Memorandum UCB/ERL M96/55, Electronics Research Laboratory, U. C. Berkeley, October, 1996.

RESYNCHRONIZATION OF MULTIPROCESSOR SCHEDULES: PART 1 —
FUNDAMENTAL CONCEPTS AND UNBOUNDED-LATENCY ANALYSIS

Shuvra S. Bhattacharyya, Hitachi America
Sundararajan Sriram, Texas Instruments
Edward A. Lee, U. C. Berkeley

1. Abstract

|
This paper introduces a technique, catlesiynchronizationfor reducing synchronization

overhead in embedded multiprocessor implementations. The technique exploits the well-known
observation [35] that in a given multiprocessor implementation, certain synchronization opera-
tions may beedundantn the sense that their associated sequencing requirements are ensured by
other synchronizations in the system. The goal of resynchronization is to introduce new synchro-
nizations in such a way that the number of additional synchronizations that become redundant
exceeds the number of new synchronizations that are added, and thus the net synchronization cost
is reduced.

Our study is based in the contextself-timedexecution ofterative dataflowprograms.

An iterative dataflow program consists of a dataflow representation of the body of a loop that is to
be iterated infinitely; dataflow programming in this form has been employed extensively, particu-
larly in the context of software for digital signal processing applications. Self-timed execution
refers to a combined compile-time/run-time scheduling strategy in which processors synchronize
with one another only based on inter-processor communication requirements, and thus, synchro-
nization of processors at the end of each loop iteration does not generally occur.

After reviewing our model for the analysis of synchronization overhead, we define the
general form of our resynchronization problem; we show that optimal resynchronization is intrac-
table by establishing a correspondence ts#teoveringproblem; and based on this correspon-
dence, we develop an efficient heuristic for resynchronization. Also, we show that for a broad
class of iterative dataflow graphs, optimal resynchronizations can be computed by means of an

efficient polynomial-time algorithm. We demonstrate the utility of our resynchronization tech-

1

nigues through a practical example of a music synthesis system.

2. Introduction
|
This paper develops a technique calieslynchronizatiorfor reducing the rate at which

synchronization operations must be performed in a shared memory multiprocessor system.
Resynchronization is based on the concept that there can be redundancy in the synchronization
functions of a given multiprocessor implementation [35]. Such redundancy arises whenever the
objective of one synchronization operation is guaranteed as a side effect of other synchronizations
in the system. In the context of noniterative execution, Shaffer showed that the amount of run-
time overhead required for synchronization can be reduced significantly by detecting redundant
synchronizations and implementing only those synchronizations that are found not to be redun-
dant; an efficient, optimal algorithm was also proposed for this purpose [35], and this algorithm
was subsequently extended to handle iterative computations [5].

The objective of resynchronization is to introduce new synchronizations in such a way that
the number of original synchronizations that consequently become redundant is significantly less
than number of new synchronizations. We study this problem in the context of self-timed execu-
tion of iterativesynchronous datafloWf§DF) programs. An iterative dataflow program consists of
a dataflow representation of the body of a loop that is to be iterated infinitely; SDF programming
in this form has proven to be a useful model for representing a significant class of digital signal
processing (DSP) algorithms, and it has been used as the foundation for numerous DSP design
environments, in which DSP applications are represented as hierarchies of block diagrams. Exam-
ples of commercial tools that employ SDF are the Signal Processing Worksystem (SPW) by
Cadence, COSSAP by Synopsys, and Virtuoso Synchro by Eonic Systems. Research tools devel-
oped at universities that use SDF and related models include DESCARTES [33], GRAPE [20],
Ptolemy [10], and the Warp compiler [31]. A wide variety of techniques have been developed to
schedule SDF programs for efficient multiprocessor implementation, such as those described in

[1, 2,11, 15, 16, 24, 28, 31, 36, 38]. The techniques developed in this paper can be used as a post-

processing step to improve the performance of implementations that use any of these scheduling
techniques.

In SDF, a program is represented as a directed graph in which veatitas)(represent
computational tasks, edges specify data dependences, and the number of datakehsepro-
duced and consumed by each actor is fixed. This form of “synchrony” should not be confused
with the use of “synchronous” in synchronous languages [3]. The task represented by an actor can
be of arbitrary complexity. In DSP design environments, it typically ranges in complexity from a
basic operation such as addition or subtraction to a signal processing subsystem such as an FFT
unit or an adaptive filter.

Each SDF edge has associated a non-negative irtelggrThese delays represent initial
tokens, and specify dependencies between iterations of actors in iterative execution. For example,
if tokens produced by thle th invocation of ackor are consumed ik the) th invocation of
actorB , then the edgeA, B) contains two delays. We assume that the input SDF boapb-is
geneouswhich means that the numbers of tokens produced and consumed are identically unity.
However, since efficient techniques have been developed to convert general SDF graphs into
homogeneous graphs [22], our techniques can easily be adapted to general SDF graphs. We refer
to a homogeneous SDF graph atataflow graph (DFG).

Our implementation model involvessalf-timedscheduling strategy [23]. Each processor
executes the tasks assigned to it in a fixed order that is specified at compile time. Before firing an
actor, a processor waits for the data needed by that actor to become available. Thus, processors are
required to perform run-time synchronization when they communicate data. This provides robust-
ness when the execution times of tasks are not known precisely or when then they may exhibit
occasional deviations from their estimates.

Interprocessor communicatiolPC) between processors is assumed to take place through
shared memory, which could be global memory between all processors, or it could be distributed
between pairs of processors (for example, hardware first-in-first-out (FIFO) queues or dual ported

memory). Sender-receiver synchronization is performed by setting and testing flags in shared

memory; Section 4.2 provides details on the assumed synchronization protocols. Interfaces
between hardware and software are typically implemented using memory-mapped registers in the
address space of the programmable processor, which can be viewed as a kind of shared memory,
and synchronization is achieved using flags that can be tested and set by the programmable com-
ponent, and the same can be done by an interface controller on the hardware side [17]. Thus, in
our context, effective resynchronization results in a significantly reduced rate of accesses to
shared memory for the purpose of synchronization.

The resynchronization techniques developed in this paper are designed to improve the
throughput of multiprocessor implementations. Frequently in real-time signal processing systems,
latency is also an important issue, and although resynchronization improves the throughput, it
generally degrades (increases) the latency. In this paper, we address the problem of resynchroniza-
tion under the assumption that an arbitrary increase in latency is acceptable. Such a scenario
arises, for example, in a wide variety of simulation applications. The companion paper [8] exam-
ines the relationship between resynchronization and latency, and addresses the problem of optimal
resynchronization when only a limited increase in latency is tolerable. Partial summaries of the

material in this paper and the companion paper have been presented in [9] and [4], respectively.

3. Background
|
We represent a DFG by an ordered [§&ir E) , Whére is the set of vertices (actors) and

E is the set of edges. We refer to the source and sink actors of a DF& edgec(epy and
snk(e), we denote the delay @ loiglay(e) , and we frequently represent by the ordered pair
(src(e), snk(€)). We say thae is aoutput edgeof src(e), and thate is amput edgeof
snk(e) . Edgee igdelaylessf delay(e) = 0, and it is aself loopif src(e) = snk(e).

Givenx, yOV , we say that is@redecessoiof y if there existee [0 E such that
src(e) = xandsnk(e) = y; we say that issuccessoofy if yis apredecessorof .A
pathin (V, E) is a finite, nonempty sequente, e,, ..., e,) ,where each is a memker of |,

andsnk(e;) = src(g) ,snk(e,) = src(g) , ...,snk(e,_;) = src(g) . We say that the path

p = (e,e, ...,) containseache, and each contiguous subsequen¢e,pe,, ...,e,) p ; Iis
directed from src(e;) to snk(e,); and each member of

{ src(ey), src(e,), ..., src(e,), snk(e,)}
istraversed by p. A path that is directed from some vertex to itself is callegte, and asimple
cycleis a cycle of which no proper subsequence is a cycle.

