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Abstract. Models are central to engineering. They are used for anal-
ysis, synthesis, and communication between humans. A given artifact
or process may have multiple models with different purposes, modeling
different aspects, or modeling at varying levels of abstraction. In this
paper, we give a general overview of how models are used, with the goal
of making the concepts clearer for different communities. We focus on
the domain of track-based flow management of automated systems, and
identify two different modeling styles, Eulerian and Lagrangian. Eule-
rian models focus on regions of space, whereas Lagrangian models focus
on entities moving through space. We discuss how the features of the
system, like having centralized or decentralized control or the ability to
install fixed infrastructure, influence the choice between these styles. Al-
though the choice between modeling styles is rarely made consciously, it
affects modeling efficiency, and one style may be far better suited for cer-
tain modeling problems than another. For problems with a more global
nature concerning the physical space, an Eulerian model is likely to be a
better match. For problems that concern the moving objects specifically,
where the identity of the individual objects is important, a Lagrangian
view is the one to choose. In many cases, combining the two styles is the
most effective approach. We illustrate the two styles using an example
of an automated quarry.

1 Introduction

We are now in the era of cyber-physical systems, the Internet of Things, and
smart applications. For building such systems we need a team of experts with
various domains of expertise, including computer science, software engineering,
computer networking, control and communication engineering, robotics, and ar-
tificial intelligence. Although all these experts have the experience of working
with models, they use different terminologies and very different modeling lan-
guages. Models are used differently in different contexts, and for people with
varying backgrounds, this may create confusion. With the increasing need for
people with different backgrounds to work together, communication is becoming
a crucial obstacle. To tackle this obstacle, in this paper we provide an over-
all view of modeling in the contexts of science and engineering, with different
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goals of synthesis and analysis, and in different directions of abstraction and
refinement. We show how validation and verification provide quality assurance
on multiple levels in the process of modeling.

We focus on flow management of autonomous systems, covering a wide range
of application domains including air traffic control, railway systems, road traffic,
automated warehouses, smart transport hubs in cities, and computer networks.
The increasing traffic volume that inevitably comes with increasingly efficient
use of resources makes collision avoidance and safety assurance more critical
and complicated. It also increases the possibility of unpredicted changes and
demands automated runtime planning. Any improvement in planning can save
a huge amount of cost, which may be in the form of time, fuel consumption, or
risk, and can make a system more environmentally friendly and sustainable and
improve user satisfaction.

Experimenting with the design of transportation systems in the field can be
prohibitively expensive and unsafe. As a consequence, it is essential to use models
both for understanding how existing systems work and for determining how to
improve them. There is a surprising richness of possibilities for constructing
models, and the choice of modeling strategy can strongly affect the outcome.
What model to use depends not only on the problem domain, but also on the
goal.

In the following sections, we give an overall view on modeling, abstraction
and refinement, scientific and engineering models, verification and validation,
and synthesis and analysis. We then continue by focusing on actor-based models
of track-based flow management systems. We show how there are similar and
common concepts, features, and problems in all flow management systems. We
then present two views of flow management, Eulerian and Lagrangian, and offer
a discussion on how to choose one of these models over the other and how and
when to combine them.

We use an automated quarry as a running example of a track-based flow
management system. The case study is inspired by the quarry site used in the
electrified site project at Volvo Construction Equipment, where autonomous
haulers (HX) are used for transporting material in the site, see Figure 1. HX
machines are intended to perform tasks such as material transport, loading,
unloading, and charging in a cyclic manner with predefined timing constraints
and task priorities [1,2].

Note that there is a huge amount of work done on traffic flow management in
various domains. The aim of this paper is not to serve as a literature review nor a
comparative study of traffic management methods. The aim is to give an overall
view of modeling of flow management systems from different perspectives.

This paper reflects the authors’ collective experience in modeling different ap-
plications using actor-based modeling and simulation frameworks. Over decades
of building models, we have found common patterns. Flow management prob-
lems consist of sources of moving objects, destinations, and paths. Models ad-
dress safety and optimization goals, like collision avoidance, higher throughput,
and minimum delay. Models also address policies for adapting to change. For



example, in a network on chip (NoC), we have to deal with a faulty router,
and in air traffic control systems (ATC), we have to avoid storms. But perhaps
the most interesting insight derived from our experience is that two very dif-
ferent and complementary modeling styles can be used for flow management
problems. These two styles are called Eulerian and Lagrangian, after a simi-
lar dichotomy of modeling styles in fluid mechanics. Eulerian models focus on
regions of space, whereas Lagrangian models focus on entities moving through
space. When building actor-based models, an actor represents a region of space
in an Eulerian model and a moving object in a Lagrangian model. Although the
choice between modeling styles is rarely made consciously, it affects modeling
efficiency, and one style may be far better suited for certain modeling problems
than another.

Fig. 1: The Volvo Quarry Site (from [1])

2 Modeling

A model is any description of a system that is not the thing-in-itself (das ding
an sich in Kantian philosophy). By this definition, every human conception of
a system external to herself is a model. In this paper, we focus on modeling
a system that includes human-made artifacts and processes, not just naturally
occurring systems. In other words, we are focused on engineering, not natural
science.

In the automated quarry, the haulers and their controllers, for example, are
human-made artifacts. But these artifacts are subject to natural laws, and there-
fore have properties and behaviors that are not human-made. Hence, our models
will need to reflect both physical realities and design intent.



A naive approach to modeling such a system is to build a single ever-more-
detailed model of its physicality. Such models quickly become unwieldy and in-
comprehensible. A more productive approach is to build a multiplicity of models,
each with a purpose. But how should these models be built and how should they
relate to one another? On what principles and languages should we base the
models? We examine these questions in this section.

2.1 Abstraction and Refinement

Every model is designed to study some property or properties of a system. For
example, we might be interested in the cost of a system, and we might construct
a model where the cost is defined to be the sum of the costs of a collection of
components. Here, the property of interest is cost, and this property lives within
formal system of arithmetic where costs can be summed and compared.

A model A may be an abstraction of another model B in that they are
intended to model the same thing, but A has less detail than B [3]. For example,
B may be a model with three components with costs c1 = 10, c2 = 20, and
c3 = 30, so the total cost is 60. An abstraction A might be a simpler model with
no components, but only a variable c, representing total cost, and an assertion
that c < 100. A is an abstraction of B because it is intended to model cost, but
it does not break down the cost by component, and it does not give a specific
cost.

The abstraction A is sound if every property of interest that is true for A
is also true for B (this is often called “property preservation”). We say “every
property of interest” because any model will have properties that are not of
interest. For example, when building model A, we are not interested in the
number of components, so we abstract that property away. Only the total cost is
a property of interest in A. For A to be a sound abstraction of B, it is necessary
for total cost to also be a property of interest in B. When we use models, we
focus only on some of the properties, and hence soundness is always with respect
to these properties of interest.

When a model A is a sound abstraction of another model B, we can equiva-
lently say that B is a refinement of A. A refinement B of A adds detail to A
without exhibiting properties that are prohibited by A.

