What Good are Models?
Invited Paper

Edward A. Lee! and Marjan Sirjani®3

1 EECS Department, University of California at Berkeley, U.S.A
2 School of Innovation, Design and Engineering, Malardalen University, Sweden
8 School of Computer Science, Reykjavik University, Iceland

Abstract. Models are central to engineering. They are used for anal-
ysis, synthesis, and communication between humans. A given artifact
or process may have multiple models with di[erent purposes, modeling
diCerknt aspects, or modeling at varying levels of abstraction. In this
paper, we give a general overview of how models are used, with the goal
of making the concepts clearer for dilerent communities. We focus on
the domain of track-based flow management of automated systems, and
identify two dilerent modeling styles, Eulerian and Lagrangian. Eule-
rian models focus on regions of space, whereas Lagrangian models focus
on entities moving through space. We discuss how the features of the
system, like having centralized or decentralized control or the ability to
install fixed infrastructure, influence the choice between these styles. Al-
though the choice between modeling styles is rarely made consciously, it
a[edts modeling e Lciehcy, and one style may be far better suited for cer-
tain modeling problems than another. For problems with a more global
nature concerning the physical space, an Eulerian model is likely to be a
better match. For problems that concern the moving objects specifically,
where the identity of the individual objects is important, a Lagrangian
view is the one to choose. In many cases, combining the two styles is the
most e [edtive approach. We illustrate the two styles using an example
of an automated quarry.

1 Introduction

We are now in the era of cyber-physical systems, the Internet of Things, and
smart applications. For building such systems we need a team of experts with
various domains of expertise, including computer science, software engineering,
computer networking, control and communication engineering, robotics, and ar-
tificial intelligence. Although all these experts have the experience of working
with models, they use dilerent terminologies and very dilerent modeling lan-
guages. Models are used dilerently in dilerent contexts, and for people with
varying backgrounds, this may create confusion. With the increasing need for
people with di [erent backgrounds to work together, communication is becoming
a crucial obstacle. To tackle this obstacle, in this paper we provide an over-
all view of modeling in the contexts of science and engineering, with di Lerent

71

in Fofmal Aspects of Component Software, 15th International Conference, FACS 2018, Pohang, South Korea, October
10-12, 2018, Proceedings, Kyungmin Bae and Peter Csaba Olveczky, Eds., Springer, LNCS 11222,

eal
Typewritten Text
in Formal Aspects of Component Software, 15th International Conference, FACS 2018, Pohang, South Korea, October 10–12, 2018, Proceedings, Kyungmin Bae and Peter Csaba Olveczky, Eds., Springer, LNCS 11222.

eal
Typewritten Text

eal
Typewritten Text

eal
Typewritten Text

eal
Typewritten Text

goals of synthesis and analysis, and in dilerknt directions of abstraction and
refinement. We show how validation and verification provide quality assurance
on multiple levels in the process of modeling.

We focus on flow management of autonomous systems, covering a wide range
of application domains including air tra [c_cbntrol, railway systems, road tra [c,1
automated warehouses, smart transport hubs in cities, and computer networks.
The increasing tra CcC\Molume that inevitably comes with increasingly e [cieht
use of resources makes collision avoidance and safety assurance more critical
and complicated. It also increases the possibility of unpredicted changes and
demands automated runtime planning. Any improvement in planning can save
a huge amount of cost, which may be in the form of time, fuel consumption, or
risk, and can make a system more environmentally friendly and sustainable and
improve user satisfaction.

Experimenting with the design of transportation systems in the field can be
prohibitively expensive and unsafe. As a consequence, it is essential to use models
both for understanding how existing systems work and for determining how to
improve them. There is a surprising richness of possibilities for constructing
models, and the choice of modeling strategy can strongly aledt the outcome.
What model to use depends not only on the problem domain, but also on the
goal.

