CHAPTER 31

RECURRENCES, ITERATION, and CONDITIONALS in
STATICALLY SCHEDULED BLOCK DIAGRAM LANGUAGES

Edward A. Lee
EECS Department
University of California, Berkeley
Berkeley, CA 94720

ABSTRACT

Block diagrams have both practical and aesthetic appeal as a description of DSP algo-
rithms, particularly when implementation on parallel hardware is contemplated, but
their expressiveness is limited. Iteration (for loops, do-while) and conditionals (if-
then-else) are particularly difficult to express cleanly. This paper examines some

representations for these constructs and proposes compiler techniques for mapping
onto parallel processors.

~ !'This research is supported by NSF grant no. MIP-8657523 (PYI) and Cygnet Corp. a division of Everex
Systems Inc.

330

PART IV; CAD FOR SIGNAL PROCESSING

1. MOTIVATION

DSP algorithm designers would like to be able to quickly and easily experiment with algo-
rithms without getting bogged down in an implementation quagmire. For this reason, consid-
erable effort has gone into developing high-level software environments for DSP. Among the
approaches that have been pursued are signal representation languages [Kop84][Mye86] and
block diagram languages, see for example [Kel61][Mes84][Sny84][Sha87]. However, most
such systems are suitable only for simulation on general purpose computers. For real-time
implementation, special techniques are needed. In particular, ASIC implementations and pro-
grammable DSPs require static scheduling, in which the algorithm is mapped onto the
hardware at design time or at compile time, but certainly not at run time. For example, sys-
tolic arrays can be synthesized from dependence-graph descriptions of an algorithm
[Rao85][Kun88]. These methods have a distinct advantage of easily targeting locally con-
nected multiple processors, whereas parallel implementations of block diagrams usually have
less well-structured interconnection. However, restrictions on the structure of the algorithms
limit their utility to a small class of well-structured applications. Block diagram languages,
which can be viewed as data flow languages with a graphical syntax, have fewer restrictions;
static scheduling is still possible as long as the application fits the synchronous data flow
(SDF) model of computation [Ho88][Lee87a][Lee87b][Zis86][Scw85]. The limitations
imposed by the SDF model are still serious, however. This paper addresses those limitations,

. and describes some simple techniques for extending the expressive power of statically

- scheduled block diagram languages.
2. RECURRENCES

Although the data flow literature sometimes claims that recursion is not possible in data flow
languages, it should not be inferred that there is any difficulty expressing or implementing
recurrences. Recurrences are computations where the current output depends on previous
outputs. Recursion means self-referential functions; it is used in conventional languages to
express recurrences as well as to express iteration. Recurrences are easily expressed in block
diagram languages using directed loops. Iteration will be addressed shortly.

A block diagram with a recurrence is represented schematically in figure 1. The feedback
path describes a recurrence, and as with any discrete-time feedback path, it must have a delay
to be computable. The delay, which corresponds to a z~* operator, is indicated with diamond
containing a D.

(o>
v

A » B

-
1

"
1

Figure 1. A block diagram with a recurrence. Recurrences are expressed using directed loops.

To understand how recurrences can be implemented efficiently, it is helpful to review the
- SDF model. With any data flow model, a block can fire whenever it has sufficient data at its
inputs, i.e. the tokens (samples) it will consume must be available. It is up to the scheduler to
determine when this is the case. In the SDF model [Lee87a][Lee87b], a special case of data
flow, there are numbers adjacent to each arc to indicate the number of tokens that each node
will produce or consume on that arc when it fires. These numbers must be constant
throughout the computation, and hence must be independent of the data. In figure 1 we have
shown the simplest case where each block consumes and produces exactly one token on each

331

YLSI SIGNAL PROCESSING, 11

port each time it fires. If a block diagram consists exclusively of such blocks, then we have a
homogeneous SDF graph.

A delay 1s simply an initial token on an arc. It need not be a run-time operation, although
many block diagram languages implement it as such. Consider for example the feedback arc
in figure 1, which has a unit delay. The initial token on the arc means that the corresponding
input of node A has sufficient data, so when a token arrives on its other input, it can fire. The
second time it fires, it will consume data from the feedback arc that is produced by the first
firing of node B. In steady-state, the n firing of node B will produce a token that will be
consumed by node A on its (n + 1)” firing, which is exactly what we mean by a unit delay.
Since delays are simply initial conditions on the buffers, they require no run-time overhead.