If (P, P2, ..., Py) is a finite sequence of paths such that= (e 1, € 5 ... € 1) , for
1sis<k,andsnk(e) = src(§,q4) ,forl<is<(k-1) ,thenwe define thencatenationof
(P1, P2 s Py) » denotedl(py, P, ..., P)L, by

[P P o P)CE (€ 1 €1 10 €0 11 i €0 ooy € 10 - €) -
Clearly, L{(py, Py, ---» PO is a path fronsrc(e; ;) tenk(e, nk)
If p = (e,e, ...,e,) is apathin a DFG, then we define thath delay of p, denoted

Delay(p), by

n

Delay(p) = z delay(e) . Q)

i=1

Since the delays on all DFG edges are restricted to be non-negative, it is easily seen that between
any two vertice, y[OV , either there is no path directed fromy to , or there exists a (not nec-
essarily uniqueininimum-delay path betweenx ang . Given a DFG , and vertigey in
G, we definepg(x, y) to be equalte if there is no path foom y to , and equal to the path
delay of a minimum-delay path fromm yo if there exist one or more pathsxfrony tds .If is
understood, then we may drop the subscript and simply write “ " in plaggof “ ”

By asubgraph of (V, E), we mean the directed graph formed by ¥hyl V together
with the set of edgefe O E|src(e), snk(e) O V'} . We denote the subgraph associated with the
vertex-subseV' bygubgrapi{(V') . We say th@t, E) stsongly connectedif for each pair of
distinct vertices, y , there is a path directed from yto and there is a path directed from to

We say that a subskt 1V is strongly connectesiifigraph{V') is strongly connected. A

strongly connected component (SCO)f (V, E) is a strongly connected sub&étl]1V such

that no strongly connected subseMof properly contdins V. If is an SCC, then when there is
no ambiguity, we may also say thaibgraph{V') isan SCC,If @pd are distinct SCCs in
(V, E), we say thaC; ispredecessor SC@f C, if there is an edge directed from some vertex

in C, to some vertex ilC, C; issuccessor SCOfC, if C, is apredecessor SCCGf .An
SCC is asource SCCif it has no predecessor SCC; an SCCss SCCif it has no successor

SCC; and an SCC is amernal SCC if it is neither a source SCC nor a sink SCC. An edge is a
feedforward edge if it is not contained in an SCC, or equivalently, if it is not contained in a cycle;
an edge that is contained in at least one cycle is cafesstihackedge.

We denote the number of elements in a finiteSset |Soy

4. Synchronization model
|
In this section, we review the model that we use for analyzing synchronization in self-

timed multiprocessor systems. The model was originally developed in [37] to study the execution
and interprocessor communication patterns of actors under self-timed evolution, and in [6], the
model was augmented for the analysis of synchronization overhead.

A DFG representation of an application is callecdhpplication DFG. For each task in
a given application DF& , we assume that an estitfsje (a positive integer) of the execution
time is available. Given a multiprocessor schedulédor , we derive a data structure called the
IPC graph, denotedGj,. , by instantiating a vertex for each task, connecting an edge from each
task to the task that succeeds it on the same processor, and adding an edge that has unit delay from
the last task on each processor to the first task on the same processor. Also, for gaglyedge in
G that connects tasks that execute on different processdf¥Cagtiges instantiated irGy.
from x toy . Figure 1(c) shows the IPC graph that corresponds to the application DFG of Figure

1(a) and the processor assignment / actor ordering of Figure 1(b).

Each edge(vj, Vi) G represents gyachronization constraint

start(v, k) > end(v, k—delay((vj,vi))), (2)

wherestart(v, K andend v B respectively represent the time at which invocktion ofactor

begins execution and completes execution.

4.1 The synchronization graph

Initially, an IPC edge irG;,; represents two functions: reading and writing of tokens into
the corresponding buffer, and synchronization between the sender and the receiver. To differenti-
ate these functions, we define another graph callesyti@hronization graph, in which edges
between tasks assigned to different processors, calteghronization edgesrepresensynchro-
nization constraints only

Initially, the synchronization graph is identical®,. . However, resynchronization mod-
ifies the synchronization graph by adding and deleting synchronization edges. After resynchroni-
zation, the IPC edges @, represent buffer activity, and are implemented as buffers in shared
memory, whereas the synchronization edges represent synchronization constraints, and are imple-
mented by updating and testing flags in shared memory. If there is an IPC edge as well as a syn-
chronization edge between the same pair of actors, then the synchronization protocol is executed
before the buffer corresponding to the IPC edge is accessed to ensure sender-receiver synchroni-
zation. On the other hand, if there is an IPC edge between two actors in the IPC graph, but there is
no synchronization edge between the two, then no synchronization needs to be done before
accessing the shared buffer. If there is a synchronization edge between two actors but no IPC
edge, then no shared buffer is allocated between the two actors; only the corresponding synchro-

nization protocol is invoked.

4.2 Synchronization protocols

Given a synchronization gragV, E) , and a synchronizationedpg e ,if is afeed-
forward edge then we apply a synchronization protocol ctkedforward synchronization
(FFS), which guarantees thahk(e) never attempts to read data from an empty buffer (to prevent
underflow), andsrc(e) never attempts to write data into the buffer unless the number of tokens

already in the buffer is less than some pre-specified limit, which is the amount of memory allo-

7

cated to that buffer (to prevent overflow). This involves maintaining a count of the number of
tokens currently in the buffer in a shared memory location. This count must be examined and
updated by each invocation sfc(e) asdk(e)

If eis a feedback edge, then we use a more efficient protocol, éadldldack synchroni-
zation (FBS) that only explicitly ensures that underflow does not occur. Such a simplified proto-
col is possible because each feedback edge has a buffer requirement that is bounded by a constant,
called theself-timed buffer bound of the edge, which can be computed efficiently from the syn-
chronization graph topology [5]. In this protocol, we allocate a shared memory buffer of size
equal to the self-timed buffer bound®f , and rather than maintaining the token count in shared
memory, we maintain a copy of theite pointerinto the buffer (of the source actor). After each
invocation ofsrc(e) , the write pointer is updated locally (on the processor that exsa(es),
and the new value is written to shared memory. It is easily verified that to prevent underflow, it
suffices to block each invocation of the sink actor untirélael pointerimaintained locally on the
processor that executesk(e)) is found to be not equal to the current value of the write pointer.
For a more detailed discussion of the FFS and FBS protocols, the reader is referred to [6].

An important parameter in an implementation of FFS or FBS isable-off time T,,. If a
receiving processor finds that the corresponding IPC buffer is full, then the processor releases the
shared memory bus, and waltg time units before requesting the bus again to re-check the
shared memory synchronization variable. Similarly, a sending processoifyaits time units
between successive accesses of the same synchronization variable. The back-off time can be
selected experimentally by simulating the execution of the given synchronization graph (with the
available execution time estimates) over a wide range of candidate back-off times, and selecting

the back-off time that yields the highest simulated throughput.

4.3 Estimated throughput

If the execution time of each acter is a fixed constiafw) for all invocations of , and

the time required for IPC is ignored (assumed to be zero), then as a consequence of Reiter’s anal-

ysis in [32], the throughput (number of DFG iterations per unit time) of a synchronization graph

G is given by1/ (A ,,{G)) , where

0) tv) o
max Oyfrc

_ a
AmaxG) = cycleC in G%W}/(C) E ?
a

O

The quotient in (3) is called tloycle meanof the cycleC , and the entire quantity on the
RHS of (3) is called themmaximum cycle meanof G. A cycle inG whose cycle mean is equal to
the maximum cycle mean & is calledréical cycle of G. Since in our problem context, we
only have execution time estimates available instead of exact values, we teface with the
corresponding estimatév) in (3) to obtain an estimate of the maximum cycle mean. The recip-
rocal of this estimate of the maximum cycle mean is calledgtimated throughput The objec-
tive of resynchronization is to increase #utual throughpuby reducing the rate at which
synchronization operations must be performed, while making sure that the estimated throughput

is not degraded.

