
stems
 archi-
both
hard-
rsity.
 real-
run
e two
sting

Presented at the NATO Advanced Study Institute Workshop
on Hardware/Software Codesign, Lake Como, Italy,

June 18 — 30, 1995.
(http://ptolemy.eecs.berkeley.edu/papers/effective)
EFFECTIVE HETEROGENOUS DESIGN

AND CO-SIMULATION

W.-T. CHANG, A. KALAVADE, E. A. LEE
Department of Electrical Engineering and Computer Sciences
University of California
Berkeley, CA 94720, USA

1. Introduction

In this chapter, we consider the problem of system-level design where subsy
are diverse. As a concrete example, consider an embedded system with the
tecture shown in figure 1 (after [5]). The subsystems are implemented in
hardware and software, making this architecture a suitable candidate for
ware/software co-design. But even within the software portions, there is dive
Control-oriented processes are mixed under the supervision of a multitasking
time kernel running in the microcontroller. In addition, hard-real-time tasks
cooperatively on two programmable DSPs. The design styles used for thes
software subsystems are likely to be quite different from one another, and te

FIGURE 1. A typical embedded signal processing system.

control panel

ASIC microcontroller

real-time
operating
system

controller
process

user interface
process

system bus

DSP
assembly

code
programmable

DSP

host port

memory interface

programmable
DSP

host port

memory interface

dual-ported memory

CODEC

DSP
assembly

code

analog
interface

2 CHANG, KALAVADE, LEE

gned
esign
s and
sign
odity

 same

soft-
 In an
eks to

-
h,

d
s

-

, con-
ixing
like
ixed

s the
 that

no
used
f the
sors

f
ade.
esized
the interaction between them is unlikely to be trivial.
Among the hardware subsystems in figure 1 is an ASIC, possibly desi

using logic synthesis tools. On the other hand, a major part of the hardware d
consists of interconnections of commodity components, such as processor
memories. Again, this time at the hardware level, we find diversity. The de
styles used to specify and simulate the ASIC and the interconnected comm
components are likely to be quite different, and may not be supported by the
tools.

The system in figure 1, therefore, not only mixes hardware design with
ware design, but also mixes design styles within each of these categories.
earlier paper [24], we observed that some research in system-level design se
unify these diverse styles.

“Two opposing philosophies for system-level design are emerging. One
is the unified approach, which seeks a consistent semantics for specifica
tion of the complete system. The other is a heterogeneous approac
which seeks to systematically combine disjoint semantics. Although the
intellectual appeal of the unified approach is compelling, we have adopte
the heterogeneous approach. We believe that diversity in design style
commonly used today precludes a unified solution in the foreseeable
future. Combining hardware and software in a single system implementa
tion is but one manifestation of this diversity.’’

In this chapter, we will examine the heterogeneous approach in more detail
centrating on signal processing applications, and focusing on the idea that m
models of computation is the key. We will consider system-level designs
those in figure 1, where commodity processors (possibly several kinds) are m
with hardware designs (again possibly several kinds). We will not addres
problem of joint design of an instruction-set architecture and the software
executes on it.

2. Component Subsystems

Commonly found components in embedded systems include:

Software or Firmware.It is rare to find a signal processing application with
software. At the very least, a low-cost microprocessor or microcontroller is
to manage the user interface. But it is common also to implement some o
core functionality in software, often using specialized programmable proces
such as programmable DSPs.

Application-Specific Integrated Circuits.ASIC design has been the focus o
design tools, even so-called “high-level’’ synthesis tools [13], for over a dec
The tools have developed to the point that certain systems can be synth

EFFECTIVE HETEROGENEOUS DESIGN AND CO-SIMULATION 3

lex,
over,

ize
nd iter-
enta-
ore

f the
t the

l-
abil-

The
ntire
jointly
lica-

orate

ro-
actur-
ailable
sible
 offer

nents
ation
to the
hard-
active
ele-
hard-
ajor

l.

h
plica-
e cus-
es of
ions of
 arbi-

able
fairly quickly. However, this approach to design is not always suitable. Comp
low-speed control functions are often better implemented in software. More
many applications inherently require programmability, for example to custom
the user interface. ASICs also cannot accommodate late design changes, a
ations of the design are expensive; thus they may not be suitable for implem
tion of immature applications. It is increasingly common to use one or m
ASICs for the more well-understood and performance-intensive portions o
application, but to combine them with programmable processors to implemen
rest, as shown in figure 1.

Domain-Specific Programmable Processors.Design re-use can drive down deve
opment time and system cost. For this reason, introducing enough programm
ity into a circuit to broaden its base of applications is often advisable.
suitable applications may range from a half dozen different algorithms to an e
domain such as signal processing. The processor itself can be designed by
optimizing the architecture, the instruction set, and the programs for the app
tions [34]. A major drawback to this approach is that it often requires an elab
software infrastructure in order to make re-use viable.

Core-Based ASICs.This is an emerging design style, where programmable p
cessor cores are combined with custom datapaths within a single IC. Manuf
ers of programmable processors are making the cores of their processors av
as megacells that can be used in such designs [6][30]. Alternatively, it is pos
to use the core of an in-house processor [18]. Such core-based designs
numerous advantages: performance improvement (due to critical compo
being implemented in custom datapaths, and faster internal communic
between the hardware and software), field and mask programmability (due
programmable core), and area and power reduction (due to integration of
ware and software within a single core). These designs are especially attr
for portable applications, such as those typically found in digital cellular t
phony. The design of such systems requires partitioning the application into
ware and software, and exploring trade-offs in different implementations. A m
drawback of this approach is that design tools do not currently support it wel

Application-Specific Multiprocessors.Some intensive applications have hig
enough complexity and speed requirements to justify development of an ap
tion-specific multiprocessor system. In such systems, the interconnect can b
tomized, along with the software and the selection of processors. Exampl
design approaches for such systems range from homogeneous interconnect
off-the-shelf programmable components to heterogenous interconnections of
trary custom or commodity processors.

Other possible components include analog circuits and field programm

4 CHANG, KALAVADE, LEE

rtition-
 and
f the
stom

 that
mon

vent
ete-
vent is
m-
encing
ort
so that
 time

mps
t is

ld a
uch

aral-

lated
gure
efinite
r one

del,
 to a
s the

at all
s not

ycle,
ences,
 dis-
gate arrays. The issues in the design of such mixed systems range from pa
ing of the algorithm between hardware and software, selection of the type
number of processors, selection of the interconnection network, synthesis o
software (partitioning, scheduling, and code generation), and synthesis of cu
hardware.

The design styles involved in the above components are diverse. Tools
synthesize either complete software or complete hardware solutions are com
within a single design style, but tools that support a mixture are rare.

3. Basic Definitions

3.1 MODELS OF COMPUTATION

Simulation of hardware designs is typically accomplished using a discrete-e
simulator, such as that embodied in VHDL or Verilog simulators. In the discr
event model of computation, a signal is a sequence of events where each e
tagged with atime stamp. The time stamp may be an integer, a floating-point nu
ber, or a data structure representing both the advance of time and the sequ
of microsteps within a time instant. In all cases, the job of the simulator is to s
events so that those with the earliest time stamps are processed first, and
the events seen by any particular component have monotonically increasing
stamps. Time stamps, therefore, define a global ordering of events.

