid this
situation or at least ensure that this situation does not persist for
very long because it could make applications non-responsive
to soft-real-time tasks such as user interaction.

The worst-case execution time (WCET) of software running
on an APM depends on the duty cycle of the HRT it is running

in. We capture this dependency by a function C(p), mapping
the HRT’s duty cycle p, with 0 < p ≤ 1, to the software’s
WCET.

A duty cycle of 1 corresponds to conventional pipelined
execution. When comparing PRET machines with conventional
processors, we assume an execution time of C(1) on the
conventional processor, and we use C as an abbreviation for
C(1) in such cases.

Smaller duty cycles generally lead to greater execution
times, and so C(p) ≥ C(1) for 0 < p < 1, but smaller duty
cycles also reduce and eventually eliminate pipeline bubbles,
as consecutive instructions of a HRT are spread further apart,
and so

C(p) · p ≤ C, (2)

which captures that thread interleaving may increase throughput
compared with conventional pipelined execution of a single
thread. The above inequality can be slightly generalized as
follows:

∀p, q : p ≤ q ⇒ C(p) · p ≤ C(q) · q, (3)

which simplifies to (2) for q = 1.

IV. INTERRUPTS

Interrupts are the standard way that all modern micro-
processors get data in and send data out to the outside
world. To be sure, interrupts create many subtle software
problems. As far back as 1972, Edsger Dijkstra lamented,
“[I]n one or two respects modern machinery is basically more
difficult to handle than the old machinery. Firstly, we have got
the interrupts, occurring at unpredictable and irreproducible
moments; compared with the old sequential machine that
pretended to be a fully deterministic automaton, this has been a
dramatic change, and many a systems programmer’s grey hair
bears witness to the fact that we should not talk lightly about
the logical problems created by that feature” [31]. Despite this
lament, to this day, interrupts remain the primary method for
I/O and are central to every modern operating system design
including real-time OSs.

But interrupts make the execution time of any particular
chunk of software unpredictable. In addition to the time that
it takes to execute the interrupt service routine (ISR), the
execution of the ISR will disrupt state in the machine that
affects the execution time of the program that is interrupted.
For example, the ISR can disrupt the cache and the state of the
branch predictor. For these reasons, all modern execution-time
analysis tools assume uninterrupted execution. Overhead due
to interrupts has to be accounted for during response-time
analysis. While there is a lot of work on bounding the effect of
interrupts on the cache state [32], [33], [9], we are not aware
of an all-encompassing analysis accounting for all overhead
induced by interrupts.

Many designers of safety-critical real-time software avoid
interrupts altogether. Some, such as aircraft manufacturers,
are even prohibited from using interrupts, thereby excluding



from their software toolkits almost all of the last 40 years of
advances in operating systems.

We consider problems where the environment creates events
to which the software must respond. Some such problems,
including many classical feedback control problems, tolerate
timing variability as long as the average latency remains
bounded. These classical feedback control problems are es-
sentially continuous systems in that timing perturbations have
bounded effects. Such problems are best handled using the
SRTs of an APM because these will minimize the average
response time, just as in a conventional architecture. If an
application includes only such continuous problems, then
APMs do not provide much benefit; their performance will
be comparable to that of a conventional architecture and their
HRTs will go unused.

For APMs, the more interesting problems are ones that
benefit from deterministic response times. These include
systems with discontinuous behaviors, such as discrete-event
systems, where for example reversing the order of two events
can have drastic consequences. For such situations, the HRTs
of an APM are extremely useful. Such situations, with careful
design, can still be handled by conventional techniques if
the response time can be bounded. But if we can reduce
the variability of the response times, then we can improve
testability and confidence. We show here that we can reduce
the variability and that there is no cost in performance to doing
so.

For a polling style of I/O, both the variability and the latency
will depend on the polling interval. This creates a pressure for
small polling intervals, which leads to overprovisioning. An
interrupt style of I/O, on the other hand, results in variabilities
and latencies that are hard to control in conventional machines,
but easy to control in PRET machines. We therefore focus on
the interrupt style.

In order to make any guarantees at all about the response of a
software system to interrupt requests, we have to impose some
constraints on the environment. No microprocessor can respond
to an unbounded number of interrupts requests in bounded
time. Even PRET machines cannot perform such magic.