4.4 Preservation of synchronization graphs

Any transformation that we perform on the synchronization graph must respect the syn-
chronization constraints implied iy, . If we ensure this, then we only need to implement the
synchronization edges of the optimized synchronization grag, ¥ (V, E;) and
G, = (V, E,) are synchronization graphs with the same vertex-set and the same set of intrapro-
cessor edges (edges that are not synchronization edges), we $ay finaservesG, if for all
e E, suchthae E, ,we haval(src(e), snk(€)) < delay(e)

The following theorem, which is developed in [6], underlies the validity of our synchroni-

zation optimizations.

Theorem 1: The synchronization constraints (as specified by (2§3of imply the constraints

of G, if G, preservess, .

Intuitively, Theorem 1 is true becausedf preser@gs , then for every synchronization
edgee inG, , thereis apath@®, that enforces the synchronization constraint specdied by

A synchronization edge redundant in a synchronization grap@ if its removal yields a
graph that preserves . For example, in Figure 1(c), the synchronizatio(&dge is redun-
dant due to the patf(C, E), (E, D), (D, F)) .In[5], itis shown that if all redundant edges in a
synchronization graph are removed, then the resulting graph preserves the original synchroniza-
tion graph.
5. Related work

|
Shaffer has developed an algorithm that removes redundant synchronizations in the self-

timed execution of a non-iterative DFG [35]. This technique was subsequently extended to handle
iterative execution and DFG edges that have delay [5]. These approaches differ from the tech-
niques of this paper in that they only consider the redundancy induceddmgihal synchroni-
zations; they do not consider the addition of new synchronizations.

Filo, Ku and De Micheli have studied synchronization rearrangement in the context of
minimizing the controller area for hardware synthesis of synchronization digital circuitry [13, 14],
and significant differences in the underlying analytical models prevent these techniques from
applying to our context. In the graphical hardware model of [14], callecbtisraint graph
model, each vertex corresponds to a separate hardware device and edges have arbitrary weights
that specify sequencing constraints. When the source vertex has bounded execution time, a posi-

tive weightw(e) orward constraint imposes the constraint

(CY o (b)

Processor| Actor orderimg
Proc. 1 B,D, F

9 9 Proc. 2 A CE
e &

Figure 1. Part (c) shows the IPC graph that corresponds to the DFG of part (a) and the processor assign-
ment / actor ordering of part (b). A “D” on top of an edge represents a unit delay.

10

start(snk(€)) = w(e) + start(src(e)),
while a negative weighbackward constraintimplies

start(snk(€)) < w(e) + start(src(e)).
If the source vertex has unbounded execution time, the forward and backward constraints are rela-
tive to thecompletiortime of the source vertex. In contrast, in our synchronization graph model,
multiple actors can reside on the same processing element (implying zero synchronization cost
between them), and the timing constraints always correspond to the caseww#)ere is positive
and equal to the execution time at(e)

The implementation models, and associated implementation cost functions are also signif-
icantly different. A constraint graph is implemented using a scheduling techniquerektec
schedulind19], which can roughly be viewed as intermediate between self-timed and fully-static
scheduling. In relative scheduling, the constraint graph vertices that have unbounded execution
time, calledanchors are used as reference points against which all other vertices are scheduled:
for each vertew , an offsdt is specified for each anahor that affects the activation of , and
v is scheduled to occur onde clock cycles have elapsed from the compledion of , for each

In the implementation of a relative schedule, each anchor has attached control circuitry
that generates offset signals, and each vertex has a synchronization circuit that assevetean
signal when all relevant offset signals are present. The resynchronization optimization is driven by
a cost function that estimates the total area of the synchronization circuitry, where the offset cir-
cuitry area estimate for an anchor is a function of the maximum offset, and the synchronization
circuitry estimate for a vertex is a function of the number of offset signals that must be monitored.

As a result of the significant differences in both the scheduling models and the implemen-
tation models, the techniques developed for resynchronizing constraint graphs do not extend in
any straightforward manner to the resynchronization of synchronization graphs for self-timed
multiprocessor implementation, and the solutions that we have developed for synchronization
graphs are significantly different in structure from those reported in [14]. For example, the funda-

mental relationships that we establish between set covering and our use of resynchronization have

11

not emerged in the context of constraint graphs.

6. Resynchronization

We refer to the process of adding one or more new synchronization edges and removing
the redundant edges that resultesyynchronizatiorfdefined more precisely below). Figure 2(a)
illustrates how this concept can be used to reduce the total number of synchronizations in a multi-
processor implementation. Here, the dashed edges represent synchronization edges. Observe that
if we insert the new synchronization eddgC, H) , then two of the original synchronization
edges (B, G) andE,J) — become redundant. Since redundant synchronization edges can be
removed from the synchronization graph to yield an equivalent synchronization graph, we see that
the net effect of adding the synchronization edgC, H) is to reduce the number of synchroni-
zation edges that need to be implemented by . In Figure 2(b), we show the synchronization
graph that results from inserting tresynchronization edge,(C, H) into Figure 2(a), and then
removing the redundant synchronization edges that result.

Definition 1 gives a formal definition of resynchronization that we will use throughout the
remainder of this paper. This considers resynchronization only “across” feedforward edges.

Resynchronization that includes inserting edges into SCCs, is also possible; however, in general,

@) (b)

Figure 2. An example of resynchronization.

12

such resynchronization may increase the estimated throughput (see Theorem 2 at the end of Sec-
tion 7). Thus, for our objectives, it must be verified that each new synchronization edge intro-
duced in an SCC does not decrease the estimated throughput. To avoid this complication, which
requires a check of significant complexi®((V||Elog,(|V])) ., whéve E) is the modified
synchronization graph — this is using the Bellman Ford algorithm described irid2&fch

candidate resynchronization edge, we focus only on “feedforward” resynchronization in this

paper. Future research will address combining the insights developed here for feedforward resyn-
chronization with efficient techniques to estimate the impact that a fggdbackesynchroniza-

tion edge has on the estimated throughput.

Definition 1: Suppose thaG = (V, E) is a synchronization graph, &st{e,, e,, ..., €.} is
the set of all feedforward edges@ résynchronizationof G is a finite set

R={¢g', &)/, ...,e,} of edges that are not necessarily containdél in , but whose source and
sink vertices are iV , such thatey), e,’, ..., e, are feedforward edges in the DFG
GU=(V, ((E- F) +R)); and b)GLl preserve& — that fs,(src(e;), snk(g)) < delay(e;)
foralli0{1, 2 ...,n} . Each member dR thatis notih is calleagkgynchronization edge

of the resynchronizatioR GL s called tresynchronized graphassociated witlR , and this

graph is denoted bW (R, G)

If we let G denote the graph in Figure 2, then the set of feedforward edges is
F ={(B,G),(E J),(EC),(H N}; R={dy(C, H), (E C),(H, 1)} is aresynchronization
of G; Figure 2(b) shows the DFGU = (V, ((E-F) +R)) ; and from Figure 2(b), it is easily
verified thatF ,R , andGU satisfy conditions (a) and (b) of Definition 1.

7. Properties of resynchronization
|
In this section, we introduce a number of useful properties of resynchronization that we

will apply throughout the developments of this paper.

Lemma l: Supposethat an@' are synchronization graphs suctsthat preServes , and

13

p isapathinG fromactax toactygr .Thenthereisapath G'in komy to such that
Delay(p') < Delay(p), andtr(p) O tr(p') , wherdr(¢) denotes the set of actors traversed by
the pathd .

Thus, if a synchronization gragh’ preserves another synchronization@raphp and is
a path inG from actox to actgr , then there is at least onepathG’ in such that 1) the path
p' is directed fromx tg ; 2) the cumulative delay@nh does not exceed the cumulative delay
on p; and 3) every actor that is traversedoby is also traversptl by (altpbugh may traverse
one or more actors that are not traverseg by).