It 1s obvious that directed loops without delays imply an immediate deadlock, since there are
no initial tokens in the loop so no block can fire. This situation can be automatically detected
and flagged as an error [Lee87a].

Directed loops are the only fundamental limitation on the parallelizability of the algorithm.
This 1s intuitive because any algorithm without recurrences can be pipelined. For homogene-
ous SDF, where every block produces and consumes a single sample on each input and out-
put, it is easy to compute the minimum period at which the blocks can be invoked. This is
called the iteration period bound, and is the reciprocal of the maximum rate. The iteration
period bound of a homogeneous SDF graph is the maximum over all directed loops of the
sum of the run times in the loop divided by the number of delays in the loop [Ren81][Coh85].
More general SDF graphs can be systematically converted to homogeneous SDF graphs for
the purpose of computing the iteration period bound [Lee86].

3. MANIFEST ITERATION

Manifest iteration is where the number of repetitions of a computation is known at compile
time, and hence is independent of the data. Manifest iteration can be expressed in block
diagram languages by specifying the number of tokens produced and consumed each time a
block is invoked. For example, block B in figure 2 will be invoked ten times for every invo-
cation of block A. In conventional programming languages, this would be expressed with a
for loop. Nested for loops are easily conceived as shown in figure 2. If blocks A and E are
invoked once each, then B and D will be invoked ten times, and C will be invoked 100 times.

Scheduling techniques that automatically construct appropriate schedules are given in
[Lee87a).

The efficiency of the implementation depends on the schedule and on the mechanism for
buffering data passed between blocks. For example, one possible single-processor schedule
for figure 2 is

10 1 10 1 1 10 1 10

Figure 2. An SDF graph that contains nested iteration.

(AL B, 100 C, 10D, B).
and an alternative schedule is

(A, 10x [B, 10xC. D). E).

The notation 10 X C means that C is invoked ten times in a row. The latter schedule will
require less memory for buffering than the former.

A second issue is the effectiveness with which an algorithm is parallelized for computation on
multiple processing elements (custom or programmable). There is no fundamental impedi-

332

PART IV: CAD FOR SIGNAL PROCESSING

ment to simultaneously firing successive invocations of blocks on parallel processors. Block
diagram languages lend themselves to automatic task partitioning and synchronization
[Lee87a). Consider the iteration expressed in figure 2; the question arises as to whether suc-
cessive invocations of block C can fire in parallel. Since there is no directed loop anywhere
in the graph, so there is no fundamental impediment (the iteration period bound 1S zero). The

only difficulties are practical.

One practical limitation on the parallelism arises from bounding the buffer sizes. One way to
model bounded buffer sizes is with directed loops and delays [Kun88]. Consider figure 3, a
modification of figure 2. The total number of delays in the loop (10) is equal to the size of the
buffer. In this case there are no delays in the forward path, so they all get inserted in the feed-
back path. Notice that block B must have 10 tokens on the feedback path before it fires.
These tokens represent empty positions in the buffer. Hence, whenever block C fires, it con-
sumes a token from the forward path, freeing a buffer location, and indicating the free buffer
location by putting a token on the feedback path. Notice that any buffer with length less than
10 will lead to deadlock. This situation can be easily automatically avoided [Lee87a].

This non-homogeneous SDF graph could be converted to a homogeneous SDF graph and tf{ﬂ
iteration period bound computed, but in this simple example the iteration period bound 1s
easily seen by inspection. It is clear that after each firing of B, C must fire ten times before B

Go»
10| g » c |1
A "HJ 1 FD HE
10 1 1 10 1 10

Figure 3. A modification of figure 2 to model the effect of a buffer of length 10 between blocks B and

C.
can fire again. Hence, even though B will be invoked ten times for each invocation of A, the
ten invocations of B cannot occur in parallel because of the buffer space limitations. By con-
trast if the buffer had length 100, then all ten invocations of B could fire simultaneously,
assuming there are no other practical difficulties.