In the following sections, we give an overall view on modeling, abstraction
and refinement, scientific and engineering models, verification and validation,
and synthesis and analysis. We then continue by focusing on actor-based models
of track-based flow management systems. We show how there are similar and
common concepts, features, and problems in all flow management systems. We
then present two views of flow management, Eulerian and Lagrangian, and o [erl
a discussion on how to choose one of these models over the other and how and
when to combine them.

We use an automated quarry as a running example of a track-based flow
management system. The case study is inspired by the quarry site used in the
electrified site project at Volvo Construction Equipment, where autonomous
haulers (HX) are used for transporting material in the site, see Figure 1. HX
machines are intended to perform tasks such as material transport, loading,
unloading, and charging in a cyclic manner with predefined timing constraints
and task priorities [1,2].

Note that there is a huge amount of work done on tra [cflow management in
various domains. The aim of this paper is not to serve as a literature review nor a
comparative study of tra [c_nhanagement methods. The aim is to give an overall
view of modeling of flow management systems from di [erent perspectives.

This paper reflects the authors’ collective experience in modeling di Lerknt ap-
plications using actor-based modeling and simulation frameworks. Over decades
of building models, we have found common patterns. Flow management prob-
lems consist of sources of moving objects, destinations, and paths. Models ad-
dress safety and optimization goals, like collision avoidance, higher throughput,
and minimum delay. Models also address policies for adapting to change. For

example, in a network on chip (NoC), we have to deal with a faulty router,
and in air tra Cc_cbntrol systems (ATC), we have to avoid storms. But perhaps
the most interesting insight derived from our experience is that two very dif-
ferent and complementary modeling styles can be used for flow management
problems. These two styles are called Eulerian and Lagrangian, after a simi-
lar dichotomy of modeling styles in fluid mechanics. Eulerian models focus on
regions of space, whereas Lagrangian models focus on entities moving through
space. When building actor-based models, an actor represents a region of space
in an Eulerian model and a moving object in a Lagrangian model. Although the
choice between modeling styles is rarely made consciously, it aledts modeling
e [ciehcy, and one style may be far better suited for certain modeling problems
than another.

LOADING POINT CHARGE STATION SECONDARY CRUSHER
| (UNLDADING POINT)

WHEEL LOADER PRIMARY CRUSHER MATERIAL TRANSPORT

Fig. 1: The Volvo Quarry Site (from [1])

2 Modeling

A model is any description of a system that is not the thing-in-itself (das ding
an sich in Kantian philosophy). By this definition, every human conception of
a system external to herself is a model. In this paper, we focus on modeling
a system that includes human-made artifacts and processes, not just naturally
occurring systems. In other words, we are focused on engineering, not natural
science.

In the automated quarry, the haulers and their controllers, for example, are
human-made artifacts. But these artifacts are subject to natural laws, and there-
fore have properties and behaviors that are not human-made. Hence, our models
will need to reflect both physical realities and design intent.

A naive approach to modeling such a system is to build a single ever-more-
detailed model of its physicality. Such models quickly become unwieldy and in-
comprehensible. A more productive approach is to build a multiplicity of models,
each with a purpose. But how should these models be built and how should they
relate to one another? On what principles and languages should we base the
models? We examine these questions in this section.

2.1 Abstraction and Refinement

Every model is designed to study some property or properties of a system. For
example, we might be interested in the cost of a system, and we might construct
a model where the cost is defined to be the sum of the costs of a collection of
components. Here, the property of interest is cost, and this property lives within
formal system of arithmetic where costs can be summed and compared.

A model A may be an abstraction of another model B in that they are
intended to model the same thing, but A has less detail than B [3]. For example,
B may be a model with three components with costs ¢; = 10, ¢, = 20, and
¢z = 30, so the total cost is 60. An abstraction A might be a simpler model with
no components, but only a variable c, representing total cost, and an assertion
that ¢ < 100. A is an abstraction of B because it is intended to model cost, but
it does not break down the cost by component, and it does not give a specific
cost.

