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ABSTRACT
Programming time-critical systems is notoriously difficult. In this

paper we propose an actor-oriented programming model with a

semantic notion of time and a deterministic coordination semantics

based on discrete events to exercise precise control over both the

computational and timing aspects of the system behavior.
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1 INTRODUCTION
Precise timing plays an important role in cyber-physical systems. In

order to effectively program these systems, there is a need for mod-

els with semantics that includes time. In today’s general-purpose

hardware and programming languages, timing properties of soft-

ware are emergent rather than specified. Therefore, the verification

of timing properties of time-critical systems relies on overly de-

tailed analysis or testing, but effectively testing software in the face

of nondeterminism is challenging and sometimes infeasible.

In this paper, we propose an actor-oriented programming model

aimed at time-critical systems. This model reduces nondeterminism

by introducing a semantic notion of time and allowing program-

mers to specify timing properties, which, if executed on capable

hardware, can be guaranteed statically. The coordination semantics,

based on discrete events, ensures that messages between actors are

handled in deterministic order unless nondeterminism is introduced

explicitly as a desired property.
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2 ACTORS
The actor model was introduced by Hewitt [6] in the early 70s.

Since then, the use of actors has proliferated in programming

languages [1, 2], coordination languages [14, 15], distributed sys-

tems [7, 11], and simulation and verification engines [13, 17]. Ac-

tors have much in common with objects—a paradigm focused

on reducing code replication and increasing modularity via data

encapsulation—but unlike objects, actors provide a better model

for concurrency than threads, the default model for objects. Indeed,

each actor is presumed to operate concurrently alongside other

actors with which it may exchange messages asynchronously. Ob-

jects, in contrast, are often designed assuming a single thread of

control, and retrofitting them to be “thread safe” is challenging and

error prone. The inherent concurrency of actors makes them ideal

for programming reactive systems. However, the lack of any guar-

antees with respect to the ordering of messages and the absence of

a notion of time make this model less useful for specifying systems

in which timely execution and repeatable behavior are important.

Extra machinery can be introduced for the formal specification

and analysis of systems composed of Hewitt actors. For instance,

Real-time Maude [12], a timed rewriting logic framework and tem-

poral model checking tool, has been applied to actors [3]. Similarly,

the modeling language Rebeca performs analysis that uses a model

checker to ensure that nondeterminism allowed in the model does

not lead to behaviors that violate timing requirements [8]. Alterna-

tively, constraints can be placed on actors’ allowable behaviors so

that they adhere to a well-defined model of computation, satisfying,

by construction, desirable properties such as deadlock freedom,

schedulability, bounded memory usage, and deterministic execu-

tion. It is this latter approach that we assume in this paper.

In [14], Ren and Agha also propose giving actors a temporal

semantics. As in our work, they assume a sufficiently well syn-

chronized common physical time base shared by all actors, and

they express timing requirements as constraints on message han-

dling. Their work differs from ours, however, in that they build off

a standard actor language, thereby inheriting its nondeterministic

ordering of message handling, and they rely on separately imposing

timing constraints to control the order when needed. In contrast,

we use logical timestamps to define the order of message handling

and ensure determinism.

Dataflow models are also closely related to the actor model.

In [19] the authors extend an (untimed) dataflow model with for-

mal contracts that allow guarantees, e.g., for scheduling. There

are timed models of dataflow [18], and even some structured ap-

proaches to use timing semantics in dataflow to execute time-critical
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1 reactor Ramp(p:int (10)) {

2 input set:int;

3 output out:int;

4 clock c(p);

5 constructor {=

6 int count = 0;

7 =}

8 reaction(c) -> out {=

9 count ++;

10 set(out , count);

11 =}

12 reaction(set) {=

13 count = set;

14 =}

15 }

16 reactor Print {

17 input in:int;

18 reaction(in) {=

19 printf("%d\n", in);

20 =}

21 }

22

23 composite App {

24 a = new Ramp(p=100);

25 b = new Print();

26 a.out -> b.in;

27 }

Figure 1: Example of a Ramp feeding into a Print reactor

applications in cyber-physical systems [5]. Fredlund et al. proposed

timed extension of McErlang as a model checker of timed Erlang

programs in [4]. In this extension a newAPI is introduced to provide

the definition and manipulation of timestamps.