Discrete-event modeling is inherently expensive. The sorting of time sta
can be computationally costly. Moreover, ironically, although discrete-even
ideally suited to modeling distributed systems, it is very challenging to bui
parallel discrete-event simulator. The global ordering of events requires m
tighter coordination between parts of the simulation than would be ideal for p
lel execution.

The relationship of the discrete-event model of computation to some re
models is shown in figure 2. The discrete-event model is in part (d). The fi
shows two signals, and illustrates that events in these two signals have a d
ordering relationship relative to one another. They are either simultaneous, o
precedes the other.

Another totally ordered model of computation is the discrete-time mo
shown in figure 2(b). In this model, events occur synchronously, according
clock. Again, events are unambiguously either simultaneous or one precede
other. Unlike the discrete-event model, however, all signals have events
clock ticks. This results in considerably simpler simulators, because sorting i
required. Simulators that exploit this simplification are calledcycle-based simula-
tors. Processing all events at a given clock tick constitutes a cycle. Within a c
the order in which events are processed may be determined by data preced
which therefore define microsteps. Microsteps are also commonly used in

EFFECTIVE HETEROGENEOUS DESIGN AND CO-SIMULATION 5

 pro-

ere
 sys-
 of an

screte-
ems.

lent
ssing
neffi-

 the

stre
that is

ng the
 these
plete-
crete-event simulators to control the order in which simultaneous events are
cessed.

The basic discrete-time model is inefficient for modeling systems wh
events do not occur at the same rate in all signals. While conceptually such
tems can be modeled, using for example null tokens to indicate the absence
event, the cost of processing such tokens is considerable. Fortunately, the di
time model is easily generalized as shown in figure 2(c) to multirate syst
Here, everyn-th event in one signal aligns with the events in another.

The multirate discrete-time model is still somewhat limited. It is an excel
model for clocked synchronous circuits, and for synchronous signal proce
systems, but in situations where events occur irregularly, it can again be i
cient.

A model that generalizes the multirate discrete-time model without paying
full price of a discrete-event model is embodied in the so-calledsynchronous lan-
guages [3]. Examples of such languages include Esterel [8], Signal [4], and Lu
[19]. In synchronous languages, a signal consists of a sequence of events
conceptually (or explicitly) aligned with aclock signal. The clock signals define
an ordering of events, so that any two events are either simultaneous (shari
same clock tick) or one precedes the other. The compiler reasons about
ordering relationships and detects inconsistencies, contradictions, or incom
ness in the definitions.

FIGURE 2. A taxonomy of models of computation

F1 F2 F3 F4

E1 E2 E3 E4

G1 G2 G3 G4

a) continuous time

b) discrete time, cycle-based

c) multirate discrete time, cycle-based

d) totally-ordered discrete events

e) partially-ordered events

6 CHANG, KALAVADE, LEE

een
given
ering

ntage
nt
nta-

lt to
par-

cle-
e they
 such
ard-
an be
[38].
iled
pen-

ignifi-
are/

d-
atap-
xecute
ical of
dels
vent-

oach
conse-
rs are
out the
ulate.
 to
essor

ate if
 so its
.

Various looser models of computation specify only a partial ordering betw
events, as depicted in figure 2(e). This means that while events within any
signal are ordered, events in different signals may or may not have an ord
relationship. In figure 2(e), event F1 precedes E2, but E2 and G2 areincomparable.
No ordering between them is defined. This type of specification has the adva
that it avoidsoverspecifying a design. If an ordering relationship is not importa
in a design, why specify it? Specifying it may severely constrain the impleme
tion options. Thus, for example, while discrete-event simulators are difficu
parallelize, dataflow models, which are usually partially ordered [33], are com
atively easy to parallelize.

3.2 PROCESSOR MODELS

Simulation of systems like that depicted in figure 1 requires more than cy
based or discrete-event modeling of circuits. The processors and the softwar
execute have to be modeled as well. The obvious approach to simulating
mixed hardware/software designs is detailed simulation or emulation of the h
ware executing the software. The processor that executes the software c
modeled at the hardware architecture level or at the instruction set level
Modeling it at the hardware architecture level can lend insight into the deta
operation of the processor on particular piece of software, but it is a very ex
sive approach. Modeling the processor at the instruction set level can be s
cantly faster, but still may be too slow for proper validation of a mixed hardw
software design. We explore these and other alternatives below.

Detailed processor models.In principle, the processor components could be mo
eled using a discrete-event model of their internal hardware architectures (d
ath, instruction decoder, busses, memory management unit, etc.) as they e
the embedded software. The processor internals are modeled in a way typ
hardware systems, often using VHDL or Verilog. The interaction between mo
of individual processors and other components is captured using the native e
driven simulation capability supported by a hardware simulator. This appr
has the advantage that the processor model is often available as a natural
quence of the processor design cycle. Unfortunately, most processor vendo
reluctant to make such models available because they reveal a great deal ab
internal processor design. Moreover, such models are extremely slow to sim
Even with a fairly abstract model of the processor in VHDL, it is optimistic
expect more than a few thousand instructions per second for a single proc
simulator on a standard workstation. Besides, the level of detail is inappropri
a commodity processor is being used. The processor is not under design,
internal details need not be simulated. This is not the recommended solution

EFFECTIVE HETEROGENEOUS DESIGN AND CO-SIMULATION 7

 the
 pro-

 and
 on
soft-

u-
bed-
erates
riate.
odel-
crete-

alua-

 by
e for
 DSP
is is
for
ntext,
 associ-
 sys-
, as
n be

 cost
f the
lgo-

are
ircuit
ort of
physi-

 soft-
ware
ula-
etails
Bus models.These are discrete-event shells that simulate the activity on
periphery of a processor without executing the software associated with the
cessor. This is useful for verifying very low-level interactions, such as bus
memory interactions, but it is difficult to guarantee that the model of activity
the periphery is accurate; it is also difficult to simulate the interaction of the
ware with the hardware.

Instruction-set architecture models.The instruction set architecture can be sim
lated efficiently by a C program. The C program is an interpreter for the em
ded software. It updates a representation of the processor state and gen
events to model the activities on the periphery of the processor when approp
This type of modeling can be much more efficient than detailed processor m
ing because the internals of the processor do not suffer the expense of dis
event scheduling. However, they still may not be fast enough for practical ev
tion of a complete system design.

Compiled Simulation.Very fast processor models are achievable in principle
translating the executable embedded software specification into native cod
the processor doing the simulating. For example, code for a programmable
could be translated into assembly code for execution on a workstation. Th
called binary-to-binary translation and has been used by computer vendors
some time to port code from an older architecture to a newer one. In our co
the translated code has to include code segments that generate the events
ated with the external interactions of the processor. Moreover, the operating
tem (if there is one) has to be simulated along with the application program
done for a different reason in [11]. In principle, such processor simulations ca
extremely fast, particularly if one sacrifices debug information. The dominant
of the simulation becomes the discrete-event or cycle-based simulation o
interaction between the components. This still may be too slow for certain a
rithmic evaluations.

Hardware Models.If the processor exists in hardware form, the physical hardw
can often be used to model the processor in a simulation using either in-c
emulators or FPGA prototypes such as Quickturn. The advantage of this s
processor model is the simulation speed, while the disadvantage is that the
cal processor must be available.