We model interrupt requests as sporadic streams of events,
which are events that arrive at random with a minimum inter-
arrival time T (for historical reasons this is often also referred to
as the period). No two interrupt requests from the environment
belonging to the same sporadic stream may occur within less
than T time units.

A. Interrupt Handling on a Conventional Processor

If the execution time C > T , then no real-time guarantee
is possible because the sporadic model allows requests to
arrive every T time units in the worst case. A more interesting
scenario has multiple sporadic streams of interrupt requests.
Consider n streams with periods T1, . . . , Tn. Suppose that the
time it takes to execute the responses to these is C1, . . . , Cn.
Then, under work-conserving scheduling, a necessary and

sufficient condition for bounded response times is that
n∑

i=1

Ci

Ti
≤ 1. (4)

In effect, violating this requirement would mean requiring more
than 100% utilization of the processor.

However, we also care about the variability of response times.
The response time Ri is the time between when an interrupt
request in stream i is asserted and the time the interrupt has
been handled. This includes the execution time of the ISR, so
Ri ≥ Ci, where Ci depends on the program flow in the ISR.
We assume that this execution time is either constant (which
it can be if the ISR is simple), or that we can determine the
WCET C̄i of the ISR. If we use a PRET machine, we can
make the execution time of the ISR constant using a deadline
instruction, thereby reducing the variability in response times
to the variability in Ri − C̄i.

Before we see how a PRET machine reduces the variability
of response times, let us study the variability that a conventional
machine experiences with the scenario of two sporadic interrupt
request streams. Assuming non-preemptive execution of the
ISRs, the response time R1 for requests from stream 1 may
include C2, the execution time for handling requests from
stream 2. With sporadic inputs, it is always possible to get
almost simultaneous interrupt requests from the two streams,
but one must be handled first, thereby delaying the other by the
execution time of the first. This means that the variability in
the response time Ri for each stream is at least the execution
time for handling the other stream.

If interrupts are enabled during the handling of a request,
then the variability in handling requests is more complicated to
determine. Consider the handling of an interrupt from stream 1,
and assume it takes time C1 (without interruption) to handle
the request. Then with interruption, the actual time could be
C1 (if there is no occurrence of stream 2 during the handling),
C1 + C2 (if there is one occurrence of stream 2 during the
handling), C1 + 2C2 (if there are two occurrences), etc. The
worst case will be C1 + mC2, where

m =

⌈
C1

T2 − C2

⌉
.

In the worst case, in stream 2, interrupt requests are occurring as
fast as possible, once every T2 time units, and when the request
occurs, it is immediately handled, preempting the handling of a
request from stream 1. In that case, in each interval of length T2,
the time available to execute the ISR for stream 1 is T2 − C2

(neglecting context-switch overhead). Hence, the number of
times that the ISR for stream 1 may be interrupted is m as
shown.

In both cases, whether interrupts are disabled or not, the
variability in the time it takes to handle any one interrupt
request includes at least the time for one execution of a request
from the other stream, possibly more than one execution. Even
if the execution time of each ISR is constant, the response
time will be highly variable and dependent on other handlers.
This makes software design non-modular, since a change in the



handling of one stream affects the behavior of the handling of
the other stream. And the variability will typically be a large
multiple of a clock cycle, typically hundreds or thousands.

Given two sporadic streams, we could reduce the variability
of one of those streams by disabling interrupts while it is
handled but not disabling interrupts while the other is handled.
Here, we can reduce the variability in handling time for that
one stream to a small constant multiple of a clock period.
But this is also non-modular because it requires that there
be no more than one critical interrupt in an entire system
design and no other code blocks that disable interrupts. Every
other interrupt will suffer high variability. Moreover, every
other interrupt will have to be handled with nested interrupts
enabled, which means that execution-time analysis must be
more conservative. This reduces processor utilization because
the system must be designed for worst-case disruptions of
timing, even if those disruptions are unlikely. Equivalently,
this solution requires more overprovisioning (faster processors,
more energy) to provide guarantees.