The abstraction A is sound if every property of interest that is true for A
is also true for B (this is often called “property preservation”). We say “every
property of interest” because any model will have properties that are not of
interest. For example, when building model A, we are not interested in the
number of components, so we abstract that property away. Only the total cost is
a property of interest in A. For A to be a sound abstraction of B, it is necessary
for total cost to also be a property of interest in B. When we use models, we
focus only on some of the properties, and hence soundness is always with respect
to these properties of interest.

When a model A is a sound abstraction of another model B, we can equiva-
lently say that B is a refinement of A. A refinement B of A adds detail to A
without exhibiting properties that are prohibited by A.

A concept that usually comes with soundness is completeness. A is a
complete abstraction of B if every property of interest that is true for B is also
true for A. While doing abstraction and refinement, we are rarely looking for
completeness. Useful abstractions are usually sound but not complete. In our cost
example, A is a sound abstraction of B, but if costs of individual components are
also properties of interest for us, then A is not a complete abstraction, because
in B we have the costs of individual components but in A we have lost that
information.

There are cases where two di[erent models exhibit the same behavior and
satisfy the same properties. When building models of behavior using automata
or transition systems, for example, the formal methods community uses the
notions of simulation and bisimulation [4], and there are precise definitions for

each concept and the spectrum of di [erknt equivalency relations [5]. Abstraction
and refinement are reduced to simulation relations, while bisimulation implies
both soundness and completeness.

Note that both soundness and completeness are with respect to properties of
interest. Suppose, for example, that we have a model C with three components
with costs ¢; = 10, ¢, = 20, and ¢z = 30 and weights w; = 1, w, = 2, and
w3z = 3. If the “properties of interest” include only costs, then B is a sound and
complete abstraction of C.

2.2 Scientific and Engineering Models

Following [6], we distinguish models that we call scientific models, which are
intended to reflect the behavior of a pre-existing system, from models that we call
engineering models, which are intended to specify the behavior of a system
to be built. It is important to recognize whether a model is to be used in a
scientific way or an engineering way. For example, adding detail may enhance a
scientific model and degrade an engineering model. An architect probably should
not specify the placement of every brick, but a structural engineer studying the
earthquake safety of a building may need this detail.

An engineering model may serve as a specification for a system to be built.
It may be informal or formal and more abstract or less abstract. The purpose
of the model is to give properties that the built system is required to have. En-
gineering models are often layered, where a less detailed model A serves as a
specification for another more detailed model B. For engineering models, veri-
fication is the process of checking that B is a refinement of its specification A,
or, equivalently, that A is a sound abstraction of B.

Scientific models may also be more or less detailed and formal or informal.
The most useful scientific models are the simplest (least detailed, more abstract)
that still exhibit the properties of interest. A scientific model is faithful if every
property it exhibits is also a property of the system being modeled. Faithfulness
is similar to soundness, but while soundness is a relation between two models,
faithfulness is a relation between a model and a thing-in-itself.

Faithfulness is easier to achieve if properties of the modeling language it-
self reflect properties of the problem domain being modeled [7]. For example, a
modeling language with continuous time will make it easier to faithfully model a
system with continuous dynamics. Similarly, a modeling language with discrete
events, concurrency, and asynchronous interactions will make it easier to model
distributed software systems.

Scientific models may also be layered, although this is far less common than
for engineering models [6]. If model A is a sound abstraction of model B, and
model B is faithful to some physical system C, then A is also faithful to C.

Faithfulness is much harder to pin down formally than soundness because
it is not a relationship between models. It is a relationship between a model
and physical, real-world system, the thing-in-itself. Any property held by a real-
world system is ultimately subject to measurement error, and hence faithfulness
can never be more than approximately assured. Reflecting this fact, Box and

Draper famously said, “all models are wrong, but some are useful” [8]. They
were referring to scientific models, not engineering models. A specification, an
engineering model, is by definition right, not wrong.