A concept that usually comes with soundness is completeness. A is a
complete abstraction of B if every property of interest that is true for B is also
true for A. While doing abstraction and refinement, we are rarely looking for
completeness. Useful abstractions are usually sound but not complete. In our cost
example, A is a sound abstraction of B, but if costs of individual components are
also properties of interest for us, then A is not a complete abstraction, because
in B we have the costs of individual components but in A we have lost that
information.

There are cases where two different models exhibit the same behavior and
satisfy the same properties. When building models of behavior using automata
or transition systems, for example, the formal methods community uses the
notions of simulation and bisimulation [4], and there are precise definitions for



each concept and the spectrum of different equivalency relations [5]. Abstraction
and refinement are reduced to simulation relations, while bisimulation implies
both soundness and completeness.

Note that both soundness and completeness are with respect to properties of
interest. Suppose, for example, that we have a model C with three components
with costs c1 = 10, c2 = 20, and c3 = 30 and weights w1 = 1, w2 = 2, and
w3 = 3. If the “properties of interest” include only costs, then B is a sound and
complete abstraction of C.

2.2 Scientific and Engineering Models

Following [6], we distinguish models that we call scientific models, which are
intended to reflect the behavior of a pre-existing system, from models that we call
engineering models, which are intended to specify the behavior of a system
to be built. It is important to recognize whether a model is to be used in a
scientific way or an engineering way. For example, adding detail may enhance a
scientific model and degrade an engineering model. An architect probably should
not specify the placement of every brick, but a structural engineer studying the
earthquake safety of a building may need this detail.

An engineering model may serve as a specification for a system to be built.
It may be informal or formal and more abstract or less abstract. The purpose
of the model is to give properties that the built system is required to have. En-
gineering models are often layered, where a less detailed model A serves as a
specification for another more detailed model B. For engineering models, veri-
fication is the process of checking that B is a refinement of its specification A,
or, equivalently, that A is a sound abstraction of B.

Scientific models may also be more or less detailed and formal or informal.
The most useful scientific models are the simplest (least detailed, more abstract)
that still exhibit the properties of interest. A scientific model is faithful if every
property it exhibits is also a property of the system being modeled. Faithfulness
is similar to soundness, but while soundness is a relation between two models,
faithfulness is a relation between a model and a thing-in-itself.

Faithfulness is easier to achieve if properties of the modeling language it-
self reflect properties of the problem domain being modeled [7]. For example, a
modeling language with continuous time will make it easier to faithfully model a
system with continuous dynamics. Similarly, a modeling language with discrete
events, concurrency, and asynchronous interactions will make it easier to model
distributed software systems.

Scientific models may also be layered, although this is far less common than
for engineering models [6]. If model A is a sound abstraction of model B, and
model B is faithful to some physical system C, then A is also faithful to C.

Faithfulness is much harder to pin down formally than soundness because
it is not a relationship between models. It is a relationship between a model
and physical, real-world system, the thing-in-itself. Any property held by a real-
world system is ultimately subject to measurement error, and hence faithfulness
can never be more than approximately assured. Reflecting this fact, Box and



Draper famously said, “all models are wrong, but some are useful” [8]. They
were referring to scientific models, not engineering models. A specification, an
engineering model, is by definition right, not wrong.

For most properties of interest, in science, models are always wrong, in the
sense of Box and Draper, but in engineering, a physical, real-world implementa-
tion is always wrong. The specification is an idealization, and an implementation
can only approximate it. For instance, every physical realization is vulnerable
to failures that are not accounted for in the specification. How will a computer
program behave, for example, if the computer it is running on is immersed in salt
water? Whatever behavior emerges is likely not a behavior of the specification.

Consider for example the dynamic behavior of an electric hauler reacting to
network command to accelerate. A scientific model may use Newton’s laws to
describe how the vehicle reacts to torque induced by the motor. This model is
wrong, in the sense of Box and Draper, because it depends on parameters, such
as the weight of the vehicle, that cannot be perfectly measured. It is also wrong
because Newton’s laws are wrong in that they fail to account for relativistic
effects. But with appropriate assumptions, the model remains useful.

On the other hand, an engineering model for the same problem is a specifica-
tion. It defines the correct behavior of a hauler being designed. But no physical
vehicle will perfectly match that behavior, and therefore the real-world physical
implementation is wrong. But mirroring the usefulness of a scientific model, with
appropriate assumptions, the physical implementation will be useful.

2.3 Verification and Validation

According to Boehm [9], verification is to establish the truth of the correspon-
dence between a software product and its specification, and validation is to
establish the fitness or worth of a software product for its operational mission.
Boehm refers to the roots of the words as well. “Verification” is derived from the
Latin word for “truth”, veritasis, and “validation” is derived from the Latin word
for “to be worthy”, valere. Informally, we might define these terms by asking
“am I building the product right?” (verification) and “am I building the right
product?” (validation).

Validation is comparing a model with the system, or to be more precise, com-
paring a model with the system projected over behaviors of interest. The model
defines the “right product.” Verification is comparing the model with another
model reflecting more abstract properties. To avoid sinking into a philosophical
quagmire, we can only formally establish “truth” by comparing models.

For engineering models, verification means making sure that a model B ex-
hibits only acceptable behaviors, or, equivalently, that it does not exhibit pro-
hibited behaviors. A specification A is a reference point that defines acceptable
behaviors and their complement, prohibited behaviors. To formally verify B is
to prove that it is a refinement of A.

Validation in an engineering process means to check whether the specification
is written correctly, i.e. whether the model you built as the specification is really



representing the system you want to be built eventually. Validation is checking
whether the product meets the customer expectations and requirements.

For scientific models, validation is checking how much the model reflects the
existing system being modeled, or, equivalently, how faithful the model is. Here,
scientists rely on the scientific method to approximately validate models. Specif-
ically, they design experiments that have the potential to expose mismatches
between the behavior of the model and that of the thing-in-itself. That is, the
experiment has the potential to falsify the model. Failure to falsify a model is
the best available validation of a scientific model. On the other hand, for verifi-
cation, you need two models to compare. For verification of both scientific and
engineering models, you assume that the specification (which is as a reference
model) is correct (valid) and verify that the other models that you build based
on that are refinements.

Note that no scientific model is perfectly faithful to any physical system
unless it is the physical system itself. Hence, it is not necessarily a mistake to
fail to reflect behaviors of the system being modeled. All scientific models do
that, in that some behaviors are ignored or abstracted away. It is a mistake to
fail to reflect behaviors of interest, behaviors that the model was intended to
explore. A scientific model can therefore be viewed as projection of a system
onto a subspace of behaviors of interest.

For example in our automated Quarry, the customer has a safety and progress
requirement that if the hauler faces an unpredicted obstacle, it has to avoid the
obstacle (safety), but the system should not completely shut down (liveness).
This requirement is then formulated mathematically, for example as a set of
temporal logic formulas. The formulas must be written in a concrete way, for
example in terms of the data received by the hauler from its sensors and cameras
and commands issued to its actuators. For example, a temporal logic formula
may specify that the machine halts if an obstacle is sensed, and that this halt-
ing state is temporary. Checking whether this formula is correctly capturing the
customer requirements is a validation process. The formula is now a specification
of the system. When the controller program of the hauler is being developed,
the behavior of the hauler executing this program is verified against this speci-
fication.