3 REACTORS
Our approach in this paper replaces classical actors with a model

that we call “reactors,” which are similar to actors, but with impor-

tant differences. We will explain the model first, and then discuss

its advantages. We do not make a commitment to a specific syn-

tax for specifying reactors, but, to be concrete, we discuss source

code examples written in a language that we are developing and

experimenting with.

3.1 Examples
Consider the code in Figure 1. The Ramp reactor emits messages,

yielding a counting sequence beginning at 0, at regular time inter-

vals with a period given by its parameter p. It declares an output
named out of type int, a clock which will trigger reactions peri-

odically, and an input named set of type int. The constructor
declares and initializes a state variable named count. This reactor
has a reaction triggered by the clock named c and one triggered

by the input set. The first reaction increments the state variable

count and sends it to the port named out, and the second reac-

tion sets the state variable to a specified value. Because there are

two reactions, in order to ensure determinacy, the reactor has to

define in which order to handle simultaneous triggers (we define

“simultaneous” in Section 3.2). Here, we assume that the order of

declaration gives that order, so the reaction to c will be invoked

before the reaction to set.
The Print reactor has an input port named in that triggers

its one and only reaction. The composite named App defines one
instance of each of these reactors and connects their ports.

The bodies of the reactions are written in some target language;

in our example in Figure 1 they are written in C. The target code

in the figure is delimited by {= and =}. A reaction’s triggers, as

well as any inputs and outputs used in the body of the reaction, are

declared. For example, line 8 declares that the reaction is triggered

by the clock named c and produces an output on the port named

out.

1 reactor HTTPGet () {

2 input url:string;

3 output out:string;

4 action arrived:string;

5 reaction(url) {=

6 httpRequest(url , function(reply) {

7 schedule(arrived , reply);

8 });

9 =}

10 reaction(arrived) -> out {=

11 set(out , get(arrived));

12 =}

13 }

Figure 2: Example of a reactor that produces an asynchro-
nous output.

Reactors can also be used to handle less predictable asynchro-

nous behaviors, such as network interactions, interrupt-driven spo-

radic sensors, and other unpredictable events. A simple example is

sketched in Figure 2. That reactor, upon receiving an input at its

url port, issues an asynchronous HTTP request over the network.

When the reply from the remote server is received, the callback

function is invoked. That function schedules a subsequent reac-

tion via the action named arrived. An action is like an input, but

messages are not received from other reactors, but rather as a side

effect of some action of this reactor itself.

3.2 Principles
We summarize our model with the following principles:

(1) Components—Reactors can have input ports, actions, and

clocks, all of which are triggers. They can also have output

ports, local state, and an ordered list of reactions.

(2) Composition—A composite is a reactor that contains other

reactors and manages their connections. The connections

define the flow of messages, and two reactors can be con-

nected only if they are contained in the same composite. An

output port may be connected to multiple input ports, but

an input port can only be connected to one output port.

(3) Events—Messages sent from one reactor to another, and clock

and action events each have a timestamp, a value on a logical
time line. These are timestamped events that can trigger

reactions. Each port, clock, and action can have at most one

such event at any logical time. An event may carry a value

that will be passed as an argument to triggered reactions.

(4) Reactions—A reaction is a procedure in a target language

that is invoked in response to a trigger event, and only in

response to a trigger event. A reaction can read input ports,

even those that do not trigger it, and can produce outputs, but

it must declare all inputs that it may read and output ports

to which it may write. All inputs that it reads and outputs

that it produces bear the same timestamp as its triggering

event. I.e., the reaction itself is logically instantaneous, so any

output events it produces are logically simultaneous with the

triggering event (the two events bear the same timestamp).