For most properties of interest, in science, models are always wrong, in the
sense of Box and Draper, but in engineering, a physical, real-world implementa-
tion is always wrong. The specification is an idealization, and an implementation
can only approximate it. For instance, every physical realization is vulnerable
to failures that are not accounted for in the specification. How will a computer
program behave, for example, if the computer it is running on is immersed in salt
water? Whatever behavior emerges is likely not a behavior of the specification.

Consider for example the dynamic behavior of an electric hauler reacting to
network command to accelerate. A scientific model may use Newton’s laws to
describe how the vehicle reacts to torque induced by the motor. This model is
wrong, in the sense of Box and Draper, because it depends on parameters, such
as the weight of the vehicle, that cannot be perfectly measured. It is also wrong
because Newton’s laws are wrong in that they fail to account for relativistic
e [edts. But with appropriate assumptions, the model remains useful.

On the other hand, an engineering model for the same problem is a specifica-
tion. It defines the correct behavior of a hauler being designed. But no physical
vehicle will perfectly match that behavior, and therefore the real-world physical
implementation is wrong. But mirroring the usefulness of a scientific model, with
appropriate assumptions, the physical implementation will be useful.

2.3 Verification and Validation

According to Boehm [9], verification is to establish the truth of the correspon-
dence between a software product and its specification, and validation is to
establish the fitness or worth of a software product for its operational mission.
Boehm refers to the roots of the words as well. “Verification” is derived from the
Latin word for “truth”, veritasis, and “validation” is derived from the Latin word
for “to be worthy”, valere. Informally, we might define these terms by asking
“am | building the product right?” (verification) and “am | building the right
product?” (validation).

Validation is comparing a model with the system, or to be more precise, com-
paring a model with the system projected over behaviors of interest. The model
defines the “right product.” Verification is comparing the model with another
model reflecting more abstract properties. To avoid sinking into a philosophical
guagmire, we can only formally establish “truth” by comparing models.

For engineering models, verification means making sure that a model B ex-
hibits only acceptable behaviors, or, equivalently, that it does not exhibit pro-
hibited behaviors. A specification A is a reference point that defines acceptable
behaviors and their complement, prohibited behaviors. To formally verify B is
to prove that it is a refinement of A.

Validation in an engineering process means to check whether the specification
is written correctly, i.e. whether the model you built as the specification is really

representing the system you want to be built eventually. Validation is checking
whether the product meets the customer expectations and requirements.

For scientific models, validation is checking how much the model reflects the
existing system being modeled, or, equivalently, how faithful the model is. Here,
scientists rely on the scientific method to approximately validate models. Specif-
ically, they design experiments that have the potential to expose mismatches
between the behavior of the model and that of the thing-in-itself. That is, the
experiment has the potential to falsify the model. Failure to falsify a model is
the best available validation of a scientific model. On the other hand, for verifi-
cation, you need two models to compare. For verification of both scientific and
engineering models, you assume that the specification (which is as a reference
model) is correct (valid) and verify that the other models that you build based
on that are refinements.

Note that no scientific model is perfectly faithful to any physical system
unless it is the physical system itself. Hence, it is not necessarily a mistake to
fail to reflect behaviors of the system being modeled. All scientific models do
that, in that some behaviors are ignored or abstracted away. It is a mistake to
fail to reflect behaviors of interest, behaviors that the model was intended to
explore. A scientific model can therefore be viewed as projection of a system
onto a subspace of behaviors of interest.

For example in our automated Quarry, the customer has a safety and progress
requirement that if the hauler faces an unpredicted obstacle, it has to avoid the
obstacle (safety), but the system should not completely shut down (liveness).
This requirement is then formulated mathematically, for example as a set of
temporal logic formulas. The formulas must be written in a concrete way, for
example in terms of the data received by the hauler from its sensors and cameras
and commands issued to its actuators. For example, a temporal logic formula
may specify that the machine halts if an obstacle is sensed, and that this halt-
ing state is temporary. Checking whether this formula is correctly capturing the
customer requirements is a validation process. The formula is now a specification
of the system. When the controller program of the hauler is being developed,
the behavior of the hauler executing this program is verified against this speci-
fication.