2.4 Synthesis and Analysis

Models can be used for both synthesis and analysis. In a model-driven develop-
ment approach we do synthesis; that is, we build abstract models that serve as
a specification of a system to be built, and then we refine the models, adding
details until we build the system itself. Typically, the process is iterative, with
the specifications evolving along with their refinements. Models can be used
along the way for different analysis purposes, verification, validation, and per-
formance evaluation. If we have formal and automatic refinement techniques, we
may be able to avoid introducing errors in the refined models while details are
added. In this case, synthesis is said to be “correct by construction.”



A classic example of correct-by-construction synthesis is what a compiler is
intended to do. It translates a specification (a program) into a refinement (ma-
chine code for a particular machine), adding detail about how to accomplish the
intent of the program while preserving behaviors specified by the program. If
this is done correctly, the machine code will not exhibit any behaviors that are
prohibited by the program. Note that the machine code is still not an implemen-
tation. It is another model, specifying behaviors that a silicon implementation of
a processor is expected to exhibit. Since it is a model, not a thing-in-itself, the
machine code can be formally verified, proven to not exhibit behaviors prohib-
ited by the program. The thing-in-itself, of course, will always be able to exhibit
behaviors prohibited by the program, if it is immersed in salt water for example.

Compilers that can be trusted to produce correct machine code have proven
to be a spectacularly powerful engineering tool. Spurred in part by this success,
software engineers continue to try to push up the level of abstraction at which
systems are specified and develop correct-by-construction synthesis techniques
that work from those more abstract models. These efforts have met with limited
success. A commonly used alternative to correct-by-construction synthesis is to
treat a model, such as a program, as a pre-existing artifact, and to construct
an abstraction, a scientific model of the program. This model can be used for
analysis. In some cases, the abstract model can be constructed automatically,
using for example abstract interpretation [10]. We could call such a process
“correct-by-construction abstraction.”

For example, instead of synthesizing a computer program from a more ab-
stract specification, say in UML, we may write a program by hand and build
an abstract model of that program to analyze its behaviors. The more abstract
model is, effectively, a scientific model of an engineering model. For example,
a nondeterministic automaton could model a computer program. We can then
perform model checking [11], which formally checks that the automaton is a
refinement of a still more abstract specification model, given for example as a
set of temporal logic formulas. If the automaton is a sound abstraction of the
program (ideally, it is because it was built using correct-by-construction ab-
straction), and the automaton is a refinement of the specification (checked using
model checking), then the program is a refinement of the specification.

Model checking, simulation, and building physical prototypes can all be used
as methods for analysis. Simulation, which is the execution of an executable
model, reveals one possible behavior of a model with one set of inputs. Model
checking reveals all possible behaviors of a model over a family of inputs.

Different communities may prefer one technique over others. Some practition-
ers, for example, prefer physical prototypes over simulation, saying that “simula-
tion is doomed to succeed.” Rodney Brooks, for example, writing about robotics,
says “there is a vast difference (which is not appreciated by people who have not
used real robots) between simulated robots and physical robots and their dy-
namics of interaction with the environment” [12].

Indeed, simulation can be misused. A simulation of a robot may be the exe-
cution of an engineering model, a specification. If the specification is valid, then



the simulation is indeed doomed to succeed. The model should not be misinter-
preted as a scientific model that reveals unknown or unexpected behaviors of
the thing-in-itself.

When using simulation, it is important to understand whether one is doing
engineering or science. An engineering model should not be used to discover
how a real physical system will behave because it will only reveal behaviors
that were designed in. Faithful scientific models of robots are indeed difficult to
construct because robots exhibit complex physical behaviors that are affected
by phenomena such friction, plastic deformation, and acoustic propagation of
vibration that are notoriously difficult to model [13]. A good engineering model
of a robot, however, can be useful for validation of a specification. Does the
specification, an idealized robot, exhibit desired behaviors? It becomes a sep-
arate question whether a real robot, a thing-in-itself, can be built so that the
specification model is faithful.

When faithful scientific models are not available, physical prototypes are
used. Physical prototypes will reveal problems that simulation based on an en-
gineering model cannot reveal. A robot arm, for example, may be modeled as
rigid and frictionless for the purposes of developing path planning algorithms. A
hauler in an automated quarry may be modeled as moving at a constant speed
or stopped (two states) if the purpose of the model is to analyze congestion and
optimize throughput. These models should not be used to analyze precision of
motion.

3 Actors

A component is a chunk of functionality that can be composed with other chunks
of functionality to yield a new chunk of functionality. In software engineering,
different classes of component models have evolved. In imperative languages, for
example, a component is a procedure, and a program is a sequential execution
of a top-level procedure that can call other procedures. Components are com-
posed by procedure calls, a temporary transfer of the flow of control from one
procedure to another. Object-oriented languages are organizations of impera-
tive programs with information hiding. In functional languages, a component
is a stateless function (free of side effects), and components are composed by
function composition. In actor languages, components are concurrently execut-
ing programs called “actors” that send messages to one another over streaming
channels. Actor languages have proved very effective for modeling concurrent
and distributed systems, so we focus on those here.

The term “actor” was introduced in the 1970’s by Hewitt to describe the
concept of autonomous reasoning agents [14]. The term evolved through the
work of Agha and others to describe a formalized model of concurrency [15].
Agha’s actors each have an independent thread of control and communicate via
asynchronous message passing. Each actor has a single input queue on which
it receives messages, and it handles messages in order of their arrival. Rebeca
[16,17], for example, is a software framework that realizes Agha’s actors, match-



ing asynchronous and event-driven domains. It has proven particularly suitable
for modeling and analyzing network protocols and applications [18,19,20].

The term “actor” has also been used for dataflow models of computation.
Three major variants of dataflow models have emerged in the literature: Kahn
process networks [21], Dennis dataflow [22], and dataflow synchronous languages
[23]. In all three, as with Hewitt actors, a program is a network of intercon-
nected actors. Unlike Hewitt actors, dataflow actors have explicit input and out-
put ports, and rather than referencing a remote actor to send a message to it,
dataflow actors send messages to output ports and the network handles routing
that message to one or more destinations. Since actors do not have references to
one another, dataflow actors tend to be more modular and reusable than Hewitt
actors. The same actor can be instantiated in multiple contexts.

In Dennis dataflow, program execution is a sequence of atomic actor firings,
where each firing consumes input tokens (chunks of data) and produces output
tokens. In Kahn networks, each actor is a sequential program that reads from
input ports and writes to output ports. In the original Kahn-MacQueen variant
[24], a read from an input port will block until an input token is available and
writes to output ports are nonblocking, sending data with no constraints. Various
generalizations allow richer input-output semantics, for example to allow for
nondeterministic merging of streams, and various specializations constrain the
execution, for example to prevent unbounded buildup of unconsumed tokens
in queues. Dennis dataflow can be viewed as a special case of Kahn process
networks [25]. Dataflow synchronous languages differ from both of these in that,
semantically, all actors in a program fire simultaneously and instantaneously.
The inputs and outputs of the actors are defined by a fixed point of the function
defined by the composition of actors.