3.3 SYSTEM-LEVEL MODELS

As argued above, detailed simulation of the hardware (as it executes the
ware) is often too slow to be useful, except when evaluating low-level hard
interactions. An alternative is to mix multiple levels of abstraction. Every sim
tion should be constructed using the most abstract model that contains the d

8 CHANG, KALAVADE, LEE

sed.
cycles
ation
notate
 more
ction-
 out-
curate

eed-
rther

ware
rdware
igned

esign,
ram-
mu-

 And

tems
ure
SP is
or of
 win-
 dis-

e top
t the
d on
ically

ilities
 pro-
soft-
ete.
tems
bed-
e the
being tested.
For algorithmic evaluation, for example, functional models should be u

To assess real-time performance of embedded software (the number of
needed to execute the code), instruction-set modeling or compiled simul
should be used. The results of such simulations should be used to back-an
the more abstract models, so that subsequent simulations can use these
abstract models. In the case of embedded software, for example, an instru
set simulation could be used to extract a trace of timed interactions with the
side hardware. This trace could then be used in a bus model for more ac
simulation of the hardware.

Abstract modeling of the software alone is too incomplete for accurate f
back on the cost and performance of a particular design. The situation is fu
complicated by the observation that high-level synthesis tools for both hard
and software components are themselves heterogenous. Some of the ha
might be designed at the register-transfer level, while other parts are des
using synthesis from more abstract representations.

Use of more abstract and specialized tools and languages for software d
particularly for embedded systems, is also increasing. Visual dataflow prog
ming environments, for example, are common in the signal processing com
nity. Hierarchical finite-state machine languages are catching on for control.
symbolic processing languages are used widely in scientific computing.

3.4 BASELINE CO-SIMULATION

As a concrete example of the capabilities minimally required to simulate sys
like that in figure 1, consider the co-simulation shown in figure 3. This fig
shows a board-level hardware design with two programmable DSPs. Each D
simulated using an instruction-set architecture model provided by the vend
the DSP. The programmer’s view into the state of the DSPs is shown in the
dows at the lower left. The interaction between DSPs is simulated using a
crete-event register-transfer-level hardware simulator. A logic analyzer at th
shows the interactions of the DSPs with a dual-ported shared memory. A
upper left is a block diagram that specifies the software that is jointly execute
the two DSPs. That block diagram has dataflow semantics and is automat
partitioned for parallel execution.

The model in figure 3 is certainly heterogenous, and it represents capab
that are starting to appear in commercial software environments for signal
cessing. The particular implementation shown in figure 3 is in the Ptolemy
ware environment from Berkeley [10]. However, this is still not nearly compl
It does not embrace the multiplicity of design styles that will be used in sys
like that in figure 1, for example hierarchical finite-state machines for the em
ded control code that runs in the microcontroller. It also does not embrac

EFFECTIVE HETEROGENEOUS DESIGN AND CO-SIMULATION 9

nthe-
n the

 is
mod-
widely
iron-
simu-

ed for
d for
d for
, for
multiplicity of design styles that are used for hardware, such as high-level sy
sis and logic synthesis. Such broader capabilities continue to mature withi
Ptolemy environment [26].

4. Heterogeneous Simulation

In figure 4, the low-level co-simulation of the type implemented in figure 3
shown in the bottom box. Models of the component processors interact with
els of the rest of the hardware as they execute the embedded software. It is
recognized that this type of co-simulation is needed in practical design env
ments. Not nearly so widely recognized is the need for a broader type of co-
lation that invites more abstract subsystem representations.

At the top of figure 4 are four classes of semantic models that can be us
abstract, system-level models of computation. Discrete-event, which is use
low-level hardware modeling (at the register-transfer level), can also be use
high-level system modeling. Discrete-event models are commonly used

FIGURE 3. Baseline co-simulation system implemented in Ptolemy.

10 CHANG, KALAVADE, LEE

rete-
cause
dels
ynthe-

 have
red
tware
ti-

ular
t least
ble to

 that
 lan-
ation
 over-
there
dels,
example, to simulate communication networks, even on a global scale. Disc
event models, however, are not well suited to specifying software designs be
of their inherently slow execution. Hence, in figure 4, the discrete-event mo
are shown passing through only a hardware synthesis path, not a software s
sis path.

For signal processing, block diagram systems using dataflow semantics
grown in popularity. Dataflow (in most implementations) is a partially orde
model of computation [33]. It can be used to synthesize either embedded sof
[35][39], hardware [16][36][42], or both [24][25], with automatic or manual par
tioning.

A similarly versatile class of computational models is the recently pop
hierarchical finite-state machines, such as the statecharts model [20] and a
20 variants [41]. Like dataflow, these have also been shown to be amena
both hardware and software synthesis [21].

A fourth class of models of computation is the imperative model, such as
found in familiar languages such FORTRAN, C, Lisp, and the object-oriented
guages such as C++ and Smalltalk. In this model of computation, a specific
gives a total ordering on actions, not just events, and thus may be grossly
specifying a concurrent implementation such as a circuit. Thus, although
have been a few experiments in hardware synthesis from imperative mo
imperative models are mostly used to specify software.

FIGURE 4. Models of computation and co-simulation.

FSMs
discrete
event

co-simulation

logic
model

co-simulation

processor
model

system-level modeling

synthesis

detail modeling and simulation

ASIC
model

processor
model

ASIC
synthesis

software
synthesiscompiler

logic
synthesis

symbolic

imperative dataflow

partitioning

EFFECTIVE HETEROGENEOUS DESIGN AND CO-SIMULATION 11

sub-
of the
o-sim-

most
h as
 and
st be

esign
plete
n. To
w for
ays

n spe-
mod-
hical
 (typ-
s of
mples
es of
l prob-

ure 4.

resent
ly hier-
nd are
primi-
N. In
 fig-

nded
iver-
The key observation is that a given system design is likely to involve
systems where the best models of computations differ. Thus, some mixture
four classes at the top of figure 4 might be used in the same design. Thus, c
ulation is required even at this high level of abstraction.

For signal processing, a background of symbolic manipulation precedes
detailed designs. This symbolic manipulation, which might use tools suc
Mathematica or Maple, should be considered part of the design process
should be captured in the design flow [17]. It constitutes a fifth class that mu
co-simulated, shown at the top right of figure 4.

In this chapter we take a broad view of the problem of heterogeneous d
and simulation. We take as an assumption that compilation of the com
design down to a single, unified, detailed representation is not the solutio
cover all possible cases, this representation has to be far too detailed to allo
effective simulation. Instead, the problem boils down to one of finding clean w
to mix diverse models of computation, at varying levels of abstraction.

The problems posed are not simple, and have only been solved for certai
cial cases. We will use as examples of high-level representations: dataflow
els (typically used for signal processing and numeric computation), hierarc
finite-state machines (typically used for control), and discrete-event systems
ically used for modeling the timing of hardware systems at varying level
abstraction). We explain each of these models of computation, and give exa
of design environments that support them. We then give examples of mixtur
such models, and use these examples to illustrate some of the fundamenta
lems that arise (together with a few solutions).

5. Multi-paradigm Design

We consider in this section mixtures of the classes of semantic models in fig
We begin with some background on each.

5.1 DATAFLOW PROCESS NETWORKS

In dataflow, a program is specified by a directed graph where the nodes rep
computations and the arcs represent streams of data. The graphs are typical
archical, in that a node in a graph may represent another directed graph, a
often represented visually. The nodes in the graph can be either language
tives or subprograms specified in another language, such as C or FORTRA
the latter case, we are already mixing two of the models of computation from
ure 4. Dataflow serves as acoordination language for subprograms written in a
host language.