For example in Figure 2(a), ifwe lgt= B y,= | ,apd= ((B, G), (G, H),(H, 1))
then the patlp’ = ((B, A), (A, C), (C, H), (H, G), (G, H), (H, 1)) in Figure 2(b) confirms
Lemma 1 for this example. Hete(p) = {B, G, H, I} atdp’) = {A,B,C, G H [}

Proof of Lemma 1Let p = (g, e, ..., €,) . By definition of thepreserveselation, eacle; that

is not a synchronization edge@ is containe®Gin . For each thatis a synchronization edge
in G, there mustbe apaty @& frosc(g) sokig) such thatay(p;) < delay(g)

Lete ,e ,....g ,i;<i,<..<iy, denote the set@& s that are synchronization edg@sin ,

and define the path to be the concatenation
Hep ey 1) P (8 41 € 1) Po o (& 410§ 1), Py (8 490 €))L
Clearly, p isapath i’ from tg ,and sinBelay(p,) < delay(e) holds wheneyer is a
synchronization edge, it follows th&elay(p) < Delay(p . Furthermore, from the construction
of p, it is apparent that every actor that is traversegd by is also travergedJdiD. .
The following lemma states that if a resynchronization contains a resynchronization edge
e such that there is a delay-free path in the original synchronization graph from the sa@urce of to

the sink ofe , there must be redundant in the resychronized graph.

Lemma 2: Suppose thaG is a synchronization graRh; is a resynchronizat®n of ; and
(x, y) is aresynchronization edge such tba(x, y) = 0 . Thery) is redund&H(tRn G)

Thus, a minimal resynchronization (fewest number of elements) has the property that

14

pg(X',y") >0 for each resynchronization ed(¢, y')

Proof: Let p denote a minimum-delay path from yo Gn . Siigey) is a resynchroniza-
tion edge(x, y) isnotcontained@® ,andthps, traverses atleastthree actors. From Lemma 1,
it follows that there is a path’ #W(R, G) fromm 1t such tialay(p’) = 0 ,
and p’ traverses at least three actors. TBeday(p') < delay((x) pasd X, y) , and we
conclude thafx, y) is redundant¥(R, G) QED.

As a consequence of Lemma 1, the estimated throughput of a given synchronization graph

is always less than or equal to that of every synchronization graph that it preserves.

Theorem 2: If G is a synchronization graph, af®l is a synchronization graph that preserves

G, thenA ,,(G) 2 A,,,(G) .

Proof: Suppose that is a critical cycle@ .Lemma 1 guarantees that there is &cycl&’ in
such that apPelay(C') < Delay(C) , and b) the set of actors that are traverséd by is a subset of
the set of actors traversed 8y . Now clearly, b) implies that

t(v) = > t(v), (4)

v is traversed by’ v is traversed byC

and this observation together with a) implies that the cycle me@h of is greater than or equal to
the cycle mean o€ . Sindg is a critical cycledn , it follows that (G') 2 A, (G) QED.

Thus, in any saving in synchronization cost obtained by rearranging synchronization
edges may come at the expense of a decrease in estimated throughput. As implied by Definition 1,
we avoid this complication by restricting our attention to feedforward synchronization edges.
Clearly, resynchronization that rearranges only feedforward synchronization edges cannot
decrease the estimated throughput since no new cycles are introduced and no existing cycles are
altered. Thus, with the form of resynchronization that we address in this paper, any decrease in
synchronization cost that we obtain is not diminished by a degradation of the estimated through-

put.

15

8. Relationship to set covering
|
We refer to the problem of finding a resynchronization with the fewest number of elements

as theresynchronization problem In [6], we formally show that the resynchronization problem

is NP-hard; in this section, we explain the intuition behind this result. To establish the NP-hard-
ness of the resynchronization problem, we examine a special case that occurs when there are
exactly two SCCs, which we call tipairwise resynchronization problem and we derive a
polynomial-time reduction from the classiet covering problerfi2], a well-known NP-hard

problem, to the pairwise resynchronization problem. In the set covering problem, one is given a
finite setX and a familyr of subsetsXf , and asked to find a minimal (fewest number of mem-
bers) subfamilyT ;O T such th?[EI|T t = X .Asubfamily®f is sai¢everX if each mem-

ber of X is contained in some member of the subfamily. Thus, the set covering problem is the

problem of finding a minimal cover.

Definition 2: Given a synchronization gragh |, let;, X,) be a synchronization ed@e in
and let(y,, y,) be an ordered pair of actorsGn . We say(thaty,) subsumes(x,, X,) in G
if p(Xy, Y1) + (Y2 Xp) < delay((Xy, X,)).

Thus, every synchronization edge subsumes itself, and intuitivéky, ik,) is a synchro-
nization edge, they,, y,) subsumes, X,) if and only if a zero-delay synchronization edge
directed fromy; toy, make§x;, x,) redundant.

The following fact is easily verified from Definitions 1 and 2.

Fact 1. Suppose tha is a synchronization graph that contains exactly two BCCs, is the set
of feedforward edges i@ , aril is a resynchronizatidd of . Then foredadh , there exists

e OF' such thai(src(e'), snk(€)) subsumes @&

An intuitive correspondence between the pairwise resynchronization problem and the set
covering problem can be derived from Fact 1. Supposéxhat is a synchronization graph with

exactly two SCCL,; an@, such that each feedforward edge is directed from a me@ber of

16

to a member o€, . We start by viewing the Bet of feedforward eddgés in as the finite set that
we wish to cover, and with each memper {6t y)|(xO Cy, yd C,)} , We associate the subset
of F defined byx(p) ={eU F|(psubsumes)} . Thusx(p) is the set of feedforward edges of
G whose corresponding synchronizations can be eliminated if we implement a zero-delay syn-
chronization edge directed from the first vertex of the orderedopair to the second vertex of
Clearly then{e,’, e, ..., &,'} isaresynchronization if and only if each F is contained in at
least onex((src(e;’), snk(g'))) — thatis, if and only{ifx((src(g;"), snk(q’)))|1 <i<n}
coversF . Thus, solving the pairwise resynchronization probler@for is equivalent to finding a
minimal cover forF given the family of subsetg(x, y)|(xT C;, yO C,)}

Figure 3 helps to illustrate this intuition. Suppose that we are given the set
X = { Xy, X9, X3, X4} , @nd the family of subsefs = {t;,t,,t;} ,whdre= {x;, X3} ,
t, = {x3, X,}, andt; = {x,, X4} . To construct an instance of the pairwise resynchronization
problem, we first create two vertices and an edge directed between thesefeeriaelsmember
of X; we label each of the edges created in this step with the corresponding meXber of . Then
foreacht O T , we create two verticesrc(t) arghi(t) . Next, for each relatiort J- (there
are six such relations in this example), we create two delayless edges — one directed from the
source of the edge correspondingio vSmc(tj) , and another directed/ﬁrdmj) to the sink
of the edge corresponding xp . This last step has the effect of making each pair
(vsrc(t;), vsnk t)) subsume exactly those edges that correspond to memblders of ; in other
words, after this constructioi((vsrc(t;), vsnk(t))) = t; , for each . Finally, for each edge cre-
ated in the previous step, we create a corresponding feedback edge oriented in the opposite direc-
tion, and having a unit delay.

