
An Implementation of the Behavioral Verilog Simulator in Ptolemy

Pai Chou

April 14, 1994

Abstract

Modeling and simulation of digital hardware at the behavioral level enable designers to experiment

with a system without specifying implementation details. Verilog is a language that supports modeling

and simulation at di�erent levels of abstraction. However, all components in the same design must

conform to a certain timing model, which may not be natural for all components. Ptolemy is a simulation

environment for systems with heterogeneous timing models. This report describes the incorporation of

the behavioral Verilog simulator into Ptolemy by a compiler, which expresses the simulation semantics

of Verilog in C++.

1 Introduction

Behavioral modeling and simulation enable hardware designers to prototype systems without specifying

implementation details. Several hardware description languages (including Verilog and VHDL) support

behavioral speci�cations, with semantics tuned for simulation on a uniprocessor. Each simulator either

assumes some timing paradigm or implicitly requires components of a given design to conform to a single

timing model. This restriction can impose an unnatural timing model on the designer for some subsystems.

Ptolemy is a prototyping and simulation environment designed speci�cally to address this problem by acting

as a coordinator for di�erent timing models.

Originally designed at UC Berkeley [1] for modeling digital signal processing (DSP) applications,

Ptolemy is gaining applications in general digital hardware simulation. Ptolemy di�ers from most simu-

lators because it does not impose any given timing model, but rather it coordinates the interaction between

di�erent models. Ptolemy is also well known for its sophisticated graphical user interface, including an

integrated schematic editor, graphical library components ranging from scopes and chart plotters to video

display windows.

Verilog is one of the major hardware description languages in use today [2]. Originally a proprietary



An Implementation of the Behavioral Verilog Simulator in Ptolemy 2

language from Cadence Design Systems, and now openly available, Verilog supports mixed behavioral and

structural descriptions of hardware. It supports concurrent programming constructs and hardware data-

types. Several commercial CAD tools also use Verilog for veri�cation, timing analysis, and synthesis.

The ability to simulate Verilog in Ptolemy is useful for several purposes: it gives the Verilog simulator

a graphical user interface, but more importantly, it enables designers to integrate components described in

Verilog with those in di�erent timing paradigms supported by Ptolemy, without having to describe them in

an otherwise unnatural language for their application.

The paper is organized as follows: Section 2 gives an overview of Ptolemy; Section 3 gives an overview

of the behavioral Verilog language and its simulation semantics; Section 4 explains the mapping of Verilog

to C++; Section 5 describes the structure of this Verilog-to-C++ translator, which comprises the core of

this project; and �nally, Section 6 concludes this paper with an evaluation of this implementation and future

work.

2 Overview of Ptolemy

Ptolemy is an object-oriented simulation environment that coordinates the interaction between multiple

computation models. Each computation model is called a domain. Ptolemy uses astronomical metaphors

to describe the hierarchy of the computational units, called blocks. A star is a leaf-level block belonging to

a given domain. A collection of interconnected stars of the same domain forms a galaxy. A fully speci�ed,

executable galaxy is a universe. A wormhole is a block which appears as a star on the outside, but is actually

a galaxy of a di�erent domain on the inside. Wormholes are used to mix stars of di�erent domains in the same

system. Blocks consume, compute, and produce data; a block's communication interface is called a porthole.

Two portholes are connected by a communication channel called a geodesic, which delivers particles, or data

packets, from one porthole to another.

Each star is de�ned as a C++ class containing a constructor, a start() method, a go() method, and

a list of variables. The constructor instantiates the star and its ports, the start() method is called once at

the beginning of each simulation run to initialize local variables and states, and the go() method is called

every time the star is scheduled to consume, compute, or produce particles. To run the simulation, Ptolemy

compiles the C++ star descriptions and dynamically links them in with the the runtime library.