2.4 Synthesis and Analysis

Models can be used for both synthesis and analysis. In a model-driven develop-
ment approach we do synthesis; that is, we build abstract models that serve as
a specification of a system to be built, and then we refine the models, adding
details until we build the system itself. Typically, the process is iterative, with
the specifications evolving along with their refinements. Models can be used
along the way for dilerent analysis purposes, verification, validation, and per-
formance evaluation. If we have formal and automatic refinement techniques, we
may be able to avoid introducing errors in the refined models while details are
added. In this case, synthesis is said to be “correct by construction.”

A classic example of correct-by-construction synthesis is what a compiler is
intended to do. It translates a specification (a program) into a refinement (ma-
chine code for a particular machine), adding detail about how to accomplish the
intent of the program while preserving behaviors specified by the program. If
this is done correctly, the machine code will not exhibit any behaviors that are
prohibited by the program. Note that the machine code is still not an implemen-
tation. It is another model, specifying behaviors that a silicon implementation of
a processor is expected to exhibit. Since it is a model, not a thing-in-itself, the
machine code can be formally verified, proven to not exhibit behaviors prohib-
ited by the program. The thing-in-itself, of course, will always be able to exhibit
behaviors prohibited by the program, if it is immersed in salt water for example.

Compilers that can be trusted to produce correct machine code have proven
to be a spectacularly powerful engineering tool. Spurred in part by this success,
software engineers continue to try to push up the level of abstraction at which
systems are specified and develop correct-by-construction synthesis techniques
that work from those more abstract models. These e [arits have met with limited
success. A commonly used alternative to correct-by-construction synthesis is to
treat a model, such as a program, as a pre-existing artifact, and to construct
an abstraction, a scientific model of the program. This model can be used for
analysis. In some cases, the abstract model can be constructed automatically,
using for example abstract interpretation [10]. We could call such a process
“correct-by-construction abstraction.”

For example, instead of synthesizing a computer program from a more ab-
stract specification, say in UML, we may write a program by hand and build
an abstract model of that program to analyze its behaviors. The more abstract
model is, e[edtively, a scientific model of an engineering model. For example,
a nondeterministic automaton could model a computer program. We can then
perform model checking [11], which formally checks that the automaton is a
refinement of a still more abstract specification model, given for example as a
set of temporal logic formulas. If the automaton is a sound abstraction of the
program (ideally, it is because it was built using correct-by-construction ab-
straction), and the automaton is a refinement of the specification (checked using
model checking), then the program is a refinement of the specification.

Model checking, simulation, and building physical prototypes can all be used
as methods for analysis. Simulation, which is the execution of an executable
model, reveals one possible behavior of a model with one set of inputs. Model
checking reveals all possible behaviors of a model over a family of inputs.

Di [Cerent communities may prefer one technique over others. Some practition-
ers, for example, prefer physical prototypes over simulation, saying that “simula-
tion is doomed to succeed.” Rodney Brooks, for example, writing about robotics,
says “there is a vast di [erknce (which is not appreciated by people who have not
used real robots) between simulated robots and physical robots and their dy-
namics of interaction with the environment” [12].

Indeed, simulation can be misused. A simulation of a robot may be the exe-
cution of an engineering model, a specification. If the specification is valid, then

the simulation is indeed doomed to succeed. The model should not be misinter-
preted as a scientific model that reveals unknown or unexpected behaviors of
the thing-in-itself.

When using simulation, it is important to understand whether one is doing
engineering or science. An engineering model should not be used to discover
how a real physical system will behave because it will only reveal behaviors
that were designed in. Faithful scientific models of robots are indeed di [Ccullt to
construct because robots exhibit complex physical behaviors that are aledted
by phenomena such friction, plastic deformation, and acoustic propagation of
vibration that are notoriously di [Ccult to model [13]. A good engineering model
of a robot, however, can be useful for validation of a specification. Does the
specification, an idealized robot, exhibit desired behaviors? It becomes a sep-
arate question whether a real robot, a thing-in-itself, can be built so that the
specification model is faithful.