Figure 3(a) shows the synchronization graph that results from this construction process.
Here, it is assumed that each vertex corresponds to a separate processor; the associated unit delay,
self loop edges are not shown to avoid excessive clutter. Observe that the graph contains two
SCCs —({ src(x;)} O {vsrc(t;)}) and{snk(x)} O{vsnkt;)}) — and that the set of feedfor-

ward edges is the set of edges that correspond to membérs of . Now, recall that a major corre-

17

spondence between the given instance of set covering and the instance of pairwise
resynchronization defined by Figure 3(a) is thetvsrc(t;), vsnk(t))) = t; , foreach . Thus, if
we can find a minimal resynchronization of Figure 3(a) such that each edge in this resynchroniza-
tion is directed from somesrc(t,) to the correspondusgkt,) , then the assogjated 's form

a minimum cover oX . For example, it is easy, albeit tedious, to verify that the resynchronization
illustrated in Figure 3(b)} dy(vsrc(t,), vsnk t;)), do(vsrc(ts), vsnK t;))} , is a minimal resyn-
chronization of Figure 3(a), and from this, we can conclude{that,} is a minimal cover for

X. From inspection of the given seXs ahd , it is easily verified that this conclusion is correct.

This example illustrates how an instance of pairwise resynchronization can be constructed

vsrc(t) vsrc(t)

vsnk(t) vsnk(t)
M) M)

(@)

> -

vsrc(b)

vsrc(t)

vsnk(t) vsnk(t) vsnk(t)

(b)

Figure 3. (@) An instance of the pairwise resynchronization problem that is derived from an
instance of the set covering problem; (b) the DFG that results from a solution to this instance of pair-
wise resynchronization.

18

(in polynomial time) from an instance of set covering, and how a solution to this instance of pair-
wise resynchronization can easily be converted into a solution of the set covering instance. Our
formal proof of the NP-hardness of pairwise resynchronization, presented in [6], is a generaliza-

tion of the example in Figure 3.

9. Heuristic solutions
|

9.1 Applying set covering techniques to pairs of SCCs

A heuristic framework for the pairwise resynchronization problem emerges naturally from
the relationship that we have established between set covering and pairwise resynchronization in
Section 8. Given an arbitrary algorittBOVERthat solves the set covering problem, and given an
instance of pairwise resynchronization that consists of two SG@sdG, and a se6 of feed-
forward synchronization edges directed from members; &b @embers of & this heuristic
framework first computes the subset

X((u, v))={ e §(pg(src(e), u) = 0) and (ps(v, snk(e)) = 0)}

for each ordered pair of actofs, v) that is contained in the set

T={(u,V)|(uisinC;andV'isinC,)},
and then applies the algorith@OVERto the instance of set covering defined by theSset
together with the family of subsefg((u’, v'))|((u’, v') O T)} . If = denotes the solution returned
by COVER then a resynchronization for the given instance of pairwise resynchronization can be
derived by{dy(u, V)|x((u,v)) 0=} . This resynchronization is the solution returned by the heuris-
tic framework.

From the correspondence between set covering and pairwise resynchronization that is out-
lined in Section 8, it follows that the quality of a resynchronization obtained by our heuristic
framework is determined entirely by the quality of the solution computed by the set covering
algorithm that is employed; that is, if the solution compute@®YERis X% worse X% more
subfamilies) than an optimal set covering solution, then the resulting resynchronization will be
X% worse K% more synchronization edges) than an optimal resynchronization of the given

19

instance of pairwise resynchronization.

The application of our heuristic framework for pairwise resynchronization to each pair of
SCCs, in some arbitrary order, in a general synchronization graph yields a heuristic framework for
the general resynchronization problem (a pseudocode specification of this approach can be found
in [7]). However, a major limitation of this extension to general synchronization graphs arises
from its inability to consider resynchronization opportunities that involve paths that traverse more
than two SCCs, and paths that contain more than one feedforward synchronization edge.

Thus, in general, the quality of the solutions obtained by this approach will be worse than
the quality of the solutions that are derived by the particular set covering heuristic that is
employed, and roughly, this discrepancy can be expected to increase as the number of SCCs
increases relative to the number of synchronization edges in the original synchronization graph.

For example, Figure 4 shows the synchronization graph that results from a six-processor
schedule of a synthesizer for plucked-string musical instruments in 11 voices based on the Kar-
plus-Strong technique. Herexc represents the excitation inputyeach represents the computa-
tion for thei th voice, and the actors marked with “+” signs specify adders. Execution time
estimates for the actors are shown in the table at the bottom of the figure. In this example, the only
pair of distinct SCCs that have more than one synchronization edge between them is the pair con-
sisting of the SCC containingXc v, } and the SCC containing, v; , five addition actors, and
the actor labeledut Thus, the best result that can be derived from the heuristic extension for gen-
eral synchronization graphs described above is a resynchronization that optimally rearranges the
synchronization edges between these two SCCs in isolation, and leaves all other synchronization
edges unchanged. Such a resynchronization is illustrated in Figure 5. This synchronization graph
has a total of nine synchronization edges, which is only one less than the number of synchroniza-
tion edges in the original graph. In contrast, we will show in the following subsection that with a
more flexible approach to resynchronization, the total synchronization cost of this example can be

reduced to only five synchronization edges.

20

execution time
32
51
16
04

Figure 4. The synchronization graph that results from a six processor schedule of a music
synthesizer based on the Karplus-Strong technique.

Figure 5. The synchronization graph that results from applying the heuristic framework
based on pairwise resynchronization to the example of Figure 4.

21

9.2 A more flexible approach

In this subsection, we present a more global approach to resynchronization, called Algo-
rithm Global-resynchronize, which overcomes the major limitation of the pairwise approach dis-
cussed in Section 9.1. Algorithm Global-resynchronize is based on the simple greedy
approximation algorithm for set covering that repeatedly selects a subset that covers the largest
number ofremaining elemenisvhere a remaining element is an element that is not contained in
any of the subsets that have already been selected. In [18, 25] it is shown that this set covering
technique is guaranteed to compute a solution whose cardinality is no greaién ths) + 1)
times that of the optimal solution, whexXe is the set that is to be covered.

To adapt this set covering technique to resynchronization, we construct an instance of set
covering by choosing the s¥t , the set of elements to be covered, to be the set of feedforward

synchronization edges, and choosing the family of subsets to be

T={x(vy, V2)|((V1’ v, OV)and (pg(Vy, Vq) = »))}, (5)
whereG = (V, E) is the input synchronization graph. The const@iv,, v,) = o in (5)
ensures that inserting the resynchronization €tger,) does not introduce a cycle, and thus that

it does not introduce deadlock or reduce the estimated throughput.

Algorithm Global-resynchronizeletermines the family of subsets specified by (5),
chooses a member of this family that has maximum cardinality, inserts the corresponding delay-
less resynchronization edge, removes all synchronization edges that it subsumes, and updates the
valuespg(x, y) for the new synchronization graph that results. This entire process is then
repeated on the new synchronization graph, and it continues until it arrives at a synchronization
graph for which the computation defined by (5) produces the empty set — that is, the algorithm
terminates when no more resynchronization edges can be added. Figure 6 gives a pseudocode
specification of this algorithm (with some straightforward modifications to improve the running
time).

Clearly, each time a delayless resynchronization edge is added to a synchronization graph,

22

the number of ordered vertex pafrs y) that satigfyx, y) = 0 is increased by at least one.
Thus, the number of iterations of twaile loop in Figure 6 is bounded above Mz . The com-
plexity of one iteration of thenhile loop is dominated by the computation in the pair of nested
loops. The computation of one iteration of the infnefoop is dominated by the time required to

computex(x, y) for a specific actor pgx, y) . Assummg(X',y') is available for all

function Global-resynchronize
input: a synchronization grap = (V, E)
output: an alternative synchronization graph that prese@es

computepg(x, y) for all actor pairs, yJV

complete= FALSE
while not (completé
best= NULLM =0
for xOV
for ydVv
if (pg(y, X) =)
X* = x((x,y)
it (Ix*[>M)
M = [x*|
best= (xy
end if
end if

end for
end for

if (best= NULLD
complete= TRUE

else
E = E—x(bes) +{dy(bes)}
G =(V,E
for x, yal v [* updatepg */
Prew(X Y) = min({ pg(X, ¥), pg(X, src(bes)) + pg(snk(bes), Y})
end for
pG = pnew
end if
end while
return G

end function

Figure 6. A heuristic for resynchronization.