B. PRET Machine Interrupt Handling

Abstract PRET machines eliminate this variability. We can
have a multiplicity of sporadic interrupt streams each of which
is handled with variability that is a small multiple of the clock
period and is independent of the execution times of the other
handlers. More interestingly, this can be done with no loss
in performance or utilization, so we can operate right up to
bound (4), and sometimes beyond that bound, as we will show
below. Our APM assumes two possible interrupt mechanisms,
described in each of the next two subsections.

1) Interrupt Handlers in Hard-Real-Time Threads: The first
mechanism is the simplest to analyze but has more limitations.
In this first mechanism, interrupts become enabled when an
HRT stalls to wait for an interrupt request. While it is stalled,
its scheduled cycles can be used by SRTs. For the scenario of
multiple sporadic interrupt streams, the simplest strategy is to
assign one HRT thread to each sporadic stream. One limitation
of this approach, therefore, is that we cannot handle more
sporadic interrupt streams than there are hardware threads.

In this case, the execution time C(p) of the interrupt handler
is the time between when the HRT resumes (an interrupt
request has unblocked it) and the time when it stalls again to
wait for another interrupt. C(p) depends on the duty cycle p
of the HRT that the interrupt handler is mapped to. Just as
with a conventional processor, we will require that C(p) ≤ T ,
otherwise no real-time guarantee is achieved. But unlike a
conventional processor, there is almost no variability in the
time it takes to handle an interrupt. If the execution time is
constant, then the variability is no larger than the maximum
number of clock cycles between instruction issues of the HRT’s
schedule. This is typically just a few clock cycles, so very
small indeed.

The variability in the time it takes to handle an interrupt
has no dependence on the time it takes to handle any other
interrupt in the system. However, the magnitude of the time it
takes to handle the interrupt does have such a dependence. This

is because PRET machines cannot perform magic. They cannot
provide guarantees that require greater than 100% processor
utilization. Hence, the instruction-issue schedule for an HRT
must allow enough cycles for any other interrupt handlers
that might be simultaneously active to also be scheduled. We
emphasize, however, that these cycles are not wasted. They will
be used by an SRT if not needed by an HRT, but even more
fundamentally, they represent resources that even a conventional
processor has to provide to achieve comparable timing bounds.
PRET machines do not sacrifice performance compared to
conventional machines, as we prove below.

Let us examine this dependence more closely. We require that
an HRT handling an interrupt stream with period T be assigned
a schedule with a duty cycle p, such that C(p) is no greater
than T . This schedule needs to leave enough idle cycles that the
same constraint can be satisfied for every other HRT handling
a sporadic interrupt stream. Otherwise, the processor could
find itself in a situation where greater than 100% utilization is
required to meet the timing constraints. It is therefore useful
to determine the smallest duty cycle pi sufficient to process
interrupt stream i within its period Ti:

pi = min{p | Ci(p) ≤ Ti} (5)

In a real PRET machine, limitations of the instruction dispatch
hardware will constrain what values of p are possible. But with
sufficient hardware, we can come as close as we like to the
APM ideal, so we go ahead and make this assumption.

To schedule n sporadic streams with periods T1, . . . , Tn,
execution times C1, . . . , Cn, and duty cycles p1, . . . , pn deter-
mined by Equation (5), we require that

n∑
i=1

pi ≤ 1. (6)

How does this constraint relate to the bound in Equation (4)?
Our claim is that it is actually weaker than that bound. In other
words, the satisfaction of (4) implies the satisfaction of (6) but
not necessarily vice versa. Consequently, if a conventional
processor can deliver bounded response times, i.e. (4) is
satisfied, then so can an APM, i.e. (6) is satisfied. Hence,
when we require bounded response times, APMs give up no
performance and almost entirely eliminate variability. The price
for this is an increase in average response times and a modest
increase in hardware cost.