(5) Flow of Time—Successive invocations of any single reaction

occur at strictly increasing logical times. Any messages that
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are not read by a reaction triggered at the timestamp of the

message are lost.

(6) Mutual Exclusion—The execution of any two reactions of a

reactor are mutually exclusive (atomic with respect to one

another). Moreover, any two reactions that are invoked at

the same logical time are invoked in the order specified by

the reactor definition. This avoids race conditions between

reactions accessing the reactor state variables.

One of the challenges with understanding our model is that there

are two distinct timelines in play, the logical timeline, and an im-

plied physical timeline, or wall-clock time, in which reactions are

executed. For example, principle (6) prohibits simultaneous invo-

cation of reactions in physical time, but two reactions triggered

at the same stamp are logically simultaneous. From principles 3–5

it follows that any reaction of any reactor can only observe input

events on different ports if they have the same timestamp. Input

ports are absent if there is no event with a timestamp matching the

time of the reaction. Moreover, any outputs produced by a reaction

are logically simultaneous with the triggers. Since, at a logical time,

an output can only have one message, if reactions set the output

more than once, the last value set will be the one sent at that logical

time.

To ensure determinism, each reactionmust declare the triggers to

which it reacts, any additional input ports that it reads, and to which

output ports it may write. These declarations enable a composite

to analyze the dependencies between reactions across reactors in

order to constrain the order in which reactions are invoked across

reactors so that the execution remains deterministic.

Notice that in Figure 2, the reaction to the url does not need to

declare production of the action arrived because that action will

be guaranteed (by the schedule function) to occur with a strictly

greater timestamp than the triggering url event.
The schedule function in Figure 2 deserves discussion. This is

used to activate a trigger at a future logical time. We require that it

be a future logical time, and consequently it has no impact on the

ordering constraints of scheduling of reactions at a logical time.

Together, the stated principles ensure that the execution of a

composition of reactors is deterministic in the sense that given any

set of time-stamped inputs from outside the composition, the com-

position has exactly one behavior. Within this framework, there

are various opportunities for “syntactic sugar,” where complex be-

haviors can be expressed more compactly, for example with the

Ptolemy II notion of “multiports” or “persistent ports” [13].

3.3 Discussion
In the original Hewitt actors and many modern implementations,

actors have references to the actors that they communicate with.

In our approach, rather than addressing each other directly, actors

exchange messages via ports. This level of indirection allows actors

to be agnostic to the presence or absence of their counterparts. The

connections between actors are embedded in a level of hierarchy—a

composite—that is responsible for transporting messages between

contained actors and constraining the order of invocation of reac-

tions. This approach increases modularity and, more importantly,

exposes dependencies between actors. A composite is an entity that,

at all times, has a consistent view of the dependencies between the
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Figure 3: A controller with predefined latencies from re-
ported sensor values to the triggering of actuation reactions

actors it contains, even as the interconnection structure changes

and reactors are created and destroyed. The composite mediates all

such changes.

Our model conforms with a well-understood discrete-event (DE)

semantics [9]. DE semantics is formally rooted in that of syn-

chronous/reactive models of computation [10].

The functionality of a reaction can be treated as a black box; a

schedule can be devised purely based on dependency information,

although there is a cost. If a reaction declares that it reads an input,

for example, then it will be scheduled at a model time only after

that input is known. If it then does not actually read the input, due

to a data dependency, then the constraint was unnecessary. We feel

that this slight loss in generality is worth the price, particularly

because this feature opens the possibility for a polyglot language
design. A variety of target languages can be supported by the same

model. For example, using C++ as a target language is appropriate

for resource constrained, deeply embedded systems, while Python

may be a better choice for AI applications and Java for enterprise-

scale distributed applications. Moreover, the schedule simplifies

reasoning about security properties.