A second limitation on the parallelism can arise from the addressing mechanism of the
buffers. Each buffer can be implemented as a FIFO queue, but then access to the buffer
becomes a critical section of the parallel code. FIFO queues are most cheaply implemented
as circular buffers with pointers to the read and write locations. However, parallel access to
the pointers becomes a problem. If successive invocations of a block are to fire simultane-
ously on a several processors, then great care must be taken to ensure the integrity of the
pointers. A typical approach would be to lock the pointers while one processor has control of
the FIFO queue, but this effectively serializes the implementation. Furthermore, this requires
special hardware to implement an indivisible test-and-set operation.

A less expensive alternative is static buffering [Lee87b]. Static buffering is based on the
observation that there is a periodicity in the buffer access that a compiler can exploit.
Specifically, suppose that all buffers are implemented with fixed-length circular buffers,
implementing FIFO queues, where each length has been pre-determined to be long enough to
sustain the run without causing a deadlock. Then consider an input of any block in an SDF
graph. Every N firings, where N is to be determined, the block will get its input token(s)
from the same memory location. The compiler can hard-code these memory locations into
the implementation, bypassing the need for pointers to the buffer. Systematic methods for
doing this, developed in [Lee87b], can be illustrated by example. Consider the graph in
figure 3, which is a representation of figure 2 with the buffer between B and C assigned the
length 10. A parallel implementation of this can be represented as follows:

333

VLSI SIGNAL PROCESSING, III

DO forever {
FIRE A
DO ten times {
FIRE B
DO in parallel ten times {
FIRE C
}

FIRE D

)
FIRE E

}

For each parallel invocation of C, the compiler supplies a specific memory location for it to
get its input samples. Notice that this would not be possible if the circular buffer had length
11, for example. Because each of these invocations of C does not have to access a buffer
through pointers, there is no contention for any particular memory location. The buffer data
can be supplied to all ten invocations in parallel, assuming the hardware has a mechanism for
doing this.

Using static buffers there is no need for an indivisible test-and-set operation. This is true
even if full/empty semaphores are used in the individual buffer locations to synchronize
parallel processors. The savings comes from the observation that each shared memory loca-
tion is written by exactly one processor and read by exactly one processor. In particular,

there are no buffer pointers that might be read or written by more than one processor.

Static buffering is key to efficient parallel invocations of successive instances of the same
block. It avoids critical sections of code that must access the same data in parallel. In order
to do static buffering, the lengths of the buffers must be carefully selected. For details, see

[Lee87D].

A complete iteration model must include the ability to nest recurrences within iteration. We
will illustrate this with an FIR filter implementation because it is a simple example, but the
reader should bear in mind that the issues are fundamental and apply to a wide variety of
computations.

Consider the ways we could implement an FIR filter in a block diagram language. The most
sensible way is probably to define a block with the implementation details hidden inside. An
alternative is a fine grain implementation with multiple adders and multipliers and a delay
line. A third possibility is to use iteration and a single adder and multiplier. This first and
last possibilities have the advantage that the complexity of the block diagram is independent
of the order of the filter. A good compiler should be able to do as well with any of the three
structures. One implementation of the last possibility is shown in figure 4. When it fires, the
LAST N block stores the incoming sample, and outputs that sample and the last N—1 samples
that arrived on previous invocations, where N is the order of the FIR filter. Note that this
block has a state, which can be viewed as data that flows from one invocation to the next.
This is modeled as a self-loop that effectively prevents multiple simultaneous firings. The
last N samples get multiplied by coefficients supplied by the COEFFICIENTS block and
accumulated by the adder with a feedback loop. Finally the LAST OF N block selects the
last of N of its input samples.