When faithful scientific models are not available, physical prototypes are
used. Physical prototypes will reveal problems that simulation based on an en-
gineering model cannot reveal. A robot arm, for example, may be modeled as
rigid and frictionless for the purposes of developing path planning algorithms. A
hauler in an automated quarry may be modeled as moving at a constant speed
or stopped (two states) if the purpose of the model is to analyze congestion and
optimize throughput. These models should not be used to analyze precision of
motion.

3 Actors

A component is a chunk of functionality that can be composed with other chunks
of functionality to yield a new chunk of functionality. In software engineering,
di Cerknt classes of component models have evolved. In imperative languages, for
example, a component is a procedure, and a program is a sequential execution
of a top-level procedure that can call other procedures. Components are com-
posed by procedure calls, a temporary transfer of the flow of control from one
procedure to another. Object-oriented languages are organizations of impera-
tive programs with information hiding. In functional languages, a component
is a stateless function (free of side e[edts), and components are composed by
function composition. In actor languages, components are concurrently execut-
ing programs called “actors” that send messages to one another over streaming
channels. Actor languages have proved very e[edtive for modeling concurrent
and distributed systems, so we focus on those here.

The term “actor” was introduced in the 1970’s by Hewitt to describe the
concept of autonomous reasoning agents [14]. The term evolved through the
work of Agha and others to describe a formalized model of concurrency [15].
Agha’s actors each have an independent thread of control and communicate via
asynchronous message passing. Each actor has a single input queue on which
it receives messages, and it handles messages in order of their arrival. Rebeca
[16,17], for example, is a software framework that realizes Agha’s actors, match-

ing asynchronous and event-driven domains. It has proven particularly suitable
for modeling and analyzing network protocols and applications [18,19,20].

The term “actor” has also been used for dataflow models of computation.
Three major variants of dataflow models have emerged in the literature: Kahn
process networks [21], Dennis dataflow [22], and dataflow synchronous languages
[23]. In all three, as with Hewitt actors, a program is a network of intercon-
nected actors. Unlike Hewitt actors, dataflow actors have explicit input and out-
put ports, and rather than referencing a remote actor to send a message to it,
dataflow actors send messages to output ports and the network handles routing
that message to one or more destinations. Since actors do not have references to
one another, dataflow actors tend to be more modular and reusable than Hewitt
actors. The same actor can be instantiated in multiple contexts.

In Dennis dataflow, program execution is a sequence of atomic actor firings,
where each firing consumes input tokens (chunks of data) and produces output
tokens. In Kahn networks, each actor is a sequential program that reads from
input ports and writes to output ports. In the original Kahn-MacQueen variant
[24], a read from an input port will block until an input token is available and
writes to output ports are nonblocking, sending data with no constraints. Various
generalizations allow richer input-output semantics, for example to allow for
nondeterministic merging of streams, and various specializations constrain the
execution, for example to prevent unbounded buildup of unconsumed tokens
in queues. Dennis dataflow can be viewed as a special case of Kahn process
networks [25]. Dataflow synchronous languages di [erl from both of these in that,
semantically, all actors in a program fire simultaneously and instantaneously.
The inputs and outputs of the actors are defined by a fixed point of the function
defined by the composition of actors.

The Ptolemy Il framework [26,27] generalizes actors to embrace any model
of computation (MoC) where a program is either a static or dynamic graph of
components with ports, where the components are concurrent, and where the
ports are connected through communication channels. In a Ptolemy Il model, the
execution of such a graph is governed by a director, a coordinator that realizes
the specific MoC. Directors have been realized for Kahn process networks, sev-
eral flavors of dataflow, and dataflow synchronous models. In addition, directors
are available for MoCs that do not traditionally fall within the purview of actor
models, but which share essential features with actor models. These include a
discrete-event (DE) model, where communication is via time-stamped events,
a rendezvous MoC, where concurrent components communicate by rendezvous,
and a continuous-time MoC, where the communications between components
are semantically continuous-time signals. Ptolemy |1 DE models are similar to
many simulation frameworks such as DEVS [28] and hardware description lan-
guages such as Verilog and VHDL. Ptolemy Il rendezvous models are similar to
Reo [29] and realize a semantics similar to communicating sequential processes
(CSP) [30]. The continuous-time models of Ptolemy Il are similar to those in
modeling languages such as Simulink (from The MathWorks) and Modelica [31].