4 TIME, DELAYS, AND DEADLINES
Central to our programming model is the relationship between the

timestamps of events. These timestamps denote logical time, and

the essential semantic feature is that every reactor sees events in

timestamp order. When a reactor observes multiple events with

the same timestamp, these messages are logically simultaneous,
and the reactor handles them in a well-defined deterministic order.

Logical time is distinct from physical time, as measured anywhere

in a networked application. First, logical time remains constant

during the execution of any reaction in any reactor, and outputs

produced by that reaction have the same logical timestamp as the

inputs that trigger the reaction. But if we establish a relationship

between logical time and physical time, that can help to reliably

deliver real-time behavior.

Consider the example in Figure 3, which shows a composition of

reactors that serves as a controller in a closed-loop cyber-physical

system. This composition has a periodic source P, which could be a

sensor taking regularly-spaced samples, for example. It also has a

sporadic sensor S that will emit events with some minimum time

gap between events. This could be implemented, for example, by

an interrupt that causes an invocation of the schedule function,

like that in Figure 2.

The outputs of both sources have to be timestamped, and it seems

like it would be useful in a real-time system if those timestamps
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reflect the physical time at which sensor measurements were taken.

How can we accomplish that while preserving the determinism

of the model? In particular, a timestamp produced by the sporadic

sensor will have to be strictly greater than all timestamps seen

already by any reactors downstream of it.

We give a simple execution policy that ensures that the principles

in Section 3.2 are obeyed. First, logical time and physical time are

represented in the same units and aligned at the start of execution of

any composition. Second, logical time is never allowed to get ahead

of physical time (this constraint can be relaxed, but it must be done

carefully). Third, time stamps must be carefully assigned to any

new events injected into the system, for example as a consequence

of an interrupt.

Suppose an interrupt occurs at some physical timeT . Let t denote
the current logical time of any executing reaction or the logical time

of the most recently executed reaction if no reaction is currently

executing. Then a newly created event can be assigned the smallest

timestamp that is strictly greater than t and greater than or equal

to T . This is the timestamp closest to T that is safe to assign, in

the sense that the new event will not appear at any reaction out of

timestamp order.

It is possible, of course, for logical time to lag seriously behind

physical time. If the composite, for example, simply includes too

much computation for the execution to keep up, then this time

gap can grow without bound. Such a situation would be disastrous

for a real-time system. To prevent it, we introduce the concept of

a deadline at reactors that have real-time constraints. Typically,

these reactors wrap actuators; given input data, they drive physical

devices such as motors according to their inputs. Figure 3 has two

such actuators, X and Y , with deadlines DX and DY . A deadline

DX on a reaction is interpreted as a constraint that if there is a

trigger for that reaction with timestamp t , then the reaction should

be invoked no later than physical time t +DX . Given a dependence

graph for a composite, sporadic constraints on external sources of

events (such as sensors), and worst-case execution time bounds for

reactions, it is possible, in principle, to analyze a graph for its ability

to meet the deadline. Of course, if the target language is Turing

complete, no such analysis can ever be complete. But such analyses

are well-understood and form a major part of any assurance effort

for a real-time system.

Figure 3 also includes twoDelay reactors. These use the schedule
function to increment the timestamp of their inputs. Given an in-

put with timestamp t , the lower Delay reactor F, for example, will

produce an output with timestamp t + 6. As logical time is never

allowed to get ahead of physical time, a Delay reactor may align

logical time with physical time. Hence, if the sporadic sensor S
produces an event with timestamp t , the actuator Y is required to

process any consequent event no earlier than physical time t + 6
and no later than physical time t + 10. At the cost of requiring more

detailed analysis and possibly specialized microprocessors, such as

PRET [21] or Patmos [16], this time window can be made as small

as necessary to meet even the most demanding requirements for

safety-critical real-time systems.

Coordinating execution of a composite across a distributed plat-

form will require some care. The model we have given here, how-

ever, is fully compatible with PTIDES [20], which gives a practical

and realizable distributed execution mechanism.
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