Some examples of graphical dataflow programming environments inte
for signal processing (including image processing) are Khoros, from the Un

12 CHANG, KALAVADE, LEE

y,
rk-
ms),
en-

ut a
an-
ost,

ate by
e
. This
block
cess
ition-
cess

hose

ta-
ntext
ided.
sity of New Mexico [37] (now distributed by Khoral Research, Inc.), Ptolem
from the University of California at Berkeley [10], the Signal Processing Wo
system (SPW), from the Alta Group at Cadence (formerly Comdisco Syste
COSSAP, from Synopsys (formerly from Cadis), and the DSP Station from M
tor Graphics (formerly from EDC).

These software environments all claim variants of dataflow semantics, b
word of caution is in order. The term “dataflow” is often used loosely for sem
tics that bear little resemblance to those outlined by Dennis in 1975 [15]. M
however, can be described formally as special cases ofdataflow process networks
[33], which are in turn are a special case ofKahn process networks[23].

In Kahn process networks, a number of concurrent processes communic
passing streams of datatokens through unidirectional FIFO channels, wher
writes to the channel are non-blocking, and reads are blocking (see figure 5)
means that writes to the channel always succeed immediately, while reads
until there is sufficient data in the channel to satisfy them. In particular, a pro
cannot test an input channel for the availability of data and then branch cond
ally. Testing for available data constitutes a read, and will block the entire pro
until data is available. This restriction helps to assure that the program isdetermi-
nate, meaning that its outputs are entirely determined by its inputs and t
aspects of the program that are specified by the programmer.

In dataflow process networks, each process consists of repeatedfirings of a
dataflowactor (see figure 6). A firing is a (often functional) quantum of compu
tion. By dividing processes into actor firings, the considerable overhead of co
switching incurred in most implementations of Kahn process networks is avo

process

channel stream

FIGURE 5. A process network.

FIGURE 6. A dataflow process.

enabled fired enabled fired

EFFECTIVE HETEROGENEOUS DESIGN AND CO-SIMULATION 13

 stat-
 are
). In
dule.

eated
h the
s on
ssible,

coor-
 and
, the

able

ticu-
will
s for

ts of
on-
ntics,
m of

h time
stamp
subtle-
In fact, in many of the signal processing environments, a major objective is to
ically (at compile time) schedule the actor firings (see figure 7). The firings
organized into a list (for one processor) or set of lists (for multiple processors
figure 7, a dataflow graph is shown mapped into a single processor sche
Thus, the lower part of the figure represents a list of firings that can be rep
indefinitely. A basic requirement of such a schedule is that one cycle throug
schedule should return the graph to its original state (the number of token
each arc should be the same after the cycle as before). This is not always po
but when it is, considerable simplification results.

Many possibilities have been explored for precise semantics of dataflow
dination languages, including for example the computation graphs of Karp
Miller [28], the synchronous dataflow graphs of Lee and Messerschmitt [31]
cyclo-static dataflow model of Lauwereins,et al. [29][7], the Processing Graph
Method (PGM) of Kaplan,et al. [27], Granular Lucid [22], and others
[1][14][12][40]. Many of these limit expressiveness in exchange for consider
advantages such as compile-time predictability.

Synchronous dataflow (SDF) and cyclo-static dataflow both have the par
larly useful property that a finite static schedule can be quickly found that
return the graph to its original state, if such a schedule exists. This allow
extremely efficient implementations.

A key property of dataflow processes is that the computation consis
atomic firings. Within a firing, anything can happen. In many existing envir
ments, a firing can only be specified in a host language with imperative sema
such as C and C++. In the Ptolemy system [10], it can consist of a quantu
computation specified with any of several models of computation.

5.2 DISCRETE EVENT

As described above, the discrete-event model of computation has events wit
stamps. The role of the scheduler is to keep a list of events sorted by time
and to process the events in chronological order. There are, however, some

FIGURE 7. Static scheduling of a dataflow process network.

14 CHANG, KALAVADE, LEE

on-
th,

a dis-
mpo-

 recent
 time
ext.

 with
ould

(b).
input
 one
hould

mula-
lu-

ered
 firing
ect
ties that are dealt with differently in different systems. The main difficulties c
cern howsimultaneous events (those with the same time stamp) are dealt wi
and howzero-delay feedback loops are managed.

Consider the graph shown in figure 8. Suppose it specifies a program in
crete-event coordination language. Suppose further that B is a zero-delay co
nent. This means that each output has the same time stamp as the most
input. Thus, if A produces one event on each of its two outputs with the same
stampT, then there is an ambiguity about whether B or C should be invoked n
This situation is illustrated in figure 9(a). B and C have events at their inputs
identical time stamps, so either could be invoked next. But the behavior of C c
be different in the two circumstances.

Suppose B is invoked first, resulting in the configuration shown in figure 9
Now, depending on the simulator, C might be invoked once, observing both
events in one invocation. Or it might be invoked twice, processing the events
at a time. In the latter case, there is no clear way to determine which event s
be processed first.

Some discrete-event simulators leave this situation ambiguous. Such si
tors arenondeterminate. In most applications, this is not desirable. A partial so
tion provided in some simulators is theinfinitesimal delay. If B has an
infinitesimal delay, then its output events will have time stamps that are ord
after those of the inputs even if they represent the same physical time. Then,
A followed by B will result in the situation shown in figure 9(c), where the eff

FIGURE 8. A discrete-event example.

A B C

FIGURE 9. Simultaneous events in discrete-event systems.

A B C

A B C

T

T

T

T

(a)

(b)

A B C

T

T+

(c)

A B C
T+

(d)

EFFECTIVE HETEROGENEOUS DESIGN AND CO-SIMULATION 15

 the
o way
vent
vent

 topo-
ether
tput.
dence
igu-
fore
rt of
sterel,
 deter-

blem
ps. No
s, the
ain

prece-
ure 8,
n, a

But
t-ori-
main

ula-
 high-
stems
essing
How

gure
 zero-
of the infinitesimal delay is indicated by the “T+”. The next firing of C will
observe only the first event, the one with time stampT. This is the next one in the
event queue. After this firing of C, the event with time stampT+” remains to be
processed, as shown in figure 9(d).

Infinitesimal delays are not an entirely satisfactory solution. Suppose
designer wishes for C to see both events at once, as in figure 9(b). There is n
to ensure that B will be invoked before C. For this reason, the discrete e
domain in Ptolemy uses a different solution [10]. Graphs specifying discrete e
programs are topologically sorted, and a priority is assigned to each arc. The
logical sort is based on an annotation of the nodes in the graph indicating wh
the node can have zero delay from any particular input to any particular ou
When such zero delay is possible, the topological sort views this as a prece
constraint. Ignoring the feedback arc in figure 8, this would resolve all amb
ities. The topological sort would indicate that B should always be invoked be
C when they have events at their inputs with identical time stamps. This so
precedence analysis is identical to that done in synchronous languages (E
Lustre, and Signal) to ensure that simultaneous events are processed in a
ministic way.

Of course, the feedback loop in figure 8 creates a problem. The same pro
occurs in synchronous languages, where such loops are called causality loo
precedence analysis can resolve the ambiguity. In synchronous language
compiler may simply fail to compile such a program. In the discrete-event dom
in Ptolemy, we permit the user to annotate the arcs the graph to break the
dences. Thus, the programmer could annotate the leftward pointing arc in fig
again resolving the ambiguities. If the user fails to provide such annotatio
warning is issued, and the precise behavior is arbitrary (nondeterminate).