The Ptolemy II framework [26,27] generalizes actors to embrace any model
of computation (MoC) where a program is either a static or dynamic graph of
components with ports, where the components are concurrent, and where the
ports are connected through communication channels. In a Ptolemy II model, the
execution of such a graph is governed by a director, a coordinator that realizes
the specific MoC. Directors have been realized for Kahn process networks, sev-
eral flavors of dataflow, and dataflow synchronous models. In addition, directors
are available for MoCs that do not traditionally fall within the purview of actor
models, but which share essential features with actor models. These include a
discrete-event (DE) model, where communication is via time-stamped events,
a rendezvous MoC, where concurrent components communicate by rendezvous,
and a continuous-time MoC, where the communications between components
are semantically continuous-time signals. Ptolemy II DE models are similar to
many simulation frameworks such as DEVS [28] and hardware description lan-
guages such as Verilog and VHDL. Ptolemy II rendezvous models are similar to
Reo [29] and realize a semantics similar to communicating sequential processes
(CSP) [30]. The continuous-time models of Ptolemy II are similar to those in
modeling languages such as Simulink (from The MathWorks) and Modelica [31].



A key innovation in Ptolemy II is that many of these MoCs can be hierarchically
combined in the same model by leveraging an actor abstract semantics [32].

In any framework that supports composition of communicating actors, the
specific semantics of the interaction between actors, the MoC, is a meta-model,
a model of a family of models [33]. The MoC is an essential part of any modeling
language. It provides designers with constructs and features to build programs
and models, and the semantics of the meta-model shape the models that are
built, sometimes without the designer realizing that this is happening.

Design patterns and templates also function as meta-models, using constructs
and features that are provided by the modeling language and adding guidelines
for how to model. They tell designers how to match entities in the problem
domain to entities in the solution domain (the model we are building). Design
patterns can shape the thoughts of the designer.

Broadly, these varied actor languages, semantics, and modeling frameworks
provide us with constructs and features that fit concurrent and distributed sys-
tems. The varying semantics are tuned for different problem domains. In this
paper, we examine how some of the relevant MoCs fit track-based flow manage-
ment of automated systems.

4 Eulerian and Lagrangian Models of Track-based
Systems

We now focus on the track-based flow management systems, specifically traf-
fic management systems and transportation. By “track-based” we mean that
movement through the space is restricted to pre-defined paths, as opposed to
unrestricted movement in two or three-dimensional Euclidean space. Air traffic
control, railroad scheduling, unmanned aerial vehicles (UAV) traffic manage-
ment, smart transport hubs in cities, automated warehouses, and autonomous
transport vehicles (ATVs) are examples where we have track-based traffic and
transportation. Wired computer networks, like networks on chip (NoCs), demon-
strate similar patterns of features, behavior and goals.

Different models and techniques are used in different application domains for
flow management of such systems. The main concerns are guaranteeing safety
(like avoiding collisions or running out of fuel) and improving efficiency (includ-
ing multi-objective optimizations like reducing delays, maximizing throughput,
decreasing fuel consumption, and minimizing environmental impact).

Design patterns help when dealing with similar problems by providing a tem-
plate as the basis for designing your solution. You can reuse, customize and opti-
mize similar techniques. We distinguish two general patterns in building models
for flow management. The first pattern, called “Lagrangian,” focuses on the mov-
ing objects, such as airplanes, trains, automated vehicles, commuters in cities,
robots and products in warehouses, and packets in NoCs. In the Lagrangian
view, the moving objects have independent identities. The properties of interest
concern the behaviors of individual moving objects, including for example how
quickly and safely they reach their destinations.



The second view, called “Eulerian,” focuses on a region of space, and models
the aggregate traffic passing through the space. In the Eulerian view, each region
of space, such as a track or a section of a track, has an independent identity,
and the objects moving through space are anonymous, possibly even indistin-
guishable from one another. The properties of interest concern the utilization of
space, including for example congestion and throughput.

The Eulerian-Lagrangian terminology comes from fluid Mechanics and clas-
sical field theory, where Lagrangian and Eulerian models are well understood as
alternative ways to model fluid flow [34]. In a Lagrangian model of a fluid, the
observer follows an individual fluid parcel as it moves through space and time.
In the Eulerian view, the observer fixes on a region of space and observes fluid
mass passing through that space. For example, in studying the flow of a river,
the Lagrangian view can be visualized as sitting in a boat and floating down the
river, whereas the Eulerian view can be visualized as sitting on the bank and
watching the boats float by.

4.1 Flow Management: A Generic View

In a track-based flow management system, moving objects are constrained to
follow one-dimensional tracks within a two or three-dimensional space. Tracks
can be joined and split at intersections. At any given time, a track-based system
will define a network of interconnected tracks and each track will be occupied
by some number of moving tokens. Sources and sinks for tokens represent the
edges of the network being modeled.

The nodes in the network represent sources, destinations, and intermediate
destinations. Sources and destinations can be airports (in ATC), train stations
(in a railway system), hubs (in smart transport hubs in cities), shelves or racks
(in a warehouse), loading or unloading positions (in a quarry), or routers in
NoCs. Intermediate destinations can be places that the moving objects may or
must stop, like connecting airports for airplanes or charging stations for auto-
mated vehicles. The edges in the network represent tracks and sub-tracks. There
can be a capacity assigned for each (sub-)track, and minimum and maximum
allowed speed. In addition to Figure 1, Figure 2 shows applications where we
can see the track-based flow management pattern. Figure 2.a shows the North
Atlantic Organized Tracks (NAT-OTS) that is used for track-based air traffic
control. Figure 2.b shows the subway map of Tokyo. Figure 2.c shows a small
example of smart transport hubs in a city and how the commuters have choices
for moving between these hubs [35]. Figure 2.d shows an array of routers on an
NoC architecture similar to what the authors used in [18].

Moving objects form the flow on the network. Objects may have some at-
tributes assigned to them. Apart from an identifier, they may have a maximum
and an optimum speed, capacity for fuel, fuel consumption rate as a function
of speed, node of origin, target node, and a pre-specified route. The model may
go further than that and see each moving object as a smart agent with beliefs,
goals, and learning capabilities.



(a) By Coisabh [CC BY-SA 4.0]
from Wikimedia Commons, https:
//commons.wikimedia.org/wiki/File:
NAT-Tracks-24FEB17.png

(b) From Wikimedia Commons, https:
//commons.wikimedia.org/wiki/File:
Tokyo_subway_map.PNG
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(c) An abstract schema of smart trans-
port hubs (courtesy of Jacopo de Berar-
dinis, Carlo Castagnari, Giorgio Forcina
from a presentation prepared on the work
in [35]).

(d) An abstract schema of Network on
Chip (courtesy of Mahdi Mossafa, after
[18]).

Fig. 2: Some applications with the common attribute of flow management.
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Many of the problems can be formulated as an optimization problem, where
the goals generally are increasing efficiency of the traffic system, enhancing
mobility (which means increasing throughput), reducing delay, or minimizing
cost (like fuel consumption or environmental costs). The constraints mostly
concern safety, like keeping the necessary separation between vehicles or limiting
the number of moving objects in a track.