23

X', y' OV, the time to computg(x, y) ©(s;) ,whesg isthe number of feedforward syn-
chronization edges in the current synchronization graph. Since the number of feedforward syn-
chronization edges never increases from one iteration efttifeeloop to the next, it follows that

the time-complexity of the overall algorithm@(g \/14) , whare is the number of feedforward
synchronization edges in the input synchronization graph. In practice, however, the number of
resynchronization stepw/ile loop iterations) is usually much lower tth since the con-
straints on the introduction of cycles severely limit the number of resynchronization steps. Thus,

our O(9 \/|4) bound can be viewed as a very conservative estimate.

9.3 Example

Figure 7 shows the optimized synchronization graph that is obtained when AlgGiibhm

Figure 7.The optimized synchronization graph that is obtained when Algorithm
Global-resynchronizes applied to the example of the Figure 4.

bal-resynchronizés applied to the example of the Figure 4. Observe that the total number of syn-
chronization edges has been reduced from 10 to 5. The total number of “resynchronization steps”
(number of while-loop iterations) required by the heuristic to complete this resynchronization is

7.

Table 1 shows the relative throughput improvement delivered by the optimized synchroni-

24

zation graph of Figure 7 over the original synchronization graph as the shared memory access
time varies from 1 to 10 processor clock cycles. The assumed synchronization protocol is FFS,
and the back-off time for each simulation is obtained by the experimental procedure mentioned in
Section 4.2. The second and fourth columns showbkeage iteration periodor the original
synchronization graph and the resynchronized graph, respectively. The average iteration period,
which is the reciprocal of the average throughput, is the average number of time units required to
execute an iteration of the synchronization graph. From the sixth column, we see that the resyn-
chronized graph consistently attains a throughput improvement of 22% to 26%. This improve-
ment includes the effect of reduced overhead form maintaining synchronization variables and
reduced contention for shared memory. The third and fifth columns of Table 1 show the average
number of shared memory accesses per iteration of the synchronization graph. Here we see that
the resynchronized solution consistently obtains at least a 30% improvement over the original

synchronization graph. Since accesses to shared memory typically require significant amounts of

Memory Original graph I Resynchronized grapl—l (I;’ercentage
access time Iter. period ag/lc?arssoer)s//ptl Iter. period ag/lc?ersnsoergl 0 l itgﬁrggzi(;n
1 250 67 195 43 22%

2 292 66 216 43 26%
3 335 64 249 43 26%
4 368 63 273 40 26%
5 408 63 318 43 22%
6 459 63 350 43 24%
7 496 63 385 43 22%
8 540 63 420 43 22%
9 584 63 455 43 22%
10 655 65 496 43 24%

Table 1. Performance comparison between the resynchronized solution and the original
synchronization graph for the example of Figure 4.

25

energy, particularly for a multiprocessor system that is not integrated on a single chip, this reduc-
tion in the average rate of shared memory accesses is especially useful when low power consump-

tion is an important implementation issue.

10. Efficient, optimal resynchronization for a class of synchronization graphs
|
In this section, we show that although optimal resynchronization is intractable for general

synchronization graphs, a broad class of synchronization graphs exists for which optimal resyn-

chronizations can be computed using an efficient polynominal-time algorithm.

10.1 Chainable synchronization graph SCCs

Definition 3: Suppose tha€ is an SCC in a synchronization g@@ph xand is an aCtor in
Thenx is annput hub of C if for each feedforward synchronization edge Gn whose sink
actor is inC , we havec(x, snk(e)) = 0 . Similarly, is autput hub of C if for each feed-
forward synchronization edge (& whose source actor@ in , wegd\sc(e), X) = 0

We say thaC ifinkable if there exist actorg, y i€ suchthat isaninput hub, isan output

hub, andp(x, y) = O . A synchronization graphcisainableif each SCC is linkable.

For example, consider the SCC in Figure 8(a), and assume that the dashed edges represent
the synchronization edges that connect this SCC with other SCCs. This SCC has exactly one input

hub, actorA , and exactly one output hub, a€&tor , and gfeF) = 0 , it follows that the

D @

(©)
Figure 8. An illustration of input and output hubs for synchronization graph SCCs.

26

SCC is linkable. However, if we remove the ed@e F) , then the resulting graph (shown in Fig-
ure 8(b)) is not linkable since it does not have an output hub. A class of linkable SCCs that occur
commonly in practical synchronization graphs are those SCCs that corresponds to only one pro-
cessor, such as the SCC shown in Figure 8(c). In such cases, the first actor executed on the proces-
sor is always an input hub and the last actor executed is always an output hub.

In the remainder of this section, we assume that for each linkable SCC, an ingut hub and
output huby are selected such théx, y) = 0 , and these actors are referred teetected
input hub and theselected output hubof the associated SCC. Which input hub and output hub
are chosen as the “selected” ones makes no difference to our discussion of the techniques in this
section as long they are selected soi{at y) = 0

An important property of linkable synchronization graphs is th@fif @nd are distinct
linkable SCCs, then all synchronization edges directed €gm C,to are subsumed by the single
ordered paifl, I,) ,wherg denotes the selected output hGh of [|,and denotes the selected
input hub ofC, . Furthermore, if there exists a path between two 8GCE,’ of the form
((04,15), (05, 13), ..., (0,,_1,1,,)) , whereo, is the selected output hub®f i,, is the selected
input hub ofC," , and there exist distinct SCCs Z,, ..., Z,_, 0O{C,',C,'} such that for
k=23..(n-1),i, 0, are respectively the selected input hub and the selected output hub of
Z,_1, then all synchronization edges betwégn and are redundant.

From these properties, an optimal resynchronization for a chainable synchronization graph
can be constructed efficiently by computing a topological sort of the SCCs, instantiating a zero
delay synchronization edge from the selected output hub of the th SCC in the topological sort to
the selected input hub of tife+ 1) th SCC,ifor 1, 2, ..., (n—-1) , where is the total number
of SCCs, and then removing all of the redundant synchronization edges that result. For example,
if this algorithm is applied to the chainable synchronization graph of Figure 9(a), then the syn-
chronization graph of Figure 9(b) is obtained, and the number of synchronization edges is reduced
from4 to2.

This chaining technique can be viewed as a form of pipelining, where each SCC in the

27

output synchronization graph corresponds to a pipeline stage. Pipelining has been used exten-
sively to increase throughput via improved parallelism (“temporal parallelism”) in multiprocessor
DSP implementations (see for example, [2, 16, 27]). However, in our application of pipelining,
the load of each processor is unchanged, and the estimated throughput is not affected (since no
new cyclic paths are introduced), and thus, the benefit tovéirall throughput of our chaining
technique arises chiefly from the optimal reduction of synchronization overhead.

The time-complexity of our optimal algorithm for resychronizing chainable synchroniza-

tion graphs ii)(vz) , Where is the number of synchronization graph actors.

10.2 Comparison to the Global-Resynchronize heuristic

It is easily verified that the original synchronization graph for the music synthesis example
of Section 9.2, shown in Figure 4, is chainable. Thus, the chaining technique presented in Section
10.1 is guaranteed to produce an optimal resynchronization for this example, and since no feed-
back synchronization edges are present, the number of synchronization edges in the resynchro-
nized solution is guaranteed to be equal to one less than the number of SCCs in the original
synchronization graph; that is, the optimized synchronization graph cofitaihs= 5 synchro-

nization edges. From Figure 7, we see that this is precisely the number of synchronization edges

® © ® D)

-
7

D // ® b b ® . ®

'
7
7

@:----- ® ©

() (b)

Figure 9. An illustration of an algorithm for optimal resynchronization of chainable synchroniza-
tion graphs. The dashed edges are synchronization edges.

28

in the synchronization graph that results from our implementation of Algorithm Global-resyn-
chronize.