The domains currently supported are SDF, DDF, DE, Thor, and CodeGen. The SDF (Synchronous

Dataow) kernel schedules the block execution statically, while the DDF (DynamicDataow) kernel schedules



Figure 1: Building blocks in Ptolemy

dynamically. The SDF and DDF domains do not have the notion of time, but the order in which the stars

in these domains consume and produce the particles is signi�cant. DE (Discrete Event) and Thor (CHDL)

[3] are timed domains. DE particles correspond to events; Thor particles represent \values on pins." The

particles in these domains have time-stamps for delivery. These stars can also schedule themselves to be

invoked, or \�red," after a certain delay. The Verilog simulator described here uses the Thor domain's timing

model.

Since specifying stars directly in C++ can be error-prone, and burdens the programmer with excessive

detail, Ptolemy supports the use of preprocessors. These are invoked automatically to convert a star in

any source language to C++ (in a format as expected by Ptolemy). SDF, DDF, and DE domains use

the preprocessor language \ptlang," while the Thor domain uses \pepp" (Pthor Extended PreProcessor) to

translate CHDL into C++. This project adds a preprocessor called \VCC" to the Thor domain to translate

Verilog into C++.

3 Overview of Verilog

Verilog describes hardware as a set of hierarchical components called modules. A module interfaces with

its environment via its ports. A module can either describe the behavior of a component as a program, or

describe its structure as a set of nested modules, primitive components, and wires. This project uses Verilog

to specify behavior and Ptolemy to capture the interconnection topology. Behavioral Verilog resembles an

imperative programming language, with support for hardware data-types and concurrency.

Data-types in behavioral Verilog include input and output ports, registers, integer, and real. A scaler

[sic] is a \single bit" quantity with four possible digital hardware states: 0, 1, X (unknown), and Z (oating).

A vector is an array of scalers which represent a value as a group. For example, 4'b01xz denotes a 4-bit

vector constant whose scalers have values 0, 1, X, and Z, respectively. The subrange and index operators



An Implementation of the Behavioral Verilog Simulator in Ptolemy 4

always begin :R
... disable S;

end

always begin :S
...

/* thread R resets thread S */

while(cond) begin :S

... disable S ...
end

/* like continue in C */

begin :S

while(cond) begin ...
disable S

end

end

/* like break in C. */

Figure 2: Example uses of disable

select a slice or an individual scaler from a vector. An integer models a 32-bit vector, and a real usually

models a double precision oating point quantity.

The concurrent constructs include continuous assignments, the initial statement, and the always state-

ment. Continuous assignments model combinational logic as an arithmetic/logical expression, with the input

signals and possibly some registers as terms, where the result is assigned to an output port after some de-

lay. An initial statement is executed once at the start of a simulation run and becomes inactive, while

an always statement is executed repeatedly in an in�nite loop. The initial and always statements are

concurrent threads of control. During simulation, threads are scheduled round-robin until they block. The

programmer is responsible for explicit synchronization between threads, and should not make assumptions

about the relative order of execution between the threads at any given instant.

The statements in behavioral Verilog include those constructs commonly found in conventional C-

like sequential programming languages, like if/then/else, while loops, for loops, repeat(n) loops, and

switch/case statements. In addition, the ones speci�c to Verilog are wait, @'s that wait on a transition

edge, @'s that wait on named events, #(delay), and disable.

The wait(cond) construct blocks until the boolean expression cond evaluates to true. The @(expr)

construct blocks until expr changes its value. One can also specify a rising or a falling edge transition by

qualifying expr with the keywords posedge and negedge, respectively.

Named events are abstract event types. The keyword event de�nes a name as the event. An event

involves two threads, a sender and a receiver. The sender has the syntax ->name, and the receiver @name.

One can think of a send as depositing an event instance into a bu�er, and a receive as removing the instance.

If the bu�er has no event, the receiver blocks. The sender does not block, because the bu�er holds at most

one instance. Any event instance already in the bu�er is overwritten and lost.

The disable S construct interrupts the execution of a statement block named S. One thread can disable

a named block in another thread, and this is often used to express a hardware reset. A nested statement

can also disable an enclosing statement block. Figure 2 shows three example uses of disable.