Another common problem in flow management is adapting to change.
Airplanes get delayed and schedules have to be updated, weather conditions
change, requiring rerouting, and new flights are added, requiring re-planning.
Similar changes occur in railroads, transport hubs, warehouses, and other flow
management applications, and consequently, such systems have to be adaptive
and resilient to change.

An Eulerian model focuses on each track, the configuration and the connect-
ing network of tracks in a more macroscopic way, while a Lagrangian model
focuses on moving objects and their behavior in a more microscopic way. The
decision to use an Eulerian or Lagrangian pattern, or even a combination, can
have a profound effect on the effectiveness of a model. In our experience, prac-
titioners rarely make this decision consciously. They just build the first model
that pops into their heads.

4.2 Eulerian and Lagrangian Actor Templates

In an actor-based model we can realize Eulerian and Lagrangian views using
track-as-actor or moving-object-as-actor, respectively. In a track-as-actor pat-
tern (Eulerian), tracks are modeled as actors, and the moving objects are mod-
eled as messages passing between actors. In a moving-object-as-actor pattern
(Lagrangian), each moving object is modeled as an actor, and actors have some
local information from their surroundings and the configuration of the system
and may be able to autonomously decide their next move.

Fig. 3: Eulerian model of a piece of the automated quarry of Figure 1 built in
Ptolemy II.



Figure 3 shows an Eulerian model of a section of the automated quarry
rendered in Figure 1. This model is built using Ptolemy II [27] with a discrete-
event director. The actors are shown as boxes with input and output ports
through which time-stamped messages are sent. Each actor reacts to messages
in time-stamp order.

It is a matter of choice to build an Eulerian model and to use a discrete-
event model of computation. What are the consequences of these choices? Most
obviously, the active agents in the model are tracks, garages, and workstations
such as a wheel loader and crusher. The vehicles, which are electric haulers in
this model, are represented by messages exchanged between actors. This model
does not track individual vehicles, but rather models queuing and congestion
at locations in the quarry. As a consequence, this model could be suitable for
planning routing strategies, but is probably not suitable for developing or eval-
uating collision avoidance or battery management strategies. Note that one way
to handle collision avoidance in this model is to have tracks with a capacity of
one where the physical space is (virtually) divided in to tracks with a length
that represents the minimum safe separation between the moving objects. This
may not be a practical design, especially where we have a large space and small
safe separation, because it will create a very fine-grain model with huge number
of tracks. Also, it does not really model separation between individual vehicles,
since a vehicle at the end of one track can be arbitrarily close to a vehicle at the
beginning of the next track.

One consequence of choosing a discrete-event (DE) MoC is that the model
is, by default, deterministic [36]. Building a nondeterministic model requires in-
serting actors with explicitly nondeterministic behavior. To model probabilistic
events, the modeler has to explicitly insert sources of stochastic events, typically
driven by pseudo-random number generators. In contrast, if we had chosen a He-
witt actor model, then the modeling framework itself would be nondeterministic
in that messages arriving at an actor from distinct source actors are handled in
nondeterministic order. In DE, the time stamps determine the order in which
events are handled, and the time stamps are computed deterministically in the
model.

To understand the consequences of the determinism of the modeling frame-
work, consider the Crossing actor at the lower right in Figure 3. This represents
an intersection where haulers going left to right cross haulers going bottom to
top. How should we model the situation where two haulers arrive simultane-
ously at the intersection? In a DE model, simultaneous arrivals is a well-defined
concept (the messages have the same time stamp), and how the model han-
dles the situation has to be explicitly specified. In the particular model shown
in the figure, we chose to handle it by giving priority to the haulers traveling
from left to right, but we could equally well have handled it with a Bernoulli
random variable (a pseudo-random coin flip). We could also have modeled it
nondeterministically by inserting into the model an actor with an explicitly non-
deterministic state machine, like that shown in Figure 4. The red transitions are



both enabled when messages with the same stamp arrive on inputs in1 and in2,
and which transition is taken will determine which message is handled first.

Fig. 4: Nondeterministic state machine actor built in Ptolemy II that merges
streams with simultaneous messages nondeterministically into one stream.

If we wish to model the crossing nondeterministically, then a Hewitt actor
model could be suitable. However, the original Hewitt actor model is untimed. To
explicitly include timed behavior and nondeterministic ordering of simultaneous
messages, we can use Timed Rebeca [37,38], which extends Hewitt actors with
time stamps. Similar to the DE model, simultaneous arrivals is a well-defined
concept (the messages have the same time stamp), but unlike the DE model the
order of handling of messages with the same time stamp is always nondetermin-
istic. Timed Rebeca has a built-in model checker that can be used to explore all
the behaviors allowed by this nondeterministic semantics.

For some modeling problems, a nondeterministic MoC may be preferred be-
cause it can concisely express a family of possible behaviors that can be analyzed
by exhaustive techniques such as model checking. Representing nondeterministic
behavior is especially desirable in situations where we have for example simul-
taneous arrival of messages (vehicles, packets, ...) and no explicit priority-based
policy to choose one over the other, so, the behavior of the thing-in-itself is really
unknown to us. Then we build a nondeterministic model as a scientific model
that shows different possible behaviors; this model will be used for analysis pur-
poses, more specifically for model checking.

Such nondeterministic models, however, should not be used for simulation,
because simulation reveals only one of many possible behaviors at a time. Unless
the simulation resolves the nondeterminism in the same way that the system
itself does, its choice of behaviors will tell us nothing about the likelihood of any
particular behavior manifesting in the deployed system. Most implementations
of Hewitt actors, for example, handle messages in order of arrival, but unless the
system being modeled is actually a set of concurrent processes running on the



same multitasking scheduler as the model, the fact that a particular outcome
occurs in simulation would say nothing about whether that outcome will occur in
the field. A nondeterministic model is about what may possibly occur in the field,
not about what is likely to occur. To assess the likelihood of particular outcomes,
an explicit stochastic model with specified probability density functions should
be built, not a merely nondeterministic model.

Deterministic models are often preferable for synthesis, where we want the
system to behave as our specification. Allowing nondeterminism in the behavior
of the model of the system is introducing an unnecessary risk in the design pro-
cess (it’s different from allowing nondeterminism in the model of the environment
for analysis purposes). There are occasions that we may allow nondeterministic
models as our specification for synthesis. If we are able to prove the properties
of interest for the nondeterministic model (basically by definition properties of
interest must hold for the specification), then the model can be used for syn-
thesis. For example the model specify what safe behaviors are, and a synthesis
algorithm optimize the design by choosing the best among the nondeterministic
behaviors.

A more subtle consequence of the choice of the DE modeling framework
shows up as bidirectional links between components. Notice that any actor that
represents a place with finite capacity, which in the model is all actors except
the Garage, has to apply back pressure to any actor that sends vehicles to it.
When it is full, it notifies the upstream source by sending a “full” event, which
has the effect of causing vehicles to wait in a queue upstream.