This description of an FIR filter is verbose, but it has the advantage of exploitable con-
currency combined with a graph complexity that is independent of the order of the filter.
Note, however, that there is a difficulty with the feedback loop at the adder. Recall from
above that a delay is simply an initial token on the arc. If this initial token has value zero,
then the first output of the FIR filter will be correct. However, after every N firings of the
adder, we wish to reset the token on that arc to zero. This could be done with some extra
blocks, but a fundamental difficulty would remain. The presence of that feedback loop

334

PART IV: CAD FOR SIGNAL PROCESSING

implies a limitation on the parallelism of the FIR filter, and that limitation is an artifact of our
implementation. QOur solution is to introduce the notion of a resetting delay, indicated with a

4
=

Y
O
M
=

B R e e T T e ———

Figure 4. An FIR filter implemented using a single multiplier and adder.

diamond containing an R. The resetting delay is associated with a subgraph, which in this
example is indicated with a dotted line. For each invocation of the subgraph, the delay token
is reset to zero. Furthermore, the scheduler knows that the precedence 1s broken when this
occurs, and consequently it can schedule successive FIR output computations simultaneously
on separate processors. The implementation of a resetting delay is simple and general.

The resetting delay can be used in general whenever we have nested iterations where the
inner iterations involve recurrences using variables that must be initialized. In other words,
anything of the form:

DO some number of times {
Initialize A

DO some number of times {
new A ={f(A)
}

}

We have given a comprehensive mechanism for handling manifest iteration in block
diagrams, and for synthesizing efficient parallel implementations. It is worth mentioning that
dependence graph methods handle manifest iteration using the notion of an index space
[Kun88][Rao85] but have the significant disadvantage that all variables in the algorithm must
iterate over the same index space. This restriction 1s not present in SDF. On the other hand,
the functionality of the resetting delay i1s more cleanly expressed as boundary conditions on
the index space.

4. CONDITIONALS

Conditionals in block diagram languages are harder to describe and handle. A data flow
graph for a functional if-then-else is shown in figure 5a. A data token, x, 1s routed by the
switch to one of two functions depending on the value of the boolean token ¢. The appropri-
ate function fires, and its result is selected by the select block. The data flow graph is not
SDF because for the switch and select blocks it is not possible to specify a priori the number
of tokens produced and consumed on each input or output. The number 1s dependent on the
data (the condition being tested). Consequently, parallelizing compilers that work on SDF
graphs will not work in the presence of conditionals.

One attractive solution is a mixed mode programming environment, where the programmer
can use block diagrams at the highest level and conventional languages such as C at a lower
level [Ho88]. This is only a partial solution, however; conditionals are restricted to lie
entirely within one block of the system, and concurrency within such blocks 1s difficult to
exploit. If the complexity of the operations that are performed conditionally is high, then this
approach is probably not adequate.

335

VLSI SIGNAL PROCESSING, III

Another alternative is static scheduling of both branches of the if-then-else. Only tl'{e re}e}rant
result is selected. This is inefficient, however, unless one branch of the if-then-else is trivial.

A more attractive alternative is quasi-static scheduling. Static sche:dulif':g means lha'[*thf:
firing of all nodes is determined at design time Or compile time. In quasi-static scheduling,
some firing decisions are made at run time, but only wheirc gbgmlut;ly necessary. One such
scheduling strategy is illustrated in figure 5b. The graph is divided into three subgraphfs., the
f (), the g(), and everything else. Each of the three subgraphs can have arbitrary

NO-OPS
CODE FOR “TRUE" sUBGnAPrl l

SUBGRAPH 1 E
i

3

&
Zz
;.
‘?:

CONDITIONAL BRANCH INSTRUCTIONS ‘[
RESUME SCHEDULING MAIN GRAPH

1
2
3

T 1

CODE FOR "FALSE" SUBGRAPH
NO-OPS
PATTERN OF AVAILABILITY

(a) (b)

Figure 5. a. A data flow graph for the expression: y := if(c) then f(x) else g(x). We assume that f (*)
and g () represent subgraphs of arbitrary complexity. b. Gantt charts for two schedules correspond-
ing to two possible decisions. The schedules are padded with no-ops so that the pattern of availabili-
ty after the conditional is independent of the decision.