An Implementation of the Behavioral Verilog Simulator in Ptolemy 5

4 Mapping Verilog to C++

This section describes the mapping of Verilog computation and control constructs into C++. Inter-module

constructs are readily mapped to Ptolemy stars, galaxies, portholes, and geodesics. However, intra-module

constructs must be implemented at the C++ language level.

4.1 Hardware Data-types

Scalers and vectors are implemented as abstract data-types in C++. They can be divided into three cate-

gories: literal values, storage references, and port references.

A literal value is implemented as an abstract data-type called rVal with a set of arithmetic and logical

operators similar to those in C. The class rVal has three �elds: value, mask, and type. A bit in value, and its

counterpart in mask, encode the four possible values of each scaler. This compact encoding scheme allows

the arithmetic and logical operators to be implemented e�ciently in C++. The type �eld holds the size of

the vector (i.e. number of scalers). A single scaler quantity can be represented as a vector of width 1.

Storage for a hardware value is implemented as a derived class of the rVal class. This allows all variables

of type reg or integer to be used directly as literal values without type conversion. In addition, each variable

must also yield LValues so that the subrange-selection and index operators can both be assigned a literal

value. For this purpose, a RegRef class is de�ned to create a reference object to a reg with an index or a

subrange selection. One can either assign to or retrieve values from the reg via these reference objects.

To incorporate values from ports, a number of port-interface classes are also de�ned. Thor ports use

C++ integers to represent scalers, but Thor's multi-ports do not allow speci�cation of the bus bounds in

the C++ description. Instead of modifying the Thor kernel, these port interface classes hide the conversion

so these ports can be accessed just like registers.

4.2 Control Constructs

In Verilog, the initial and always statements are threads with special properties. They are cooperative

threads that can disable, i.e. force exit, arbitrary named statement blocks. Most thread packages are both

too general and not expressive enough for Verilog threads: Verilog does not have dynamic thread creation

and has no preemption, and ordinary threads packages cannot express disables. To satisfy the required

properties, VCC implements the threads using a technique called description by cases [4].



An Implementation of the Behavioral Verilog Simulator in Ptolemy 6

It transforms Verilog a thread into a switch statement enclosed in a do/while loop as follows:

do f
switch(point) f
case 0: basic block 0...
case 1: basic block 1...
...g

g while (runnable);

The switch statements contains all the basic blocks of the thread. Each basic block has a unique label,

which is represented by the case's constant. The state of the thread is represented by two variables: the

point, which is an integer variable containing the label of the basic block being executed, and the runnable

ag, which is controls the exit condition of the loop.

The point and runnable can express the two most important thread primitives: arbitrary control transfer

and blocking. Control transfer, either voluntary by the thread itself or by disable, is done by explicitly

assigning the destination basic block's label to point. Blocking, or e�ectively a thread-yield, is represented

by runnable = false, causing the enclosing loop to exit. As a result, the next thread is executed. All Verilog

constructs, including wait-on-conditions, wait-on-a-transition, named events, disable, and delays, can all

be expressed in terms of explicit control transfer, blocking, and if statements.

To implement disable, the disabler thread checks the point of the disablee thread to see if it is in the

range of the named block. If so, then the disabler forces control transfer by assigning the successor's label

to the disablee's point.

The wait(cond) construct is implemented as an if statement which tests cond. The true branch is a

control transfer to its successor basic block, and the false branch is a blocking statement.

The wait-on-transition statements use a temporary variable to stores the initial value of the expression,

and go to a new basic block to test for transition. It compares the initial condition with the new value, and

as a side e�ect, assigns the new value to the temporary variable. If the transition occurs, then control is

transferred to the successor, else block.

To implement a delay, a temporary variable is allocated and is assigned the completion time; then

control is transferred to a new basic block which e�ectively does a wait on the condition completionTime �

now.