5.3 MIXING DISCRETE EVENTS AND DATAFLOW

In Ptolemy, adomain defines the semantics of a coordination language.
domains are modular objects that can be mixed and matched at will. Objec
ented principles are used to hide information about the semantics of one do
from another.

The discrete event (DE) domain in Ptolemy is used for time-oriented sim
tions of systems such as queueing networks, communication networks, and
level computer architectures (processors, disks, caches, etc.). Many such sy
contain subsystems that are better modeled in dataflow, such as signal proc
subsystems. But the dataflow domains in Ptolemy have no notion of time.
can these models of computation be mixed?

Consider the case of a dataflow model inside a DE model , as shown in fi
10. In Ptolemy, the dataflow subsystem appears to the DE simulator as a
delay block. Suppose, for example, that an event with time stampT is available at

16 CHANG, KALAVADE, LEE

s this
flow

r do
re a
 pro-
oked
re to
data-
tions

n the
nd a
ber of

s
 input
nsists
 10 is
e DE

ed to

 than
umber
found
the input to the dataflow subsystem. Then when the DE scheduler reache
simulated time, it fires the dataflow subsystem, turing control over to the data
scheduler.

The question remains, how much work should the dataflow schedule
before returning control to the DE scheduler? One possibility would be to fi
single dataflow actor, say B in figure 10, to respond to the event. But this will
duce no output, and it is unclear when the dataflow scheduler should be inv
again to continue responding to the input event. Moreover, if a single actor we
be replaced by a functionally equivalent cluster of actors, the behavior of the
flow graph would change in a fundamental way. It would take several invoca
to produce the same result.

A more reasonable alternative is to fire enough dataflow actors to retur
dataflow graph to its original state. Thus, if all arcs start with zero tokens, a
token arrives at the input, the scheduler should fire the actors a minimal num
times to return all arcs to zero tokens. This set of firings is called acomplete cycle
[32]; it forms aquantum of computation.

Consider the simplest form of dataflow, known ashomogeneous synchronou
dataflow, where all actors produce and consume exactly one token on each
or output port. For a homogeneous SDF graph, a complete cycle always co
of exactly one firing of each actor. Suppose that the dataflow graph in figure
homogeneous SDF. Then when the dataflow subsystem is invoked by th
scheduler in response to an event with time stampT, actors B and C will each fire
once, in that order. Actor C will produce an output event, which when pass
the DE domain will be assigned the time stampT. The DE scheduler continues
processing by firing actor D to respond to this event.

In the more general form of SDF, actors can produce or consume more
one token when they fire (but they always produce and consume the same n
on each firing). SDF graphs always have a finite complete cycle that can be

FIGURE 10. A dataflow subsystem as a module within a DE simulation.

discrete event

dataflow

zero time delay

A B C D

EFFECTIVE HETEROGENEOUS DESIGN AND CO-SIMULATION 17

neral
ther

f the
at the
f the
o fire.
uler,
cumu-
 pro-

 such

flow
com-
 is to
an be
ro-
te a

have

in an

e no
 can
 fixed

 a sig-
 inner

al time
input
amp.
ork

must
by the
stem

 the
e
 pro-
r, and
efficiently, and it contains at least one firing of each actor in the graph. Ge
SDF is useful for modeling multirate signal processing systems, among o
applications.

If the SDF subsystem in figure 10 is a multirate system, the effects o
combined DE/SDF system are somewhat more subtle. First, a single event
input of the subsystem may not be sufficient to cycle through one iteration o
SDF schedule. Suppose for example that actor B requires two input tokens t
In this case, the SDF scheduler will simply return control to the DE sched
having produced no output events. Only when enough input events have ac
lated will any output events be produced. Secondly, when output events are
duced, more than one token may be produced at a time. In Ptolemy, all
output tokens are assigned the same time stamp.

The notion of a complete cycle gets more difficult with more general data
models [32]. Unfortunately, for general dataflow graphs, the existence of a
plete cycle is undecidable [9]. The only automatic solution we have identified
define a quantum of computation to be a complete cycle when it exists and c
found. Otherwise, it will be implementation dependent. Alternatively, the p
grammer can annotate the dataflow graph to specify what firings constitu
quantum of computation. Fortunately, most signal processing algorithms
dataflow graphs for which a complete cycle exists, can be found and is finite.

Consider the reverse scenario, where a DE subsystem is included with
SDF system. The policy followed in Ptolemy is that a global notion ofcurrent
time is maintained. For domains (such as the dataflow domains) that hav
notion of time, this global time is maintained transparently. A dataflow system
be configured so that each complete cycle advances the global time by some
amount. This corresponds naturally to the representation of a sample rate in
nal processing system. Thus, when the outer SDF system chooses to fire the
DE subsystem, the input events to the DE subsystem are assigned this glob
as their time stamps. The inner DE scheduler is told to then process all
events up to and including events with the global current time as their time st
This is certainly not the only possibility, but it is unambiguous and seems to w
well in practice.

A key requirement in this case is that when the DE subsystem is fired, it
produce an output event on each output port, since these will be expected
SDF subsystem. A very simple example is shown in figure 11. The DE subsy
in the figure routes input events through a time delay (provided by theServer
block). The events at the output of the time delay, however, will be events in
future (in simulated time). TheSampler block, therefore, is introduced to produc
an output event at the current simulation time. This output event, therefore, is
duced before the DE scheduler returns control to the output SDF schedule
the SDF system gets the events it expects.

18 CHANG, KALAVADE, LEE

ost
n no

rnative
anism
pro-
d act

gis-
ussed

con-
SMs,
ber of
 entire
y and

port
 vari-
lude
art

man-
Most
 input
some
oduce
ta are

.

The behavior shown in figure 11 may not be the desired behavior. TheSam-
pler block, given an event on its control input (the bottom input), copies the m
recent event from its data input (the left input) to the output. If there has bee
input data event, then a zero-valued event is produced. There are many alte
ways to ensure that an output event is produced. For this reason, the mech
for ensuring that this output event is produced is not built into Ptolemy. The
grammer must understand the semantics of the interacting domains, an
accordingly.

Other combinations of models of computation, including for example re
ter-transfer-level circuit simulators and communicating processes, are disc
in the Ptolemy documentation.

5.4 HIERARCHICAL FINITE STATE MACHINES

A number of modern programming methodologies, aimed at the domain of
trol-dominated applications, are based on finite-state machines. Simple F
however, have a major weakness; nontrivial systems have a very large num
states. Modern solutions use hierarchy, in which a single state represents an
subsystem, and concurrency, in which multiple FSMs operate simultaneousl
communicate through signals.

Statecharts and Variants.Perhaps the best known of the FSM models that sup
hierarchy and concurrency are the statecharts formalism [20] and at least 20
ants [41]. Most of these have a visual syntax. Commercial systems inc
Statemate, from iLogix [21], VisualHDL from Summit Design Inc., SpeedCh
from Speed Electronics Inc., and StateVision from Vista Technologies.