However, Algorithm Global-resynchronize does not always produce optimal results for
chainable synchronization graphs. For example, consider the synchronization graph shown in Fig-
ure 10(a), which corresponds to an eight-processor schedule in which each of the following sub-
sets of actors are assigned to a separate procesgby {+J} {G, K} {C,H} {D} {E, L}, :

{ A, F},and{B} . The dashed edges are synchronization edges, and the remaining edges connect
actors that are assigned to the same processor. The total number of synchronization edges is 14.
Now it is easily verified that actd¢ is both an input hub and an output hub for the SCC

{C, G, H, J K}, and similarly, acto. is both an input and output hub for the SCC

{A, D, E F L}. Thus, we see that the overall synchronization graph is chainable. It is easily ver-
ified that the chaining technique developed in Section 10.1 uniquely yields the optimal resynchro-
nization illustrated in Figure 10(b), which contains only 11 synchronization edges.

In contrast, the quality of the resynchronization obtained for Figure 10(a) by Algorithm
Global-resynchronize depends on the order in which the actors are traversed by each of the two
nestedor loops in Figure 6. For example, if both loops traverse the actors in alphabetical order,
then Global-resynchronize obtains the sub-optimal solution shown in Figure 10(c), which con-
tains 12 synchronization edges.

However, actor traversal orders exist for which Global-resynchronize achieves optimal
resynchronizations of Figure 10(a). One such orderikg 3,C,B,EF G H I, J L A ; if
bothfor loops traverse the actors in this order, then Global-resynchronize yields the same resyn-
chronized graph that is computed uniquely by the chaining technique of Section 10.1 (Figure
10(b)). It is an open question whether or not given an arbitrary chainable synchronization graph,
actor traversal orders always exist with which Global-resynchronize arrives at optimal resynchro-
nizations. Furthermore, even if such traversal orders are always guaranteed to exist, it is doubtful
that they can, in general, be computed efficiently.

In addition to guaranteed optimality, another important advantage of the chaining tech-

29

nique for chainable synchronization graphs is its relatively low time-compl@(tyzl versus
O(sv4) for Global-resynchronize), wheke is the number of synchronization graph actoss, and

is the number of feedforward synchronization edges. The primary disadvantage is, of course, its
restricted applicability. A useful direction for further investigation is the integration of the chain-
ing technique with algorithm Global-resynchronize for general (not necessarily chainable) syn-

chronization graphs.

10.3 A generalization of the chaining technique

The chaining technique developed in Section 10.1 can be generalized to optimally resyn-
chronize a somewhat broader class of synchronization graphs. This class consists of all synchroni-
zation graphs for which each source SCC has an output hub (but not necessarily an input hub),
each sink SCC has an input hub (but not necessarily an output hub), and each internal SCC is link-
able. In this case, the internal SCCs are pipelined as in the previous algorithm, and then for each
source SCC, a synchronization edge is inserted from one of its output hubs to the selected input
hub of the first SCC in the pipeline of internal SCCs, and for each sink SCC, a synchronization
edge is inserted to one of its input hubs from the selected output hub of the last SCC in the pipe-
line of internal SCCs. If there are no internal SCCs, then the sink SCCs are pipelined by selecting
one input hub from each SCC, and joining these input hubs with a chain of synchronization edges.
Then a synchronization edge is inserted from an output hub of each source SCC to an input hub of

the first SCC in the chain of sink SCCs.

11. Conclusions
|
This paper develops a post-optimization called resynchronization for self-timed, embed-

ded multiprocessor implementations. The goal of resynchronization is to introduce new synchro-
nizations in such a way that the number of additional synchronizations that become redundant
exceeds the number of new synchronizations that are added, and thus the net synchronization cost
is reduced.

We show that optimal resynchronization is intractable by deriving a reduction from the

30

classic set covering problem. However, we define a broad class of systems for which optimal
resynchronization can be performed in polynomial time. We also present a heuristic algorithm for
resynchronization of general systems that emerges naturally from the correspondence to set cov-

ering. We illustrate the performance of our implementation of this heuristic on a multiprocessor

(@)

(b)

()

Figure 10. A chainable synchronization graph for which Global-resynchronize fails to produce an opti-
mal solution.

31

schedule for a music synthesis system. The results demonstrate that the heuristic can efficiently
reduce synchronization overhead and improve throughput.

Several useful directions for further work emerge from our study. These include investi-
gating whether efficient techniques can be developed that consider resynchronization opportuni-
ties within strongly connected components, rather than just across feedforward edges. There may
also be considerable room for improvement over our proposed heuristic, which is a straightfor-
ward adaptation of an existing set covering algorithm. In particular, it would be useful to explore
ways to best integrate the proposed heuristic for general synchronization graphs with the optimal
chaining method for a restricted class of graphs, and it may be interesting to search for properties
of practical synchronization graphs that could be exploited in addition to the correspondence with
set covering. The extension of Sakar's concept of counting semaphores [34] to self-timed, itera-
tive execution, and the incorporation of extended counting semaphores within our resynchroniza-

tion framework are also interesting directions for further work.

12. Acknowledgments
|
A portion of this research was undertaken as part of the Ptolemy project, which is sup-

ported by the Advanced Research Projects Agency and the U.S. Air Force (under the RASSP pro-
gram, contract F33615-93-C-1317), the State of California MICRO program, and the following
companies: Bell Northern Research, Cadence, Dolby, Hitachi, Lucky-Goldstar, Mentor Graphics,
Mitsubishi, Motorola, NEC, Philips, and Rockwell.

The authors are grateful to Jeanne-Anne Whitacre of Hitachi America for her great help in

formatting this document.

13. Glossary
|
1S : The number of members in the finite Set

p(x y): Same ap; withthe DFG understood from context.

Pe(X y): If there is no path il from tg , thepy (X, y) = « ; otherwise,

32

delay(e):

Delay(p):
d,(u, v):

A

max*

X(p):

Py Poy -y PO

critical cycle

cycle mean

p(X, y) = Delay(p), wherep is any minimum-delay path from yto
The delay on a DFG edge
The sum of the edge delays over all edges in theppath

An edge whose source and sink verticestare vand |, respectively, and
whose delay is equal 1o

The maximum cycle mean of a DFG.

The set of synchronization edges that are subsumed by the ordered pair of
actorsp .

Theconcatenatiorof the pathgpy, p,, ..., py -

A simple cycle in a DFG whose cycle mean is equal to the maximum cycle
mean of the DFG.

The cycle mean of a cycleé in a DFG is equal raD , WAere s the
sum of the execution times of all vertices traverse@by [and s the sum
of delays of all edges i€

estimated throughput

FBS

feedback edge
feedforward edge

FFS

Given a DFG with execution time estimates for the actors, the estimated
throughput is the reciprocal of the maximum cycle mean.

Feedback synchronization. A synchronization protocol that may be used
for feedback edges in a synchronization graph.

An edge that is contained in at least one cycle.
An edge that is not contained in a cycle.

Feedforward synchronization. A synchronization protocol that may be used
for feedforward edges in a synchronization graph.

maximum cycle mean

Given a DFG, the maximum cycle mean is the largest cycle mean over all
cycles in the DFG.

resynchronization edge

W(R G):

SCC

self loop:

Given a synchronization gragh and a resynchroniz&ion , a resynchro-
nization edge oR is any memberRf thatis not containgsl in

If G is a synchronization graph afl is a resynchronizatio@ of , then
W(R, G)denotes the graph that results from the resynchronizRtion

Strongly connected component.

An edge whose source and sink vertices are identical.

33

subsumes Given a synchronization edd&;, X,) and an ordered pair of actors
(y1! y2) ’ (y1! y2) SUbsume$X11 X2) If
P(Xq, Y1) + PV, Xy) < delay((Xy, X,)) -

t(v): The execution time or estimated execution time of actor

14. References
|

[1] S. Banerjee, D. Picker, D. Fellman, and P. M. Chau, “Improved Scheduling of Signal Flow
Graphs onto Multiprocessor Systems Through an Accurate Network Modeling TechKigge,”
Signal Processing VIIEEE Press, 1994.