To implement named events, VCC allocates two integer variables, r for the receiver, and s for the sender.

A send is implemented as incrementing s. A receive is mapped to a comparison of r with s: if s is larger,

then an event has been sent since the last receive; otherwise the thread blocks. The event is received by



Figure 3: Structure of VCC

assigning r = s and transferring control to the successor basic block.

The algorithms for transforming threads into the description by cases representation will be described

in Section 5.3.

5 Structure of the Verilog-to-C++ Translator

The Verilog-to-C++ translator, VCC, compiles behavioral Verilog into a Thor star class de�nition in C++.

The compilation process has three phases: the front-end, transformation, and code generation. In addi-

tion, a set of persistent data structures maintain the token values, attributes, and parse-trees for the three

compilation phases. Figure 3 shows the structure of VCC.

5.1 Persistent Data Structures

The persistent data structures maintain the data objects and attributes used by all three phases of the

compiler. These structures consist of the list management unit, token tables, and the symbol table.

The list is a fundamental data structure in VCC. As in LISP, atoms and lists are both represented using

the same node structure. Each node contains an operator �eld which indicates the type of atom or list it

represents. An atom node has a �eld which contains either the value or a pointer to the value. The routines

for accessing the nodes are named like their LISP counterparts. For example, atom, listp, cons, car, and

cons, are all implemented. Lists are also used as binary trees to represent the parse-trees.

The values of certain types of atom nodes are maintained in the token tables. Tokens are syntactic

objects like keywords, identi�ers, integer literals, oating-point literals, and strings. Each type of token has

its own table: there is a string table, a vector table, and a oating-point table. Strings are hashed, and are

referenced by the string ID, an index into the string table.



An Implementation of the Behavioral Verilog Simulator in Ptolemy 8

The symbol table serves two purposes: resolve static binding of identi�ers, and maintain the attributes

of the symbols. The symbol table can open and close a scope, de�ne a symbol, and look up a symbol at any

scope level. The symbol table also maintains the attributes for each symbol as a linked list. It can associate

any number of attributes of arbitrary types with a given symbol without imposing a prede�ned format.

5.2 The Front-End

The front-end of VCC reads a Verilog �le, de�nes the symbols, and outputs a partially decorated parse-tree.

These tasks are divided between the scanner and the parser.

The scanner inputs a Verilog description �le as a stream of characters, and outputs a stream of tokens

to the parser. It removes comments and performs macro de�nition and expansion. It also maintains the line

and column positions for error reporting. It uses a case statement to determine the token type, computes

the semantic value of the token, and returns an atom node containing both the token type and a pointer to

its semantic value in the token table.

The parser parses the steam of tokens from the scanner and performs semantic actions according to the

syntax. Upon parsing declarations such as variables, named blocks, and ports, the parser calls the symbol

table routines to de�ne the symbols, or open or close a scope. This allows most static binding to be resolved

as parsing progresses. To support use-before-de�ne, the parser saves the scope of unde�ned symbols so the

next phase will be able to look up their de�nitions. Upon parsing expressions and statements, the parser

constructs parse-trees using lists as binary trees as described above. The grammar and semantic actions are

speci�ed in YACC, which generates the parser.

5.3 Transformation

The transformation phase converts the Verilog threads (represented by the parser-trees) into description by

cases, namely basic blocks with explicit control transfers as described in section 4.2. VCC builds these basic

blocks by calling the following set of operators:

NewCaseLabel() allocate a new label;
SetCurrCase(label) set the current basic block to the one pointed to by label

AppendStmt(stmt) append the statement stmt to the current basic block
GotoCase(label) create the parse-tree for the statement point = label.
StartNewCase() allocate a new label and set it as the current block if non-empty
Block() create a parse-tree for the statement runnable = false

The wait(cond) construct is transformed by the following steps:



An Implementation of the Behavioral Verilog Simulator in Ptolemy 9

L1 = StartNewCase()

L2 = NewCaseLabel()

AppendStmt(if (cond) GotoCase(L2) else Block())
SetCurrCase(L2)

These steps generate a basic block with the label L1. It evaluates cond. If false, it blocks. The next

time this thread receives control, it will resume at L1 and reevaluate cond. When cond evaluates to true,

control is transferred to L2.