Many of the differences between the variants of statecharts are in the se
tics of concurrency in parallel FSMs and the communication between them.
statecharts formalisms use the notion of instantaneous broadcast, in which
events or events produced by internal transitions are visible throughout
scope and can trigger other transitions. These other transitions in turn can pr
events that trigger other transitions. Serious problems arise when the automa

FIGURE 11. A DE subsystem designed for inclusion within an SDF system

�����
�����
�����
�����
�����

������
������
������
������
������
������

Sampler
Server
���
���
���
���

����
����
����
����

EFFECTIVE HETEROGENEOUS DESIGN AND CO-SIMULATION 19

, much
dels,
onde-
s the
pro-
nabled

oops,
ing
 they
e out-

state
maton
 in

tes the

ays

fines
s, or

hange
abling
st par-
nsi-

on
tions

ther
uage

mata
 the
, B,

rting,
Once

by a
waits
modeled as reacting instantaneously, because zero-delay loops can occur
like the zero-delay loops in discrete-event models. Unlike discrete-event mo
these zero-delay loops can result in logical inconsistencies (rather than just n
terminism). For example, a transition might produce an event that invalidate
conditions under which the transition occurred. Or a pair of transitions might
duce events that trigger each other, but neither occurs because neither is e
initially.

There are at least two fundamental interpretations of such zero-delay l
microsteps andfixed points. In the microsteps interpretation, the actions occurr
in a given time instant have a natural order. In the fixed point interpretation,
are genuinely simultaneous. In both cases, there are at least two possibl
comes of such zero-delay loops, aninstantaneous dialog or acontradiction. In the
former, all automata involved in the zero-delay loop end up in a well-defined
after all events at a given time have been processed. In the latter, an auto
makes a state transition at timeT, issues an event that triggers a state transition
another automaton, and that other automaton issues an event that invalida
state transition taken by the first automaton. This is one form of acausality loop,
and is usually considered an error in the program. Unfortunately, it is not alw
possible for a compiler to detect such causality loops.

Most of the variants of statecharts are members of the class ofsynchronous
languages. Fundamentally, this means that a program in the language fully de
the order of events. Any two events are either unambiguously simultaneou
one precedes the other. This makes it possible to have a globaltick that determines
when automata can change state. All automata with enabled transitions c
state simultaneously in response to events. The key problem is that the en
conditions for a transition may not be testable before the tick has been at lea
tially processed. A simple but highly restrictive solution is to require any tra
tion to produce events that will only be visible in the next tick. In a more comm
solution, causality analysis in the compiler determines when enabling condi
are testable.

Synchronous languages, with their clear notion of a tick, mix easily with o
models of computation. An atomic invocation of a subsystem in such a lang
consists of processing one tick.

Esterel.A language with a textual syntax that describes synchronous auto
particularly elegantly is Esterel [8]. An example of an Esterel program and
corresponding FSM is shown in figure 12. This program has three inputs, A
and R (the latter for “Reset”) and one output O. Its behavior is that after sta
or after a reset signal, it waits until it has received events on both A and B.
that has occurred, it emits O.

Esterel has familiar imperative semantics. Two statements separated
semicolon, as in “S1; S2”, will execute in sequence. If S1 has no code that

20 CHANG, KALAVADE, LEE

 tick).
l. The

n
 and
it O”

ms,
t ter-
 inter-

at if
, the
will

 same
rrent
tate,
reset
rchy

pro-

mpu-
 sig-
for events, then S1 and S2 execute logically at the same instant (in the same
Two statements separated by a double bar, as in “S1 || S2”, execute in paralle
composite statement “[S1 || S2]” executes untilboth S1 and S2 terminate, and the
it terminates. Thus, in “[S1 || S2]; S3”, S3 will be executed only after both S1
S2 have executed and finished. Thus, the statement “[await A || await B]; em
will emit the output in the first tick when both A and B have occurred.

The “do ... watching R” construct in figure 12 is typical of Esterel progra
and illustrates one of its major strengths. The body is executed until either i
minates or an event occurs on the signal R. Thus, this construct provides an
rupt mechanism in an intuitive way.

Comparing the Esterel program and the FSM in figure 12, we observe th
the number of signals to watch (which is two, A and B, in figure 12) increases
size of the Esterel program will increase linearly, while the size of the FSM
increase exponentially. This illustrates a traditional problem with FSMs,state
explosion.

Statecharts were developed in part to deal with the same problem. The
program is shown in a statecharts representation in figure 13. Two concu
FSMs monitor the signals A and B. When both FSMs transition to their final s
then the FSM one level up in the hierarchy transitions to its “done” state. If a
signal R is received at any time, the self-loop at the highest level of the hiera
is triggered, reinitializing all FSMs. Like the Esterel program, the size of this
gram grows linearly with the number of signals that are being monitored.

5.5 MIXING CONTROL WITH DATAFLOW OR DISCRETE EVENT

Real-time embedded systems frequently combine intensive numerical co
tations with control. A wireless modem, for example, contains sophisticated

module EsTest:
input A, B, R;
output O;
loop

do
[await A || await B];
emit O;
halt

watching R
end loop
end module

A & !B

R

B/O A/O

R

R

B & !A

A & B/O

FIGURE 12. An Esterel program and its corresponding FSM.

EFFECTIVE HETEROGENEOUS DESIGN AND CO-SIMULATION 21

 and
 is in
f the

aptive
 than
king.
isti-

histi-

im-
on-
over,

sim-
riented
ient.
els

n-
ous-
llers
s, in

 of a
aflow

12.
nal processing including adaptive filters, phase-locked loops, encoders
decoders; but a sizable portion of the development effort for such a modem
the software that manages the initiation of a connection, the configuration o
device, and the interaction with the host computer and the user. Modern ad
signal processing algorithms also require much more sophisticated control
classical adaptive algorithms, often including knowledge-based decision ma
Multimedia services and telecommunication services inevitably require soph
cated control, because of the key role of user interaction, in addition to sop
cated signal processing.

Mixing either hierarchical FSMs or Esterel with discrete-event models is s
ple and intuitive. The notion of a “tick” makes it very clear what a firing of a c
trol subsystem means. The quantum of computation is a single tick. More
these control models, like DE, react to the presence or absence of events.

Mixing these control-oriented models with synchronous dataflow is also
ple. When events cross the boundary, the absence of events in the control-o
domain must be indicated by special null tokens, which might be quite ineffic
Avoiding this inefficiency by using more general dynamic dataflow mod
remains a research problem.

5.6 DIGITAL HYBRID SYSTEMS

The termhybrid systems is used in the control theory community to refer to co
tinuous-time systems that interact with discrete-event controllers. The continu
time systems are typically described using differential equations. The contro
are usually specified using languages with finite-state machine semantic
which case the model is called “hybrid automata” [2]. In our case, instead
continuous-time plant, we have a discrete-time system specified using dat

HIERARCHY

CONCURRENCY

FSMs

R

B

(in SeenA && in SeenB) / O

i i

SeenB

done

FIGURE 13. Statecharts representation of the same program as in figure

A

i

SeenA

22 CHANG, KALAVADE, LEE

 often
data-

cifica-

g of
f the

flow
e idea
The
 these
 level

ctor
r of
tem
oles
. The
ansi-
th.

.

graphs. Instead of differential equations, these discrete-time subsystems will
be specifiable using difference equations, which in turn are specified using
flow. We call this variant of the modeldigital hybrid systems since it preserves the
essential features of the classical hybrid systems but is better suited to spe
tion and analysis of digital systems.

Our version of digital hybrid systems consists of a hierarchical nestin
dataflow graphs with FSMs, as shown in figure 14. The depth and ordering o
nesting is arbitrary. In that figure, we have schematically illustrated data
semantics with rectangular boxes, and FSM semantics with round nodes. Th
is that any dataflow actor can have its functionality specified by an FSM.
FSM in turn can have actions associated with either states or transitions, and
actions can be specified by a dataflow graph. Either model can form the top
of a design.