complexity, and the f (-) and g () subgraphs can themselves have if-then-else constructs.
Assume without loss of generality that the "everything else" graph is an SDF graph. It
includes the switch and select blocks. Note that the control token ¢ is routed through the
switch block to the select to ensure that the switch has precedence over the select within this
subgraph. The "everything else" subgraph can be scheduled statically. In figure 5b we illus-
trate a Gantt chart for a three processor schedule. The scheduler proceeds normally until it
comes time to schedule the switch node. At this point, conditional branch instructions are
spliced directly into the microcode or assembly code of the target processors. Then the
scheduler calls itself recursively to construct a schedule for the "true" subgraph, f (-), figure
Sb (top). The only difference between this scheduling task and an ordinary SDF scheduling
task is that the initial pattern of processor availability is arbitrary. In other words, instead of
assuming all processors are available at the same time, different times are possible. This
presents no difficulty, and ordinary critical path methods can be applied. If the true subgraph
itself contains if-then-else constructs, then the scheduler will again call itself recursively, so
arbitrary nesting of if-then-else’s is permitted. When the true subgraph has been scheduled,
the scheduler returns control to the top level scheduler, which then calls the scheduler recur-
sively to schedule the "false” subgraph, g (), figure 5b (bottom). The same pattern of proces-
sor availability is assumed. When this scheduler returns, the two schedules, figure 5b top and
bottom, are compared, and the worst case termination time on each processor is determined.
The two schedules can then be padded with no-ops so that the pattern of processor availability
is now independent of the branch taken. Scheduling of the main graph can then resume.

336

PART IV: CAD FOR SIGNAL PROCESSING

This strategy is particularly well suited to real-time applications, where the schedule must
complete in a certain time regardless of the branch taken. In fact, if we assume that all
branch decisions in the graph are independent, then there is no cost associated with the no-op
padding. Of course, this assumption is not always realistic. The no-op padding itself can be
omitted if synchronization between processors is enforced so that any processor that needs
data from another processor will wait until that data is available.

For non-real-time applications an alternative suggested by Loeffler et. al. [Loe88] is attrac-
tive. The probability of each branch of the if-then-else must be known. The higher probabil-
ity branch is scheduled first and the pattern of terminations is observed. Then the lower pro-
bability branch is scheduled and padded with no-ops so that its pattern of terminations is the
same. Note that only the patrern of terminations needs to be same, not the absolute termina-
tion times. Since the absolute termination times may differ, the completion time of the
overall schedule will depend on the branch taken. For this reason, this method is not as
attractive for real-time applications.

In both cases, the presence of the if-then-else has an impact on the scheduling technique used
for the main graph. In particular, suppose that a critical path method such as the Hu level
scheduling method [Hu61] is being used [LLee87a]. This is a popular and effective suboptimal
hueristic with manageable complexity. In this case, it is necessary to assign levels (loosely
equivalent to priorities) to blocks that feed data to the if-then-else, but the strictly speaking
these levels depend on the branch decision. There are at least two possible levels that can be
assigned to the switch block itself. For real-time applications, the largest of the two levels
should be assigned. For non-real-time applications, a weighted combination of the levels can
be used, where the weights correspond to the probabilities of the decisions.

Interestingly, this idea of assigning an expecred Hu level to nodes in the graph was applied
(without success) by Granski, et. al. to guide a dynamic scheduler [Gra87]. Applied to
quasi-static scheduling, however, this approach has much more promise. Granski et. al. give
a useful approximation to the mean critical path length that can be used to reduce the com-
plexity of the compiler. -

5. DATA-DEPENDENT ITERATION

We have shown how manifest iteration can be efficiently scheduled, but for some algorithms
the number of iterations depends on the data. Although such algonthms are not generally
used in real-time computations, it is nonetheless important to be able to support them. Data-
dependent iteration is more difficult than conditionals. Nonetheless, viable quasi-static
scheduling techniques exist. However, the techniques proposed here are close to optimal only
for certain special cases.

Consider the data flow graph in figure 6. It implements the expression:
do {x := f(x)} while t(x).