An alternative MoC that would not require backwards-flowing “full” messages
would be based on a rendezvous-style of concurrency, using for example the
Rendezvous director in Ptolemy II or a framework like Reo [29], which realizes a
communicating-sequential processes (CSP) MoC [30]. In such an MoC, a sender
of a message cannot complete a send until the receiver of the message is ready
to receive it. Hence, back pressure is built in to the MoC and does not have
to be explicitly built in to the model. However, no mature implementation that
we know of a rendezvous-based modeling framework also models timed events,
despite the fact that timed process algebras have been a subject of study for a
long time [39]. Without a model of time, it would be difficult to use the model
to optimize throughput, for example.

For some track-based applications, such as air-traffic control, back pressure
that causes upstream queuing can be problematic. Haulers on the ground can
stop and wait, but airplanes cannot. A track-based DE model of an ATC scenario
is given in [40], but in that implementation, the DE director was subclassed to
create a global coordinator that manages the back pressure. In effect, the MoC
was modified to support the application domain.

A simple Lagrangian model for the automated quarry of Figure 1 is shown
in Figure 5. This hierarchical model is very different from the Eulerian model of
Figure 3 and could be used to answer a different set of questions. The scenario
it models is two automated vehicles in a track, one leading and one following,
with sensor data in the following vehicle giving it an estimate of its distance to



Fig. 5: Lagrangian model of a piece of the automated quarry of Figure 1 built
in Ptolemy II.

the leading vehicle. The two actors at the top level of the model each represent
a vehicle. Each actor is an instance of a class that, in this simplified model, is a
hybrid system with two modes of operation, stopped and moving. In the moving
mode, a first-order ordinary differential equation (ODE) models a proportional
controller that strives to maintain a fixed distance to the leading vehicle but
with a speed limit. This model could easily be elaborated with vehicle dynamics
representing its loaded and unloaded inertia, for example, or its battery state as
a function of time.

The model in Figure 5 is a continuous-time model, using the Continuous
director in Ptolemy II [41]. It could equally well have been constructed in
Simulink/Stateflow, a widely used modeling environment from The MathWorks.
In the continuous MoC, the messages exchanged between actors represent continuous-
time signals as approximated by an ODE solver.

Comparing the Eulerian and Lagrangian models is instructive. They are very
different from one another. The Eulerian model could be used to evaluate overall
throughput and to develop routing and path planning strategies for haulers. The
Lagrangian model could be used to design the control system for the haulers that
maintains a safe distance between them and to evaluate its performance.

4.3 Eulerian and Lagrangian Actor Models in Practice

It is relatively rare, when building models, to explicitly and consciously evaluate
alternative modeling styles and choose one. A notable exception is documented
by Menon, Sweriduk, and Bilimoria, who advocate Eulerian models for air traffic
control [42]. Although it is common to build Eulerian models in this problem
domain, it is rare to see this choice explicitly defended. Menon et al. observe
that the complexity of the resulting model is reduced because it depends only



on the number of spatial control volumes and not on the number of aircraft.
They show that the simplified model admits the use of linear control theory for
analysis and design of flow control strategies. Menon et al. credit a number of
authors dating back to 1955 for Eulerian approaches to modeling road traffic,
which is apparently where they got the inspiration to apply the approach to air
traffic control (it is worth noting that the use of Eulerian approaches in fluid
mechanics goes back much further).

We encounter the two views of Eulerian and Lagrangian models by working
on actor-based modeling of different distributed applications with the common
pattern of flow management. Using an actor-based model, and seeing actors
from an object-oriented point of view, we generally map each active entity in
the system to an actor in our model. In packet routing applications on network-
on-chips (NoCs), a router is an active entity, a piece of hardware and software
that routes the packets through wires; and packets are passive entities that enter
the network, and are routed along until they get to their destination. A natural
mapping is modeling routers as actors, and packets as messages, which matches
an Eulerian model. This Eulerian model represents a natural and faithful model
of the system, and captures all properties of interest in order to answer the safety,
optimization, and adaptation questions.

An actor-based Eulerian model of a network-on-chip is given by Sharifi et
al. [18], who check efficiency and possibility of deadlock for different routing
algorithms. A schematic of the NoC architecture they have analyzed is given in
Figure 2.d. Ptolemy II, which we used to build the models in Figures 3 and 5, has
also been used for Eulerian network simulation [43]. The widely used network
simulator ns-3 (https://www.nsnam.org/) models networks in an Eulerian way
using discrete-event semantics similar to that in Figure 3.

A seemingly different application is air traffic control (ATC). In air traffic
control problems, tracks and sectors are an artifice. The space through which
aircraft fly is continuous, not discretely divided into chunks. Moreover, aircraft
themselves can be considered autonomous entities because pilots can override
the commands received from ATC. Hence it may seem more natural to model
ATC in a Lagrangian way, so that the individual entities in the model match
the individual entities in the thing-in-itself. But with a more careful look, we
see that a Lagrangian model may be overkill. In ATC systems we have cen-
tralized supervisory control, with a global and macroscopic view of the flow.
Moreover, this macroscopic view is sufficient for analyzing optimization ques-
tions like minimizing delay and maximizing throughput. The macroscopic view
is also sufficient to cover properties of interest such as collision avoidance. In an
Eulerian model, collisions can be avoided in model with (sub-)tracks with capac-
ity one; each (sub-)track becomes like a critical section where we enforce mutual
exclusion. An alternative strategy is to consider a maximum load (of greater
than one) for each track but leave the assurance of the collision avoidance to
another Lagrangian model (as done in our Ptolemy example in Figure 3).

Some properties which may seem to need a Lagrangian view, like preventing
an aircraft from running out of fuel, can be handled using an Eulerian model by

https://www.nsnam.org/


adding a few attributes to the messages (representing the aircraft). An Eulerian
view works more efficiently, where we map tracks to actors, and airplanes to
messages.

Fig. 6: Ptolemy model of the air traffic control example (courtesy of Maryam
Bagheri)

Fig. 7: Ptolemy model of the subway example (courtesy of Maryam Bagheri)

Bagheri et al. show that an Eulerian actor model is effective for designing
self-adaptive track-based traffic control systems for air and railway traffic [40].
Their models are used for re-planning in the event of disruptions due to weather
or other causes. Figures 2.a and 2.b show the two application domains tackled
in [40]. An abstract view of the Ptolemy models of a simplified version of the
above applications are shown in Figures 6 and 7.



A formal actor-based Lagrangian model of a smart airport with autonomous
transport vehicles (ATVs) is proposed by Khakpour et al. in [44]. Each trans-
portation service in the airport is realized by ATVs that transport passengers
between stopovers, including passenger entrances, check-in desks, and departure
gates. ATVs are modeled as Rebeca actors, and adaptation is handled by poli-
cies that govern the change of configuration and role of each ATV. Analysis
techniques are provided to check the safety properties of the model. They added
Eulerian models to their case study to provide a balance between centralized and
decentralized control, a so-called controlled autonomy. They partition the smart
airport area into smaller regions called cells. A cell contains an autonomous cell
controller, deployed within the cell physically. A cell controller is aware of the
ATVs and other subsystems located in its defined physical area, and provides
nonlocal information for ATVs. This is an example of how we have a Lagrangian
microscopic view on the autonomous machines, modeling their behaviors and
their different configurations; and have an Eulerian macroscopic view on the
physical space, modeling the state and configuration of each cell, and use both
views to have a better control over the system on different levels.