Our implementation strategy is depicted in figure 15. A dataflow a
(labeled “dataflow wormhole”) has associated with it an FSM and a numbe
Ptolemy wormholes in arbitrary domains. A wormhole in Ptolemy is a subsys
with a foreign model of computation, treated as a black box. The inner wormh
contain the implementations of actions. The FSM selects among the actions
inputs to the outer wormhole are used by either the FSM (to trigger state tr
tions), by the inner wormholes (probably for numerical computation), or by bo

FIGURE 14. Hierarchical nesting of FSM controllers with dataflow graphs

EFFECTIVE HETEROGENEOUS DESIGN AND CO-SIMULATION 23

tation
hosen
at it
.

r, the
is to
puta-
uan-
rrent

tion in
a state
 syn-
on the
deed
chro-
t sup-

rt of

arts,
arts

would
 model

od-
ple

rt
el.
5.7 MODULAR SEMANTICS

The above examples of combinations suggest that mixing models of compu
is reasonably straightforward. In fact, these examples have been carefully c
to avoid numerous treacherous pitfalls. A key problem is to determine wh
means to execute a quantum of computation in a given model of computation

When any of the above models of computation are nested within anothe
outer domain invokes a quantum of computation in the inner domain. For th
have meaning, the inner domain must have a clear notion of quantum of com
tion. For ordinary finite-state machines, which are sequential, it is clear; a q
tum of computation consists of a single state transition. But what about concu
state machines? Should a quantum of computation be a single state transi
each state machine? What if the state machines run asynchronously, and
transition in one only gets triggered by events in another? What if they are
chronous, but operate at different rates? The answer seems to depend
model used to manage the concurrency and communication in the FSMs. In
these models are typically either dataflow, synchronous (in the sense of syn
nous languages), cycle-based, or discrete-event. Thus, hierarchical FSMs tha
port concurrency can be viewed as manifestations of precisely the so
heterogeneity we are discussing in this chapter.

Figure 13 identifies three orthogonal semantic properties of statech
FSMs, hierarchy, and concurrency. Although it is not possible with statech
(because of transitions that cross hierarchical boundaries), a simpler model
separate the semantics of concurrency from the semantics of FSMs. Thus, a
only slightly weaker than statecharts would be, in fact, a composition of two m
els, much like the dataflow/FSM combination shown in figure 14. Since sim

Dataflow
graphs

Control
(FSM)

Internal events

Data in Data out

Control outControl in

dataflow wormhole

FIGURE 15. Generalization of the Ptolemy wormhole abstraction to suppo
embedded controllers. The dataflow graphs could be replaced by any mod

24 CHANG, KALAVADE, LEE

 (one
puta-
nica-
rete-
ono-
 con-
ation

 for
ect is
Force
uctor
ence
 fol-
ntor

.
ic

 Sys-

Lan-

CA

i-rate

ken
y of

ating
FSMs have a clear and unambiguous notion of a quantum of computation
state transition), the problem reduces to determining what a quantum of com
tion is in the semantic model used to manage the concurrency and commu
tion. This model could be a synchronous model, a dataflow model, or a disc
event model, yielding three variants of the statecharts idea. But unlike the m
lithic variants described in [41], these variants are modular. They are created
veniently when needed simply by choosing the appropriate model of comput
at each level of the hierarchy.

6. Acknowledgments

We would like to thank the Ptolemy team for building a magnificent laboratory
experimenting with the concepts discussed in this chapter. The Ptolemy proj
supported by the Advanced Research Projects Agency and the U.S. Air
(under the RASSP program, contract F33615-93-C-1317), the Semicond
Research Corporation (SRC) (project 95-DC-324-016), the National Sci
Foundation (MIP-9201605), the State of California MICRO program, and the
lowing companies: Bell Northern Research, Cadence, Dolby, Hitachi, Me
Graphics, Mitsubishi, Motorola, NEC, Pacific Bell, Philips, and Rockwell.

7. References

1. W. B. Ackerman, “Data Flow Languages,”Computer, Vol. 15, No. 2, pp 15-25, February 1982
2. R. Alur, C. Courcoubetis, T. A. Henzinger, P.-H. Ho, “Hybrid Automata: An Algorithm

Approach to the Specification and Verification of Hybrid Systems,”LNCS 736, Springer-Ver-
lag, Berlin, 1993.

3. A. Benveniste and G. Berry, “The Synchronous Approach to Reactive and Real-Time
tems,”Proceedings of the IEEE, Vol. 79, No. 9, 1991, pp. 1270-1282.

4. A. Benveniste and P. Le Guernic, “Hybrid Dynamical Systems Theory and the SIGNAL
guage,”IEEE Tr. on Automatic Control, Vol. 35, No. 5, pp. 525-546, May 1990.

5. J. Bier, P. Lapsley, E. A. Lee, and F. Weller, “DSP Design Tools and Methodologies,”Techni-
cal Report, Berkeley Design Technology, 39355 California St., Suite 206, Fremont,
94538, 1995.

6. J. Bier, P. Lapsley, and E. A. Lee, “Buyer’s Guide to DSP Processors,”Technical Report, Ber-
keley Design Technology, 39355 California St., Suite 206, Fremont, CA 94538, 1994.

7. G. Bilsen, M. Engels, R. Lauwereins, and J. A. Peperstraete, “Static Scheduling of Mult
and Cyclo-Static DSP Applications”,Proc. 1994 Workshop on VLSI Signal Processing, IEEE
Press, 1994.

8. F. Boussinot, R. De Simone, “The ESTEREL Language,”Proceedings of the IEEE, Vol. 79,
No. 9, pp 1293-1304, September 1991.

9. J. T. Buck,Scheduling Dynamic Dataflow Graphs with Bounded Memory Using the To
Flow Model, Tech. Report UCB/ERL 93/69, Ph. D. Dissertation, Dept. of EECS, Universit
California, Berkeley, CA 94720, 1993.

10. J. T. Buck, S. Ha, E. A. Lee, and D. G. Messerschmitt, “Ptolemy: A Framework for Simul
and Prototyping Heterogeneous Systems,”Int. Journal of Computer Simulation, special issue

EFFECTIVE HETEROGENEOUS DESIGN AND CO-SIMULATION 25

://

ime
ts-

61,

isken,
thms

imu-
chi-

g Sys-
op on

ming

, M.
ex

lica-

ap-
o-
ers/

ode-
8

m-

Ter-

yclo-
on “Simulation Software Development,” vol. 4, pp. 155-182, April, 1994. (http
ptolemy.eecs.berkeley.edu/papers/JEurSim.ps.Z).

11. B. Cogswell and Z. Segall, “Timing Insensitive Binary to Binary Translation of Real T
Systems,”Technical Report, ECE Dept., Carnegie Mellon University, 5000 Forbes Ave., Pit
burgh, PA 15213.

12. F. Commoner and A. W. Holt, “Marked Directed Graphs,”Journal of Computer and System
Sciences,Vol. 5, pp. 511-523, 1971.

13. R. Camposano, “From Behavior to Structure: Highlevel Synthesis”,IEEE Design and Test of
Computers, Oct. 1990, pp 8-19.

14. N. Carriero and D. Gelernter, “Linda in Context,”Comm. of the ACM,Vol. 32, No. 4, pp. 444-
458, April 1989.

15. J.B. Dennis, “First Version Data Flow Procedure Language”, Technical Memo MAC TM
May, 1975, MIT Laboratory for Computer Science.