Because of the switch and select blocks, it is not an SDF graph. However, it can again be
divided into subgraphs. Assume without loss of generality that the outer subgraph is an SDF
graph. Then it can be scheduled as normal. When it comes time to schedule the select block,
special action must again be taken. The delay at the control input of the select block should
be an initial token with boolean value "false" so that the first token selected comes from the
upper subgraph, rather than from the feedback loop. The select block can be scheduled, after

which the f (-) and 7 (-) subgraphs can be scheduled. When these are done, then the scheduler
implements the switch block by splicing into the code conditional branch instructions. As
long as z (x) evaluates to "true", each processor will branch back to where the select block
was scheduled, as shown in figure 6b. After these conditional branch instructions have been
written, the scheduler can resume scheduling the outer subgraph. However, it is essential that
the scheduler know the pattern of processor availability after the conditional branch instruc-
tions. It need not know the absolute times (indeed it cannot know them because the iteration

337

YLSI SIGNAL PROCESSING, LI

L SUBGRAPH
SWITCH (CONDITIONAL BHAHE‘W]'

EELEml
T F D
SELECT
X
)
new x :
(s‘:rwncFH)E

l (b)

WN -

r SUBGRAPH

(a)

Figure 6. a. A do-while loop implementing y := do {x := f(x)} while t(x). b. A representation of a
scheduling strategy where the iteration period is made the same on all processors.

is data dependent), but 1t must know the availability time of each processor relative to the oth-
ers. In order for the pattern of availability to be independent of the number of iterations, it
follows that the time spent by each processor in each iteration must be the same, as shown in
figure 6b. If the scheduler puts less work onto one processor, then its schedule should be pad-

ded with no-ops.

Although the scheduling strategy outlined above seems reasonable, there are some serious
disadvantages and some practical difficulties. One disadvantage is evident when the inner
loop cannot make use of all of the processors. In the worst case, it will use only one proces-
sor, and all other processors will be executing no-ops during the entire time the do-while is
being executed. However, there appears to be no way to avoid this and still be able to resume
static scheduling of the outer subgraph once the conditional loop is finished.

One practical difficulty arises when trying to determine the priorities of blocks that are used
to compute the input to the do-while. Suppose for example that the Hu level scheduling algo-
rithm [Hu61] is being used again. What level should be assigned to blocks that come before
the do-while? Again, a reasonable answer is provided by Granski, et. al. [Gra87]. If the
expected number of iterations is known, then the expected Hu level can be computed.

A second practical difficulty concerns the algorithm used to construct the schedule of the
iteration blocks, f (-) and #(-). The scheduler will be given the original pattern of processor
availability, and it must schedule one iteration in such a way that the pattern of availability is
the same after the iteration as before. Hence the objective is to minimize the maximum span
of one iteration of the schedule on each processor. This is almost the same as the original
SDF scheduling problem! The only difference is the original pattern of availability. Unfor-
tunately, known optimal algorithms have combinatorial complexity. If the iteration has few
blocks, this is not a serious problem, and an exhaustive method can be used to find the
schedule. However, if the iteration has many blocks, heuristics must be used.

One possibility is to use the Hu level scheduling algorithm [Hu61] combined with blocked
scheduling, as proposed for SDF scheduling in [Lee87a]. In blocked scheduling, all proces-
sors are synchronized after each iteration. This effectively avoids dealing with the dependen-
cies across iterations and reduces the scheduling problem to the standard one of minimizing
the makespan of a graph with precedences. However, synchronizing all processors implies a
flat pattern of availability both before and after the body of the iteration. This means that

338

PART IV: CAD FOR SIGNAL PROCESSING

before the iteration 1s begun, the processors will have to be padded with no-ops until the time
at which each 1s available 1s the same. This obviously implies wasted computations. Another
possibility 1s cyclo-static scheduling [Sch85]. Although the techniques proposed there can
have combinatorial complexity, under certain circumstances the complexity is manageable
for a moderate number of blocks.

The above arguments are easily extended to other data-dependent iteration forms such as
while-do. |

6. CONCLUSIONS

Techniques are proposed for efficiently compiling iteration and conditionals in languages
based on data flow. Block diagram languages thereby acquire the full expressive power of
conventional programming languages, but retain both the appealing user model and the abil-
ity to efficiently and automatically compile them for parallel computation. The same tech-
niques can be applied to languages that are semantically similar to block diagram languages,
such as funcdonal and applicative languages. It is expected therefore that these techniques
will become essential in software DSP design environments. However, the methods for
scheduling data dependent iterations may yield unsatisfactory schedules in some cir-
cumstances, implying a need for further work 1n this area.