Jafari et al. give an Eulerian model for flow management of the automated
Volvo Quarry with electric self-driving machines, shown in Figure 1 [2]. The
model is built in Timed Rebeca, as a scientific model for analysis purposes.
The model checking tool in Rebeca is used for safety checking, it is also used
for better flow planning using a reachability-based approach. Complementing
the Eulerian model, Jayanthi Surendran Nair build a more detailed Lagrangian
model for the Volvo Quarry site, with a focus on the behavior of each machine
and the machine’s architecture [45]. This model is used as an engineering model
to be the basis for building the controller of each automated machine.

Castagnari et al. give an Eulerian macroscopic view of mobility services in a
city with a network of transport hubs [35]. Figure 2.c shows a simple schema of
multiple smart hubs, the commuters, and different mobility services that they
can use, like a bus, bike, or taxi. The model is used as a scientific model for
efficiency and mobility analysis and can work as lightweight preprocessing to
prepare for microscopic simulations where commuters are modeled as agents in
a Lagrangian style [46].

4.4 Eulerian Versus Lagrangian Models

In the following, we discuss some criteria for choosing to use an Eulerian or a
Lagrangian model.

Modeling efficiency. When the individual identity of the moving objects are
not important, then an Eulerian model is often the better choice because it
avoids unnecessary detail. For example, in [47], Bayen et al. apply the idea from
Menon et al. to show that an Eulerian model is effective at predicting aircraft
counts in congested airspace. Elaborating this work, Sun et al. evaluate three
Eulerian models for air traffic control [48]. In ATC, a “sector” is a portion of
the airspace controlled by a single human air traffic controller. According to Sun



et al., traffic flow management includes maintaining the aircraft count in each
sector below a legal threshold in order to ease the controller’s workload as well
as to ensure the safety of the flights. They say that this task is quite cumbersome
and that extensive traffic forecast simulations that include all airborne aircraft
are computationally too expensive. They advocate the use of Eulerian models
instead.

For some problems, on the other hand, Lagrangian models are more efficient.
A problem that has relatively few vehicles executing complicated maneuvers,
if modeled in an Eulerian fashion, may require fine discretization of the space,
resulting in many Eulerian cells that need to be modeled. In such circumstances,
a model that focuses on the individual vehicles may be more efficient.

Optimization.Many models get built with the objective of optimizing a system.
Some optimization problems are more naturally Eulerian, whereas others are
more naturally Lagrangian. According to Bayen et al., when the objective is
to come up with a more efficient use of airspace, rather than optimizing local
trajectories of individual aircraft, we prefer an Eulerian model [47]. For our
quarry example, we may be interested in minimizing the number of deployed
haulers at a particular quarry site, and an Eulerian model such as that in Figure
3 can be used to evaluate scenarios. On the other hand, if the objective is to
derive vehicle controllers that minimize the time that electric haulers spend at
a recharging station, a Lagrangian model may be more appropriate. Jafari et
al. present an Eulerian model in [2] to examine different configurations for the
purpose of optimization in fleet management. In the context of the same project,
the authors are working on a Lagrangian model of the quarry for optimization
of the properties related to each machine.

Safety. Mobility is a safety-critical problem. Models can help ensure safety at
multiple levels. A safety requirement for any such system is collision avoidance,
and typically this requirement is addressed at multiple levels with redundant
systems. At the lowest level, on-board sensors can be used with feedback control
to ensure safe distances between vehicles. Figure 5 illustrates such low-level in a
Lagrangian model. At a higher level, a track (or a sector) in an Eulerian model
can be modeled as a critical section. The number of moving objects in each
track can be controlled by the track itself or by a (semi-)centralized controller
or coordinator. In Figure 3, for example, each track has a maximum capacity
for vehicles determined by parameters shown in the figure. The safety of each
track, in the sense of not being overloaded, can be evaluated using such a model.
Tracks can be further subdivided in an Eulerian model so that each Eulerian
node has a capacity of exactly one vehicle, and control strategies that ensure that
this capacity is never violated are demonstrably safe. This method is similar to
guaranteeing mutual exclusion of critical sections in distributed software systems
using semaphores.

In air traffic control, the limits on the number of aircraft in a sector help
reduce the risk of collisions. How to maintain these limits can be evaluated



using an Eulerian model [47]. At a much lower level, ACAS systems (Airborne
Collision Avoidance Systems) such as TCAS demand Lagrangian models.

Another safety problem is ensuring that vehicles reach their destinations
without running out of fuel or other critical resources. Eulerian models may
be adequate if there is centralized control, as there might be in a quarry or a
warehouse, for example. In the domains where free movement is possible in many
directions in a large space, an Eulerian approach may not not be practical.

In Lagrangian models, for guaranteeing collision avoidance, the focus is on
each moving object. Using multiple sensing and actuating devices, the moving
object is aware of its surroundings and keeps a safe distance from the objects
around. A mixed approach can be used where each track has a maximum capac-
ity; using an Eulerian model we avoid overloading it, and each moving object is
responsible for collision avoidance inside the track.

A good example is the use of unmanned aerial vehicles for civilian operations,
which is rapidly increasing. We do not yet have solid approaches to guarantee
safety of such large multi-agent systems if we allow unrestricted movements,
as we might with a Lagrangian model. In [49], Chen et al. describe platoons
of unmanned aerial vehicles flying on air highways. They argue for track-based
structuring of the airspace and Eulerian models that allow for tractable analysis.

In general, there may be many different levels of abstractions in the airspace.
For larger regions such as cities, air highways may prove beneficial (Eulerian
model), and for a small region such as a neighborhood, perhaps unstructured
flight is sufficiently safe (Lagrangian model). Further research is needed to better
understand the parameters, such as the density of vehicles above which unstruc-
tured flight is no longer manageable, or other details like platoon size.

Control and infrastructure. For many mobility applications, modeling can
help explore the trade offs between centralized and distributed control. One
challenge is that the structure of models may be significantly different for the
two cases, thereby making comparison more difficult. An Eulerian model often
matches better with a centralized control strategy, particularly when the central
controller maintains an overall view of the flow that individual vehicles are unable
to form on their own. On the other hand, Lagrangian models may match better
when control is decentralized.

Often, a combination of models is used. For example, the air traffic control
(ATC) system works as a supervisory centralized controller with an Eulerian
view of the airspace. On the other hand, a pilot’s view is Lagrangian. In a
city, the traffic light system is distinctly Eulerian, while self-driving vehicles are
distinctly Lagrangian.

The moving objects in a mobility application have varying degrees of au-
tonomy. Goods on a shelf in a warehouse and packets in a network have no
autonomy, while self-driving cars have a great deal of autonomy. When deal-
ing with more autonomy, a Lagrangian model is often better, but again it may
complement an Eulerian model.