16. H. De Man, F. Catthoor, G. Goossens, J. Vanhoof, J. Van Meerbergen, S. Note, J. Hu
“Architecture-driven synthesis techniques for mapping digital signal processing algori
into silicon,”Proceedings of the IEEE, Vol. 78, No. 2, pp. 319-335, February, 1990.

17. B. L. Evans, S. X. Gu, A. Kalavade, and E. A. Lee, “Symbolic Computation in System S
lation and Design,”Proc. of SPIE Int. Sym. on Advanced Signal Processing Algorithms, Ar
tectures, and Implementations, July 9-16, 1995, San Diego, CA.

18. G. Goosens, F. Cathoor, D. Lanneer, and H. De Man, “Integration of Signal Processin
tems on heterogeneous IC architectures”, Proceedings of the Sixth International Worksh
High-Level Synthesis, Laguna Niguel, CA, Nov. 1992.

19. N. Halbwachs, P. Caspi, P. Raymond, D. Pilaud, “The Synchronous Data Flow Program
Language LUSTRE,”Proceedings of the IEEE, Vol. 79, No. 9, 1991, pp. 1305-1319.

20. D. Harel, “Statecharts: A Visual Formalism for Complex Systems,”Sci. Comput. Program.,
vol 8, pp. 231-274, 1987.

21. D. Harel, H. Lachover, A. Naamad, A. Pnueli, M. Politi, R. Sherman, A. Shtull-Trauring
Trakhtenbrot, “STATEMATE: A Working Environment for the Development of Compl
Reactive Systems,”IEEE Tr. on Software Engineering,Vol. 16, No. 4, April 1990.

22. R. Jagannathan, “Parallel Execution of GLU Programs,” presented at2nd International Work-
shop on Dataflow Computing,Hamilton Island, Queensland, Australia, May 1992.

23. G. Kahn, “The Semantics of a Simple Language for Parallel Programming,”Proc. of the IFIP
Congress 74, North-Holland Publishing Co., 1974.

24. A. Kalavade and E. A. Lee, “A Hardware/Software Codesign Methodology for DSP App
tions,” IEEE Design and Test of Computers, September 1993, vol. 10, no. 3, pp. 16-28.

25. A. Kalavade and E. A. Lee, “The Extended Partitioning Problem: Hardware/Software M
ping and Implementation-Bin Selection,”Proc. of IEEE Int. Workshop on Rapid Systems Pr
totyping, Chapel Hill, NC, June, 1995 (http://ptolemy.eecs.berkeley.edu/pap
extended_partitioning/).

26. A. Kalavade and E. A. Lee, “Manifestations of Heterogeneity in Hardware/Software C
sign,” Proc. of Design Automation Conference, San Diego, CA, June, 1994, pp. 437-43
(http://ptolemy.eecs.berkeley.edu/papers/codesign).

27. D. J. Kaplan,et al., “Processing Graph Method Specification Version 1.0,” Unpublished Me
orandum, The Naval Research Laboratory, Washington D.C., December 11, 1987.

28. R. M. Karp, R. E. Miller, “Properties of a Model for Parallel Computations: Determinacy,
mination, Queueing,”SIAM Journal, Vol. 14, pp. 1390-1411, November, 1966.

29. R. Lauwereins, P. Wauters, M. Adé, J. A. Peperstraete, “Geometric Parallelism and C
Static Dataflow in GRAPE-II”,Proc. 5th Int. Workshop on Rapid System Prototyping, Greno-
ble, France, June, 1994.

26 CHANG, KALAVADE, LEE

gs of

Nine-

my,”
er-

Archi-

ment

-

 Sys-

an-

es in
1994.
 for
30. J. C. Lee, E. Cheval, and J. Gergen, “The Motorola 16-Bit DSP ASIC Core”, Proceedin
ICASSP 1990, V3.12, pp 973-976.

31. E. A. Lee and D. G. Messerschmitt, “Synchronous Data Flow,”IEEE Proceedings, September,
1987.

32. E. A. Lee, “Consistency in Dataflow Graphs”,IEEE Transactions on Parallel and Distributed
Systems”, Vol. 2, No. 2, April 1991.

33. E. A. Lee and T. M. Parks, “Dataflow Process Networks,”Proceedings of the IEEE, May
1995. (http://ptolemy.eecs.berkeley.edu/papers/processNets)

34. P. G. Paulin, C. Liem, T. C. May, S. Sutarwala, “DSP Design Tool Requirements for the
ties: An Industrial Perspective”,Journal of VLSI Signal Processing, special issue on “Synthe-
sis for DSP”, Jan. 1995, vol.9, (no.1-2) p. 23-47.

35. J. L. Pino, S. Ha, E. A. Lee, and J. T. Buck, “Software Synthesis for DSP Using Ptole
Journal on VLSI Signal Processing, vol. 9, no. 1, pp. 7-21, Jan., 1995 (http://ptolemy.eecs.b
keley.edu/papers/jvsp_codegen/jvsp_codegen.ps.Z).

36. J. Rabaey, C. Chu, P. Hoang, and M. Potkonjak, “Fast Protoyping of Datapath-Intensive
tectures,”IEEE Design and Test of Computers, pp. 40-51, June 1991.

37. J. Rasure and C. S. Williams, “An Integrated Visual Language and Software Develop
Environment”,Journal of Visual Languages and Computing, Vol 2, pp 217-246, 1991.

38. J. Rowson, “Hardware/software Co-simulation”,Proc. of the 31st Design Automation Confer
ence, San Diego, June, 1994, pp 439-40.

39. S. Ritz, M. Pankert, and H. Meyr, “High Level Software Synthesis for Signal Processing
tems,” in Proc. of the Int. Conf. on Application Specific Array Processors, IEEE Computer
Society Press, August 1992.

40. P. A. Suhler, J. Biswas, K. M. Korner, J. C. Browne, “TDFL: A Task-Level Dataflow L
guage”,J. on Parallel and Distributed Systems, 9(2), June 1990.

41. M. von der Beeck, “A Comparison of Statecharts Variants,” in Proc. of Formal Techniqu
Real Time and Fault Tolerant Systems, LNCS 863, pp. 128-148, Sprinter-Verlag, Berlin,

42. P. Zepter and T. Grötker, “Abstract Multirate Dynamic Data-Flow Graph Specification
High Throughput Communication Link ASICs”,IEEE VLSI DSP Workshop, The Netherlands,
1993.

	1. Introduction
	2. Component Subsystems
	Software or Firmware
	Application-Specific Integrated Circuits
	Domain-Specific Programmable Processors
	Core-Based ASICs
	Application-Specific Multiprocessors

	3. Basic Definitions
	3.1 Models of computation
	3.2 processor models
	Detailed processor models
	Bus models
	Instruction-set architecture models
	Compiled Simulation
	Hardware Models

	3.3 system-level models
	3.4 Baseline co-simulation

	4. Heterogeneous Simulation
	5. Multi-paradigm Design
	5.1 dataflow process networks
	5.2 discrete event
	5.3 Mixing discrete events and dataflow
	5.4 Hierarchical finite state machines
	Statecharts and Variants
	Esterel

	5.5 Mixing control with dataflow or discrete event...
	5.6 Digital Hybrid Systems
	5.7 modular semantics

	6. Acknowledgments
	7. References