REFERENCES

[Coh8&5]
G. Cohen, D. Dubois, J. P. Quadrat, and M. Viot, "A Linear-System-Theoretic View of Discrete-Event
Processes and its Use for Performance evaluation in Manufacturing”, JEEE Trans. on Awtomatic Control,
AC-30, 1985, pp. 210-220.

[Gra87]
M. Granski, I. Kom, and G. M. Silberman, "The Effect of Operation Scheduling on the Performance of a
Data Flow Computer”, IEEE Trans. on Computers, C-36(9), September, 1987.

[Hu61]
T. C. Hu, "Parallel Sequencing and Assembly Line Problems", Operations Research, 9(6), pp. 841-848,
1961.

[Kel61] _
Kelly, Lochbaum, and Vyssotsky, "A Block Diagram Compiler”, Bell Sys. Tech. J., 40(3), _May, 1961.

[Kop8&4]
G. E. Kopec, "The Integrated Signal Processing System ISP" JEEE Trans. on ASSP 32(4), August, 1984.

[Kun88]
S. Y. Kung, VLS Array Processors, Prentice-Hall, Englewood Cliffs, NJ, 1988.

[Ho88] - . .)
W.-H. Ho, E. A. Lee and D. G. Messerschmitt, "High Level Data Flow Programming for Digital Signal

Processing”, in VLSI DSP III (this issue), IEEE Press, 1933.

[LeeB6]
E. A. Lee, "A Coupled Hardware and Software Architecture for Programmable Digital Signal Processors”,

Memorandum No. UCBI/ERL M86/54, EECS Dept., UC Berkeley (PhD Dissertation), 1986.

[Lee87a]
E. A. Lee and D. G. Messerschmitt, "Static Scheduling of Synchronous Data Flow Graphs for Digital Sig-

nal Processing"”, IEEE Trans. on Computers January, 1987.

[Lee87b]
E. A. Lee and D. G. Messerschmitt, "Synchronous Data Flow", JEEE Proceedings, September, 1987.

[Loe88]
C. Loeffler, A. Ligtenberg, H. Bheda, and G. Moschytz, "Hierarchical Scheduling System for Parallel
Architectures”, Proceedings of Eusipco, Grenoble, September, 1988.

[Mes84]
D. G. Messerschmitt, "A Tool for Structured Functional Simulation"”, IEEE Journal on Selected Areas in
Communications, SAC-2(1), January, 1984.

339

VLSI SIGNAL PROCESSING, III

[Mye86] . .
C. Myers, "Signal Representation for Symbolic and Numerical Processing”, MIT Tech. Report No. 521,

Research Laboratory of Electronics (Ph.D. Thesis), August 1986.

[RHUES] . " -
S. K. Rao, "Regular Iterative Algorithms and their Implementations on Processor Arrays”, PhD Disserta-

tion, Information Systems Laboratory, Stanford University, October, 1985.

[Ren81] o '
M. Renfors and Y. Neuvo, "The Maximum Sampling Rate of Digital Filters Under Hardware Speed Con-

straints", IEEE Trans. on Circuits and Systems, CAS-28(3), March 1981.

[ShaB7] ;
K. S. Shanmugan, G. J. Minden, E. Komp, T. C. Manning, and E. R. Wiswell, "Block-Oriented System

Simulator (BOSS)", Telecommunications Laboratory, University of Kansas, 1987.

[Sch85] . . " :
D. A. Schwartz, "Synchronous Multiprocessor Realizations of Shift-Invariant Flow Graphs”, PhD Disser-
tation, Georgia Institute of Technology Technical Report DSPL-85-2, July 1985.

[Sny84] ‘)
’ L. Snyder, "Parallel Programming and the Poker Programming Environment”, Compurer, 17(7) July,
1984,
[Zis86) : : e
M. A. Zissman, G. C. O’Leary, and D. H. Johnson, "A Block Diagram Compiler for a Digital Signal Pro-
cessing MIMD Computer”, DSP Workshop Presentation, October 1986, Chatham, MA.

340