To prove this statement, assume (4) holds and let p′i be Ci/Ti.
Due to (2), we obtain Ci(p

′
i) ·p′i = Ci(p

′
i) ·Ci/Ti ≤ Ci, which

implies Ci(p
′
i) ≤ Ti. By the definition of pi in (5) we have that

pi ≤ p′i. Because (4) holds,
∑n

i=1
Ci

Ti
=
∑n

i=1 p
′
i ≤ 1, which

directly implies that
∑n

i=1 pi ≤ 1 and thus (6) also holds.
Even more interestingly, this style of interrupt handling has

the potential to improve performance compared to conventional
interrupt handling. In a conventional scheme, one ISR runs at a
time. This means that in each clock cycle, the instruction issued
belongs to the same instruction stream of the instruction issued
in the previous cycle. Consequently, this instruction stream will
suffer a performance loss due to pipeline bubbles. For example,



a conditional branch instruction will have to stall until the
branch condition is evaluated, or worse (for variability), the
branch would be speculatively taken or not taken depending on
the state of a branch predictor. Whenever thread interleaving
reduces the number of pipelines bubbles, the necessary duty
cycle pi to process an sporadic interrupt stream in time will
be strictly smaller than the ratio p′i = Ci

Ti
. In such cases, (6) is

strictly weaker than (4). We also note that (4) is based on the
assumption of zero context switch time, which is unrealistic on
conventional processors, but a key asset of PRET machines.

Moreover, because of the potential for pipeline bubbles,
WCET analysis for conventional interrupt handling is likely
to be pessimistic, further reducing performance because fewer
streams are safely executable on a processor. This situation
gets even worse if interrupts are enabled during the handling of
requests, which may improve responsiveness but can also cause
timing analysis to provide looser bounds [6]. For safety-critical
systems, having tighter bounds on WCET must be viewed as
a performance improvement.

An APM need not suffer this performance loss nor the
variability due to pipeline bubbles. If the HRT schedule
is sufficiently sparse, then no pipeline stall will ever be
needed. Notice that the HRT schedule is required to be sparse
if there are multiple sporadic interrupt streams, otherwise
we exceed full utilization. Hence, an APM performs even
better for complex applications than for simple ones. It
can come closer to 100% utilization of the pipeline with
essentially no variability. Liu et al. demonstrated this improved
performance on a multicore implementation of the PTARM
(second generation Berkeley PRET machine) by realizing
a real-time computational fluid dynamics simulation [34].
The problem is embarrassingly parallel, so they were able
to keep 55 cores each with four hardware threads, hence a
total of 220 threads, continuously operating with no pipeline
bubbles. Moreover, because of the precision timing of the
PRET machine, they were able to eliminate synchronization
overhead for interprocessor communication, so nearly every
cycle was performing floating-point arithmetic. Each machine
had a fixed round-robin schedule of four hardware threads.

2) Interrupt Handlers in Soft-Real-Time Threads: A second
interrupt handling mechanism in our APM has more flexibility
at the expense of more difficult analysis. In this second
mechanism, interrupts are always handled by an SRT, which
implements conventional interrupts. This means, of course,
that an APM can always implement whatever I/O policy you
would implement on a conventional machine, so trivially an
APM performs no worse than a conventional machine. But
APMs offer more interesting possibilities that a conventional
machine does not have. One observation is that it becomes
unnecessary for a program to ever disable interrupts in order
to bound response times because bounded response times will
be delivered by an HRT. In this case, the only mechanism by
which interrupts become disabled is to dedicate 100% of the
cycles to HRTs.

Assuming programs do not disable interrupts, then when
an interrupt request is raised, it is handled at the very next

available SRT dispatch cycle, preempting any SRT that might
have otherwise used that cycle. Consequently, the latency to
begin handling an interrupt is bounded by the maximum time
between idle dispatch cycles not occupied by active HRTs.
The exact value of this bound will depend on the schedule for
HRTs, but we can easily approximate it if we assume that the
unused cycles are evenly spaced. In this case, the bound will
be uH(t)/(1 − uH(t)), where uH(t) is the HRT utilization
given in (1).

Because the interrupt is handled in an SRT, if we need
bounded response time, the ISR should delegate that handling
to an HRT. The ISR may, for example, activate a blocked HRT.
If all it ever does is delegate each interrupt to an HRT that is
assumed to be stalled waiting for such delegation, then this
mechanism is equivalent to the first mechanism, but with a
small additional overhead of performing the delegation. This
overhead is bounded as long as uH(t) < 1, though calculating
this bound could be complicated by the requirement to consider
any pipeline bubbles that occur during the execution of the
ISR in an SRT prior to the ISR setting the bit that enables the
HRT. If the ISR is kept short, however, and quickly enables
the HRT, then the variability introduced will be limited to a
few clock cycles, many orders of magnitude smaller than the
variability introduced by conventional interrupt handling.