Effective Eulerian control often requires infrastructure investment. Traffic
lights in cities are a good example. Sometime in the future, when all vehicles



are autonomous, traffic lights may become unnecessary. In closed (and not very
big) environments, like warehouses, it is easier to build such an infrastructure.
In such environments, sensors continually update the state of each track, and a
centralized controller can dispatch waypoint commands to mobile agents. Once
centralized knowledge of a configuration is formed, it can be made accessible to
all the moving objects (or subsets of those), which can then use this additional
information to supplement their own on-board sensor data to perform more
effective Lagrangian control.

In an interesting blend of Lagrangian and Eulerian, Bayen et al. estimate
the state of an Eulerian model of automotive traffic flow (a velocity field) from
Lagrangian sensors (on-board GPS) on a subset of the vehicles [50]. They argue
that this is more effective and less expensive than Eulerian sensing, where for
example loop detectors or traffic cameras are placed at fixed locations.

The complexity and analyzability of control strategies may also be affected by
the Lagrangian-Eulerian choice. According to Sun et al. [48], in the ATC domain,
Eulerian models result in simpler, linear control-theoretic structure enables the
use of standard methodologies to analyze them.

Adaptation. Mobility applications are required to be adaptive because condi-
tions in the field and in the moving objects are constantly changing. An Eulerian
model is often more appropriate when adapting to disruptions in the physical
space, such as storms in air traffic control or blockages in a quarry. In such
situations, the adaptation usually needs rerouting and rescheduling that may af-
fect the whole system. On the other hand, when adapting to changes in battery
status or fuel supply, a Lagrangian approach is likely more useful because the
adaptation mostly affects the object itself. If the battery is low, the object may
want to change its status to use less energy. It may also cause a more nonlocal
adaptation, like rerouting and going towards a charging station. This example
illustrates that in many cases Lagrangian models are better accompanied by
some kind of Eulerian models to provide a view of the surroundings and hence
provide a more solid basis for choosing adaptation policies.

Andersson et al. suggest several modeling dimensions for self-adaptive soft-
ware systems in [51]. Their organization addresses “whether the adaptation is
performed [or enforced] by a single component or distributed amongst several
components,” and ranges from centralized to decentralized; their scope is about
“whether adaptation is localized or involves the entire system,” and ranges from
local to global. The above examples show how an Eulerian model better sup-
ports a decentralized and nonlocal adaptation, while a Lagrangian model can
deal with more local adaptations.

In [40], Bagheri et al. use their coordinated adaptive actor model (CoodAA)
[52], for performance evaluation and prediction of behavior of self-adaptive track-
based traffic control systems. CoodAA is an Eulerian model and provides a
framework for runtime analysis. If a change happens, the future behaviors of the
model are explored and possible property violations are predicted. Appropriate
policies can then be selected for adapting to the change. The cause of change
may be anything in the physical space (like a storm for the ATC example) and



the adaptation policies are rerouting and rescheduling. The adaptation decision
is made in a centralized form, and causes nonlocal changes. The framework is
implemented in Ptolemy II using the discrete event director, similarly to the
example in Figure 3.

The Eulerian model in CoodAA is faithful to the system, and the mapping
of entities in the system to the model is simple and does not need any complex
function or process. So, the changes that may happen in the system at runtime
can easily be reflected in the model. This feature is important in building a
runtime analysis framework because efficiency is crucial in runtime analysis.
Also, the coordinated actor model reflects the central control in systems like
ATC and railroad management systems.

Bagheri et al. propose a compositional runtime analysis technique, called
Magnifier [53], that is based on the Eulerian view of the system. The technique
is to focus on the point of change, and try to stop the propagation of effects of
the change. If the propagation is inevitable, then zoom out and try the same
technique. Magnifier technique can be used for adaptation of track-based flow
management systems that use an Eulerian model.

An adaptive framework is proposed by Khakpour et al. in [54]. The frame-
work is called PobSAM (Policy-based Self-Adaptive Model) and is an integration
of algebraic formalisms and actor-based Rebeca models. A hierarchical extension
of PobSAM is proposed by Khakpour et al. in [44]. In [44], the case study is on
transportation service in the airport. Autonomous transport vehicles (ATVs)
are signed in a transport scheduler service that collects passenger orders and
gives tickets (pickup/drop positions, times) to the ATVs. ATVs are modeled in
a Lagrangian way, where the ATVs have to collaborate and negotiate in com-
petition on tickets, roads and charging stations. Eulerian models are added to
bring in nonlocal control and an awareness of the surroundings; they for example
can help the ATVs to avoid a congested area while transferring passengers. The
hierarchical structure offers a form of controlled autonomy and balances agent
autonomy and system controllability, for example to prevent unsafe situations
caused by a selfish acting ATV.

4.5 Eulerian and Lagrangian Join Forces

Eulerian and Lagrangian patterns are complementary and can be combined ef-
fectively. A nice illustration of this is given by Claudel and Bayen [55], who
introduce what they call “mixed Lagrangian-Eulerian sensing” for automotive
traffic flow estimation. As we mentioned above, Eulerian sensing of traffic flow is
based on installed physical infrastructure such as loop detectors, cameras, and
speed radar. These are anchored to a physical location, and therefore provide in-
formation about a segment of roadway. Claudel and Bayen point out that these
can be complemented with Lagrangian sensors, which travel with vehicles. In
particular, they use GPS-enabled smartphones and show that even with a small
percentage of vehicles so equipped, significant improvements in estimation are
possible. In a personal communication, Bayen has also suggested Lagrangian
control, not just sensing, of traffic flow. The idea is that even a small percentage



of self-driving vehicles on the road can be controlled so that they affect traffic
flow, complementing Eulerian control techniques such as traffic lights on freeway
entrance ramps.

Consider how we might combine the Eulerian model of the automated quarry
in Figure 3 with the Lagrangian model in Figure 5. The Eulerian model provides
a macroscopic view of the overall operation that can be used to define high-level
strategies. A centralized controller could distribute instructions to haulers which
will then carry out the instructions using low-level Lagrangian control. The Eu-
lerian model mitigates congestion and minimizes queuing, while the Lagrangian
model avoids collisions and monitors battery usage.

Anytime a (semi)autonomous agent needs to operate in a larger context,
there is potential benefit from combining Eulerian and Lagrangian perspectives.
The work of Khakpour et al. in [44] is a nice demonstration of this combination.
Sensors fixed to infrastructure necessarily provide different information than
sensors fixed to mobile agents, and controllers fixed to infrastructure necessarily
provide a different kind of control than those fixed to mobile agents. Models need
to reflect these complementary properties, and engineers need to consciously
choose their modeling strategies cognizant of their strengths and weaknesses.

In a different context, for setting different parameters in a planning problem,
an Eulerian model is used as a lightweight model prior to using a more detailed
Lagrangian model. Castagnari et al. built an agent-based simulation framework
for assessing the evolution of urban traffic after the introduction of new mobility
services [46]. Each commuter is an agent in the model. The agent-based simu-
lations are computationally expensive. So, they proposed their Eulerian model
[35] which they used to estimate the simulation parameters for the Lagrangian
model, and save expensive iterations of executing the Lagrangian model. They
implemented a tool to map the inputs to the Lagrangian model to the inputs
of the much lighter Eulerian model, and compared the outcomes to show the
correlation.
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