The #(delay) delay statement is transformed as follows:

AppendStmt(delayvar = CURRENT TIME + delay)
AppendStmt(SELF SCHED(delay))
L1 = StartNewCase()
L2 = NewCaseLabel()
AppendStmt(if (delayvar � CURRENT TIME) GotoCase(L2) else Block())
SetCurrCase(L2)

The resulting C++ code �rst schedules itself to be re�red after the delay by calling the Thor method

self sched(delay). It computes the completion time by adding the delay amount to CURRENT TIME, the

real-time clock de�ned by Thor. Control is then transferred to L1 to test the completion condition. The

comparison for completion time is necessary because if the star is �red before the completion time, it should

continue to block. When the delay completes, control is transferred to L2.

The @(expr) construct expresses both waiting on a transition and waiting for a named event, including

the composition of several expressions by the or operator. In both cases, this construct is transformed by

the following steps:

AppendStmt(temp1 = expr1, ...tempN = exprN ..)
L1 = StartNewCase()

L2 = NewCaseLabel()

AppendStmt(if (transition(temp1, expr1) + ... + transition(tempN, exprN)) GotoCase(L2) else Block())
SetCurrCase(L2)

The resulting C++ code stores the initial values of these expressions in temporary variables, and tests

transition in a new basic block L1. Transition is tested by calling the boolean function posedge, negedge,

or change, which compares the saved old value to the new value. The return value of transition and event

receives are summed; any transition or event causes control to transfer to L2.

To implement disable, the transformation routine constructs a table which maintains the upper bound,

lower bound, and successor labels for each named block. This algorithm guarantees that every named block

always has a contiguous range of labels, so that disable can be expressed as

if (lowerBoundLabel � point � upperBoundLabel) point = successor.



An Implementation of the Behavioral Verilog Simulator in Ptolemy 10

5.4 Code Generation

The �nal phase of VCC generates a C++ text �le using the basic blocks constructed in the transformation

phase. In addition, the C++ �le must include the appropriate header �les in order to be compiled and linked

by Ptolemy. VCC uses a template �le to guide the code generation.

The template �le contains two types of patterns. The �rst type of pattern is matched and substituted

before it is written to the output �le. The second type of pattern invokes a procedure in the code generator.

The second type of pattern can also contain parameter strings which can be applied repeatedly. Those

characters that do not match any pattern are copied directly to the output.

6 Conclusion and Future Work

This project has demonstrated the feasibility of adding new languages like Verilog to Ptolemy using a

translator. The translator expresses the simulation semantics of Verilog in terms of the timing model in

the Thor domain for inter-module communication and scheduling, and in terms of the C++ language for

intra-module computation and scheduling.

Future work will include implementing the remaining behavioral constructs in Verilog, implementing

modules containing other modules as galaxies. The Verilog constructs omitted here are the switch state-

ments, tasks and functions, RAM, bit arrays longer than 32 bits, deassignable continuous assignments, and

module parameters. Most of these constructs can be viewed as syntactic convenience, and are expressible

in terms of those already implemented. The others are relatively easy to add because the translator already

parses all of behavioral Verilog, and the template-driven code generation back-end facilitates such extensions.

References

[1] The Almagest: Manual for Ptolemy v0.3, EECS Dept., Univ. of California, Berkeley, January 1992.

[2] Donald E. Thomas, Philip R. Moorby, The Verilog Hardware Description Language, Kluwer Academic

Publishers, 1991.

[3] \Thor Tutorial," VLSI/CAD Group. Stanford University, 1986.

[4] M. E. Conway, \Design of a Separate Transition-DiagramCompiler,"Comm. of the ACM, vol. 6, pp.396-

408, 1963.