This second mechanism is much more flexible than the
first because the ISR can use priorities, criticality, and other
application-specific requirements, together with the state of the
machine (which and whether HRTs are stalled, for example) to
make decisions about how to handle the interrupt. Moreover,
this second mechanism can easily realize a scenario where there
are more sporadic interrupt streams than there are hardware
threads, although doing so will increase the variability of at
least some of the interrupt handlers.

C. Deadlines

One issue is that we may want interrupt handling for a
sporadic stream with period T to have a deadline D. That is,
we require the response time R to be no larger than some
value D. A simple case is D = T , where we require that an
interrupt be handled before the earliest time the next request
from the same stream may arrive. If D = T , the constraints (4)
and (6) are necessary and sufficient to meet the deadline. But
we may require D < T , which asserts that even rare events
should get quick responses. In such situations, (4) and (6) are
generally not sufficient to guarantee that all deadlines are met.

In 1974, Dertouzos [35] showed that Earliest Deadline First
(EDF) scheduling is optimal among preemptive scheduling
algorithms for conventional single-core processors. If a set of
interrupt requests can feasibly be scheduled, then an algorithm
that always schedules one of the requests with the nearest
deadline will generate a feasible schedule. Like most optimality
results, this result depends on the assumption that context
switches have zero cost, which is unrealistic on conventional
processors. Nevertheless, we will conduct the comparison
between conventional and PRET interrupt handling using this
assumption.



In 1990, Baruah et al. [36] gave necessary and sufficient
conditions for sporadic task sets to be feasible. As EDF
is optimal, these conditions also answer whether or not all
deadlines will be met under EDF scheduling. Baruah et al.’s
analysis is based on the concept of demand bound functions.
The demand bound function dbfi(t) is the largest cumulative
execution requirement of all interrupt requests that can be
generated by sporadic stream i, which have both their arrival
times and their deadlines within a contiguous interval of
length t. For the sporadic model we have adopted, dbfi(t)
can be determined as follows:

dbfi(t) = max(0,

⌊
t + Ti −Di

Ti

⌋
· Ci) (7)

A set of sporadic streams can feasibly be scheduled if the
cumulative execution requirement of all streams does not
exceed the capacity of the processor for any interval length:

∀t > 0 :
n∑

i=0

dbfi(t) ≤ t (8)

Under which conditions can PRET machine interrupt han-
dling guarantee that all deadlines will be met? We focus on
the case where each interrupt is assigned a dedicated HRT
thread, as in Section IV-B1, which ensures minimal variability
in response times. Then, the duty cycle pDi of the HRT assigned
to interrupt stream i needs to be sufficiently high to guarantee
that Ci(p

D
i ) is less than the deadline Di. Thus the smallest

possible duty cycle is given by:

pDi = min{p | Ci(p) ≤ Di} (9)

To schedule n sporadic streams with deadlines D1, . . . , Dn,
execution times C1, . . . , Cn, and duty cycles pD1 , . . . , pDn
determined by Equation (9), we require that

n∑
i=1

pDi ≤ 1. (10)

How does this constraint relate to the bound in Equation (8)?
Is there a price to pay for deterministic response times? It
turns out that the two constraints are incomparable. That is,
(10) does not imply (8) nor vice versa.

To see this, note that D = T is a special case for which
we have shown that if a conventional processor can meet the
deadlines, then an APM can also do so with deterministic
response times. But it turns out that there are circumstances
in which a conventional processor can meet deadlines, but no
machine can meet the deadlines with deterministic response
times. In such circumstances, to meet the deadlines, we are
forced to use SRT interrupts in an APM and forgo at least
some deterministic response times.

Consider an example consisting of two interrupt streams
where first interrupt stream is characterized by C1(p) = 9/p,
D1 = 9, and T1 = 1000, and the second by C2(p) = 1/p,
D2 = 10, and T2 = 10. To meet the deadline of the first
interrupt stream, a duty cycle of p1 = 1 is required. If this
stream is assigned an HRT, then no other HRT can be allocated

without violating (4). Hence, the second stream will have to be
serviced by an SRT and will suffer nondeterministic response
times. Deadlines will be met, but not both with deterministic
response times.