A key innovation in Ptolemy 11 is that many of these MoCs can be hierarchically
combined in the same model by leveraging an actor abstract semantics [32].

In any framework that supports composition of communicating actors, the
specific semantics of the interaction between actors, the MoC, is a meta-model,
a model of a family of models [33]. The MoC is an essential part of any modeling
language. It provides designers with constructs and features to build programs
and models, and the semantics of the meta-model shape the models that are
built, sometimes without the designer realizing that this is happening.

Design patterns and templates also function as meta-models, using constructs
and features that are provided by the modeling language and adding guidelines
for how to model. They tell designers how to match entities in the problem
domain to entities in the solution domain (the model we are building). Design
patterns can shape the thoughts of the designer.

Broadly, these varied actor languages, semantics, and modeling frameworks
provide us with constructs and features that fit concurrent and distributed sys-
tems. The varying semantics are tuned for dilerknt problem domains. In this
paper, we examine how some of the relevant MoCs fit track-based flow manage-
ment of automated systems.

4 Eulerian and Lagrangian Models of Track-based
Systems

We now focus on the track-based flow management systems, specifically traf-
fic management systems and transportation. By “track-based” we mean that
movement through the space is restricted to pre-defined paths, as opposed to
unrestricted movement in two or three-dimensional Euclidean space. Air tra [1
control, railroad scheduling, unmanned aerial vehicles (UAV) tra [c_thanage-
ment, smart transport hubs in cities, automated warehouses, and autonomous
transport vehicles (ATVs) are examples where we have track-based tra [c_dnd
transportation. Wired computer networks, like networks on chip (NoCs), demon-
strate similar patterns of features, behavior and goals.

Di [Lerknt models and techniques are used in di [erent application domains for
flow management of such systems. The main concerns are guaranteeing safety
(like avoiding collisions or running out of fuel) and improving e Cciehcy (includ-
ing multi-objective optimizations like reducing delays, maximizing throughput,
decreasing fuel consumption, and minimizing environmental impact).

Design patterns help when dealing with similar problems by providing a tem-
plate as the basis for designing your solution. You can reuse, customize and opti-
mize similar techniques. We distinguish two general patterns in building models
for flow management. The first pattern, called “Lagrangian,” focuses on the mov-
ing objects, such as airplanes, trains, automated vehicles, commuters in cities,
robots and products in warehouses, and packets in NoCs. In the Lagrangian
view, the moving objects have independent identities. The properties of interest
concern the behaviors of individual moving objects, including for example how
quickly and safely they reach their destinations.

https://commons.wikimedia.org/wiki/File:NAT-Tracks-24FEB17.png
https://commons.wikimedia.org/wiki/File:NAT-Tracks-24FEB17.png
https://commons.wikimedia.org/wiki/File:NAT-Tracks-24FEB17.png
https://commons.wikimedia.org/wiki/File:Tokyo_subway_map.PNG
https://commons.wikimedia.org/wiki/File:Tokyo_subway_map.PNG
https://commons.wikimedia.org/wiki/File:Tokyo_subway_map.PNG

https://www.nsnam.org/

https://www.volvoce.com/global/en/this-is-volvo-ce/what-we-believe-in/innovation/
https://www.volvoce.com/global/en/this-is-volvo-ce/what-we-believe-in/innovation/
https://www.volvoce.com/global/en/this-is-volvo-ce/what-we-believe-in/innovation/

	What Good are Models?