[2] S. Banerjee, T. Hamada, P. M. Chau, and R. D. Fellman, “Macro Pipelining Based Scheduling
on High Performance Heterogeneous Multiprocessor Syst#atsE? Transactions on Signal
Processing\ol. 43, No. 6, pp. 1468-1484, June, 1995.

[3] A. Benveniste and G. Berry, “The Synchronous Approach to Reactive and Real-Time Sys-
tems,”Proceedings of the IEEB/OI. 79, No. 9, 1991, pp.1270-1282.

[4] S. S. Bhattacharyya, S. Sriram, and E. A. Lee, “Latency-Constrained Resynchronization For
Multiprocessor DSP Implementatioi?toceedings of the 1996 International Conference on
Application-Specific Systems, Architectures and Procesaaggist, 1996.

[5] S. S. Bhattacharyya, S. Sriram, and E. A. Lee, “Minimizing Synchronization Overhead in
Statically Scheduled Multiprocessor Syster®sgceedings of the 1995 International Conference
on Application Specific Array Processp®&rasbourg, France, July, 1995.

[6] S. S. Bhattacharyya, S. Sriram, and E. A. [@gtimizing Synchronization in Multiprocessor
Implementations of Iterative Dataflow Progrgrivvemorandum No. UCB/ERL M95/3, Electron-
ics Research Laboratory, University of California at Berkeley, January, 1995.

[7] S. S. Bhattacharyya, S. Sriram, and E. A. [Resynchronization for Embedded Multiproces-
sors Memorandum UCB/ERL M95/70, Electronics Research Laboratory, University of Califor-
nia, Berkeley, September, 1995.

[8] S. S. Bhattacharyya, S. Sriram, and E. A. [Resynchronization of Multiprocessor Schedules
— Part 2: Latency-constrained Resynchronizatdemorandum UCB/ERL M96/56, Electronics
Research Laboratory, University of California, Berkeley, October, 1996.

[9] S. S. Bhattacharyya, S. Sriram, and E. A. Lee, “Self-Timed Resynchronization: A Post-Opti-
mization for Static Multiprocessor Scheduld®tdceedings of the International Parallel Process-
ing Symposium, 1996.

[10] J. T. Buck, S. Ha. E. A. Lee, and D. G. Messerschmitt, “Ptolemy: A Framework for Simulat-
ing and Prototyping Heterogeneous Systemnsgrnational Journal of Computer Simulatiovol.
4, April, 1994.

[11] L-F. Chao and E. H-M. Sh&tatic Scheduling for Synthesis of DSP Algorithms on Various
Models technical report, Department of Computer Science, Princeton University, 1993.

34

[12] T. H. Cormen, C. E. Leiserson, and R. L. Rivedtpduction to AlgorithmsMcGraw-Hill,
1990.

[13] D. Filo, D. C. Ku, C. N. Coelho Jr., and G. De Micheli, “Interface Optimization for Concur-
rent Systems Under Timing Constrainlf§EE Transactions on Very Large Scale Integration
\Vol. 1, No. 3, September, 1993.

[14] D. Filo, D. C. Ku, and G. De Micheli, “Optimizing the Control-unit through the Resynchro-
nization of OperationsINTEGRATION, the VLSI Journalol. 13, pp. 231-258, 1992.

[15] R. Govindarajan, G. R. Gao, and P. Desai, “Minimizing Memory Requirements in Rate-Opti-
mal SchedulesProceedings of the International Conference on Application Specific Array Pro-
cessorsSan Francisco, August, 1994.

[16] P. HoangCompiling Real Time Digital Signal Processing Applications onto Multiprocessor
SystemsMemorandum No. UCB/ERL M92/68, Electronics Research Laboratory, University of
California at Berkeley, June, 1992.

[17] J. A. Huisken et. al., “Synthesis of Synchronous Communication Hardware in a Multiproces-
sor Architecture,Journal of VLSI Signal Processingol. 6, pp.289-299, 1993.

[18] D. S. Johnson, “Approximation Algorithms for Combinatorial Probledwjinal of Com-
puter and System Scienc®¥Bl. 9, pp. 256-278, 1974.

[19] D.C. Ku, G. De Micheli, “Relative Scheduling Under Timing Constraints: Algorithms for
High-level Synthesis of Digital CircuitslEEE Transactions on Computer-Aided Design of Inte-
grated Circuits and Systemél.11, No.6, pp. 696-718, June, 1992.

[20] R. Lauwereins, M. Engels, J.A. Peperstraete, E. Steegmans, and J. Van Ginderdeuren,
“GRAPE: A CASE Tool for Digital Signal Parallel ProcessingEE ASSP Magazin&ol. 7,
No. 2, April, 1990.

[21] E. Lawler,Combinatorial Optimization: Networks and Matrojd4olt, Rinehart and Win-
ston, pp. 65-80, 1976.

[22] E. A. Lee and D. G. Messerschmitt, “Static Scheduling of Synchronous Dataflow Programs
for Digital Signal ProcessinglEEE Transactions on Computeiebruary, 1987.

[23] E. A. Lee, and S. Ha, “Scheduling Strategies for Multiprocessor Real-Time GISB¢com
November 1989.

[24] G. Liao, G. R. Gao, E. Altman, and V. K. AgarwalComparative Study of DSP Multipro-
cessor List Scheduling Heuristjdechnical report, School of Computer Science, McGill Univer-
sity, 1993.

[25] L. Lovasz, “On the Ratio of Optimal Integral and Fractional Cov&isgrete Mathematics
Vol. 13, pp. 383-390, 1975.

[26] D. R. O’Hallaron,The Assign Parallel Program Generatddemorandum CMU-CS-91-141,
School of Computer Science, Carnegie Mellon University, May, 1991.

[27] K. K. Parhi, “High-Level Algorithm and Architecture Transformations for DSP Synthesis,”
Journal of VLSI Signal Processinganuary, 1995.

35

[28] K. K. Parhi and D. G. Messerschmitt, “Static Rate-Optimal Scheduling of Iterative Data-
Flow Programs via Optimum UnfoldingEEE Transactions on Computeiol. 40, No. 2, Feb-
ruary, 1991.

[29] J. L. PetersorRetri Net Theory and the Modelling of SysteRrentice-Hall Inc., 1981.

[30] J. Pino, S. Ha, E. A. Lee, and J. T. Buck, “Software Synthesis for DSP Using Ptdieany,”
nal of VLSI Signal Processinyol. 9, No. 1, January, 1995.

[31] H. Printz,Automatic Mapping of Large Signal Processing Systems to a Parallel Machine
Ph.D. thesis, Memorandum CMU-CS-91-101, School of Computer Science, Carnegie Mellon
University, May, 1991.

[32] R. Reiter, Scheduling Parallel Computatialeyrnal of the Association for Computing
Machinery October 1968.

[33] S. Ritz, M. Pankert, and H. Meyr, “High Level Software Synthesis for Signal Processing Sys-
tems,”Proceedings of the International Conference on Application Specific Array Progessors
Berkeley, August, 1992.

[34] V. Sarkar, “Synchronization Using Counting Semaphoisteedings of the International
Symposium on Supercomputiig88.

[35] P. L. Shaffer, “Minimization of Interprocessor Synchronization in Multiprocessors with
Shared and Private Memorytiternational Conference on Parallel Processinig89.

[36] G. C. Sih and E. A. Lee, “Scheduling to Account for Interprocessor Communication Within
Interconnection-Constrained Processor Netwoilkgernational Conference on Parallel Process-
ing, 1990.

[37] S. Sriram and E. A. Lee, “Statically Scheduling Communication Resources in Multiproces-
sor DSP architectures?roceedings of the Asilomar Conference on Signals, Systems, and Com-
puters November, 1994.

[38] V. Zivojnovic, H. Koerner, and H. Meyr, “Multiprocessor Scheduling with A-priori Node
Assignment,’VLSI Signal Processing VIIEEE Press, 1994.

36