The two interrupt streams can also be feasibly scheduled
using conventional preemptive scheduling, which can be seen
by evaluating (10) or by using fixed-priority scheduling with
the first stream assigned a higher priority than the second.
The response time of the first stream will always be 9. Any
single interrupt request of stream 2 may conflict with at most
one interrupt request of stream 1 due to the first stream’s
high minimum inter-arrival time. Thus, the second stream’s
response time will vary considerably, between 1 and 10, but it
will always meet its deadline. In this case, the behavior of the
APM and the conventional machine match, and no benefit is
derived from the APM.

The above example demonstrates that there is a tradeoff
between achieving deterministic response times and meeting
deadlines when deadlines are shorter than periods. In the
extreme case shown in the example, an interrupt request may
temporarily require all cycles of a processor. However, due to its
high period, this does not preclude other interrupt streams from
meeting their deadlines, but at the expense of variable response
times. This tradeoff probably deserves more study. In more
complex scenarios with mixed criticality and more sporadic
streams to handle, hybrid scheduling approaches that combine
the benefits of a reduced number of pipeline bubbles afforded by
PRET machines with the flexibility of conventional preemptive
scheduling may prove beneficial. Is there a scheduling algorithm
that minimizes the variability of response times while being
optimal w.r.t. meeting deadlines? We also note that PRET
machine scheduling is similar to P-fair scheduling [37], which
should be investigated further.

The above comparison considers preemptive scheduling
under the assumption of zero context-switch costs, which is
unrealistic on modern processors featuring stateful resources
such as caches and branch predictors. A more refined analysis
would either consider a model of context-switch overhead or
study non-preemptive scheduling.

V. THE (SURPRISING) BENEFITS OF CONCURRENCY

Oddly, PRET machines seem to benefit from concurrency.
The more concurrent operations to be accommodated, the more
likely we can eliminate pipeline bubbles. PRET machines also
make programs more modular because it is easier to isolate
concurrent behaviors from one another. With conventional
interrupts, for example, deterministic timing is achievable
for exactly one highest-priority responder. All others will be
nondeterministic. Moreover, the design is less modular because
the response times of all but one responder depend on the
executions time of other responders.

Since APMs have SRTs, we trivially lose nothing with
APM compared to a conventional design. An APM can always
be configured to have exactly one active thread, an SRT, in
which case, it is a conventional design. The only cost is a
modest amount of unused hardware. But as the complexity



of applications increases, APMs open the possibility of much
greater determinism and modularity. Moreover, APMs can
mix conventional designs with deterministic hard-real-time
responders. An SRT is capable of anything a conventional
design can do, but not vice versa.

VI. A COMMITMENT TO DETERMINISM

All of engineering is built on models. For the purposes
of this paper, we will define a “model” of a system to be
any description of the system that is not Kant’s thing-in-
itself (das Ding an sich). Every model rests on a modeling
paradigm. A programming language, for example, is just such
a modeling paradigm. What constitutes a well-formed program
is well defined, as is the meaning of the execution of such
a program. The program is a model of what a machine does
when it executes the program. Synchronous digital circuits
constitute another such modeling paradigm. They model what
an electronic circuit does. Models abstract away details, and
layers of models may be built one on top of another.

Properties of the modeling paradigm are fundamental when
an engineer builds confidence in a design. A synchronous digital
circuit, as a model, realizes a deterministic function of its input.
A single-threaded program is also a deterministic function
of its inputs. The determinism of these modeling paradigms
is assumed without question. Without such determinism,
we would not have billion-transistor chips and million-line
programs handling our banking.

The timing exhibited by a program is not specified in the
model (the program). Whether an execution of the program is
correct does not depend on the timing, so this model permits
implementations with arbitrary timing. Nevertheless, we assert
that the model (the single-threaded program) is deterministic
because the model does not include timing in its notion of the
behavior of the program. Hence, within the modeling paradigm
of a program, deterministic timing is not achievable.

A model can only predict aspects of behavior that lie within
its modeling paradigm. Our essential claim in this paper is that
we should make a commitment to using models that include
aspects of behavior that we care about. If we care about timing,
we should use models that do include timing in their notion
of behavior. Today, with real-time systems, we do not do that.

Instead, today, timing properties emerge from a physical
implementation. When we map a particular program onto a
particular microprocessor, a real physical chip embedded in
a real board, with real memory chips and peripherals sharing
the bus, only then do we get timing properties. Timing is a
property of the thing-in-itself not of the model. It emerges
from the implementation.

What about adaptability, resilience, and fault tolerance?
Any cyber-physical system will face the reality of unexpected
behaviors and failures of components. Using deterministic
models does not prevent us from making fault-tolerant and
adaptive systems. On the contrary, it enables it. A deterministic
model defines unambiguously what a correct behavior is.
This enables detection of incorrect behaviors, an essential
prerequisite to fault-tolerant adaptive systems.

PRET machines offer a deterministic temporal model and
are capable of interrupt-driven I/O that does not disrupt the
timing of timing-critical tasks. We believe that PRET machines
will eventually become widely available because their benefits
to safety-critical systems are enormous and their performance
is competitive with conventional architectures. They deliver
repeatable behavior, where the behavior in the field is assured of
matching their behavior on the test bench with extremely high
precision and high probability (at the same level of confidence
as we currently get from synchronous digital logic circuits).
In our expectation, it is just a matter of time before the world
accepts the paradigm shift that they entail.

VII. OPEN ISSUES

PRET machines make a commitment to deterministic timing.
The APM model shows that they deliver drastic reductions in
timing variability with no loss of performance. The FlexPRET
implementation shows that they can be realized at modest
hardware cost. What problems remain?

First, software support is needed for constructing PRET
applications and sharing resources across applications. One
immediate issue is that applications that require multiple HRTs
would benefit enormously from compiler and operating system
support to optimize the construction of their static instruction-
issue schedules. Currently, we construct these schedules by
hand, a viable approach only when the number of HRTs is small
and when their timing constraints are not dynamically varying.
A particularly interesting challenge would be to synthesize
schedules on the fly to satisfy real-time constraints specified
in terms of the MTFD instruction.

Second, operating systems will have to be developed that
exercise admission control to prevent dynamically instantiated
HRTs from disrupting the timing behaviors of other HRTs.
Every PRET machine (and indeed, every machine) will
have performance limitations, but for PRET machines, these
limitations are clear and precise, so stark distinctions can be
made between allowed and not-allowed behaviors. Applications
can be guaranteed temporal isolation from one another, an
essential feature for safety-critical applications [30].

Third, PRET machines offer the opportunity for substantial
reductions of energy consumption. Programs specify their
required temporal behavior and yield to precise timing anal-
ysis. As a consequence, once a temporal behavior has been
determined to be acceptable for a given application, the clock
frequency and voltage can be reduced to the point where the
specified timing behavior is just barely met. This contrasts
with today’s situation, where imprecise timing analysis forces
overprovisioning, where the substantial headroom that is
required translates directly into increased energy consumption.

Fourth, there are myriad opportunities for software method-
ologies that take advantage of temporal semantics. For example,
programming models such as PTIDES [38] make the timing
requirements of concurrent programs explicit and could be
used to build safety-critical PRET applications. These models
need better developed language and operating system support.



VIII. CONCLUSION

Abstract PRET machines represent a family of micropro-
cessor architectures with a deterministic model of temporal
behavior. They combine hard-real-time threads that have well-
defined timing properties with conventional soft-real-time
threads, sharing resources in a balance determined by the
application. Cycles that are unused by HRT threads fall over
to SRT threads, so the cycles are not wasted.

Hardware support for multithreading leads to the inter-
esting property that applications become more deterministic
as concurrency increases, dramatically the opposite of what
we experience with conventional processors. With enough
concurrency, pipeline bubbles and memory latencies become
irrelevant, the timing of execution of threads becomes regular
and predictable, the variability in the response to interrupts
drops by orders of magnitude, and processor utilization can
approach 100%. Since prior work has shown that the hardware
cost of realizing PRET machines is modest, the only argument
against PRET machines is that we do not yet know how to
write software that fully takes advantage of the newfound
determinism. This needs to be the next research agenda.
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