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Abstract

Formal semantics for the dataflow model of computation have centered around the version of data-

flow known as Kahn process networks. These process networks, however, fail to capture an essential

principle of dataflow, proposed by Dennis and used in almost all practical implementations of data-

flow, that of an actor firing. An actor firing is an indivisible quantum of computation. A set of firing

rules give preconditions for a firing, and the firing consumes tokens from the input streams and pro-

duces tokens on the output streams. These notions are missing from Kahn’s model, and therefore have

not been thoroughly studied in a formal setting. This paper bridges the gap, showing that sequences of

firings define a continuous Kahn process as the least fixed point of an appropriately constructed func-

tional. The firing rules are sets of prefixes with certain technical conditions to ensure determinacy.

These conditions result in firing rules that are more general than the blocking reads of the Kahn-Mac-

Queen implementation of Kahn process networks, and lead to a compositional dataflow model.
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1.  Introduction

Three distinct variants of the dataflow model of computation have emerged in the literature, Kahn

process networks [8], Dennis dataflow [7], and dataflow synchronous languages [3]. The first two are

closely related, while the third is quite different. This paper deals only with the first two, which have

one key important difference. In Dennis dataflow, a process consists of a sequence of atomicfirings of

actors. Although Dennis dataflow can be viewed as a special case of Kahn process networks [10], the

notion of firings has been absent from formal semantic models, which are most developed for Kahn

process networks and dataflow synchronous languages. This omission is problematic because although

Kahn process networks in their general form have not found widespread use, Dennis dataflow has,

experimentally in computer architecture [2] and in production in signal processing software (see [10]

and the references therein).

This paper fills in this gap, showing that methods pioneered by Kahn extend naturally to Dennis

dataflow, embracing the notion of firing. This is done by establishing the relationship between a firing

function and the Kahn process made up of a sequence of such firings. A practical consequence of this

analysis is a formal characterization of firing rules and firing functions that preserve determinacy.

The semantics given here ofdataflow with firing (Dennis dataflow) isdenotational,in the sense of

Scott and Strachey [13], rather than operational, the usual semantics given. The denotational semantics

is shown to be equivalent to a usual operational semantics, thus establishing full abstraction.

2.  Review of Kahn Process Networks

In all dataflow models, processes communicate by sendingtokens, atomic units of data, along uni-

directional channels with one writer and one reader. Let  denote the alphabet of tokens and  the set

of all sequences of tokens. A particular finite sequence is written , and an infinite

V S

v1 v2 … vp, , ,[ ]
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sequence . The set of tuples of  such sequences is denoted . A particular -tuple of

sequences is written . A Kahn process is a mapping :  from an -tuple an

-tuple, with a key technical restriction. The mapping must be a continuous function (in a sense

reviewed below). This restriction ensures that compositions of Kahn processes are determinate (in a

sense also reviewed below).

2.1  COMPLETE PARTIAL ORDERS AND THE PREFIX ORDER

An ordering relationon the setS is a reflexive, transitive, antisymmetric relation “ ” on members

of the set.Reflexive means that ,transitive means that  and  imply that ,

andantisymmetric means that  and  imply , for all  in . Of course, we

can define a related irreflexive relation, denoted “ ”, where  if  and . A setSwith

an ordering relationship is called anordered set. If the ordering relationship is partial (there exist

 such that neither  nor , thenS is called apartially-ordered set or poset [6].

Below, we use the symbol  to denote the set of natural numbers, , the symbol  to

denote , and the symbol  to denote . The ordered set  is  with the usual

numeric ordering relation.

A particularly useful partial ordering relation is called theprefix order. In the prefix order,

if  is a prefix of . This means simply that the first  tokens of  are the same as the  tokens in ,

in the same order, where  is the length of the sequence . The empty signal, one with no

tokens, is denoted , and is a prefix of every other signal.

A chain in  is a set , where  is the set of natural numbers and

v1 v2 …, ,[ ] n S
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⇔ . An upper bound of a subset  is an element  where every element in  is a pre-

fix of . A least upper bound (LUB), written , is an upper bound that is a prefix of every other

upper bound. A lower bound and greatest lower bound are defined similarly. Thebottom element of a

poset, if it exists, is a lower bound for the poset itself. Acomplete partial order (CPO) is a poset with a

bottom element where every chain has a LUB. From a practical perspective, this usually implies that

our set  of sequences must include the empty sequence  and sequences with an infinite number of

values. The poset  with the prefix order is a CPO.

These definitions are easy to generalize to , the set of -tuples of sequences. For  and

,  if each corresponding element is a prefix, i.e.  for each , where

. Following Birkhoff and Mac Lane [5], we define  to be a set with a single element.

With this definition, if  is a CPO, so is  for any . The tuple of empty signals is denoted ,

and is a prefix of every other tuple of signals of the dimension.

Consider a function : , where . We allow either  or  to be zero in order to

model Kahn processes with no inputs or no outputs, respectively. For example, a function :

is a source of a sequence. Since it is a function, and  has only one element, the output is always the

same sequence.

2.2  MONOTONIC AND CONTINUOUS FUNCTIONS

A function :  ismonotonicif

⇒ . (1)

i i ′≤ W S⊆ w S∈ W
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Intuitively, this says that if an input sequence  is extended with additional tokens appended to the end

to get , then the output  can only be changed by extending it with additional tokens to get

. I.e., giving additional inputs can only result in additional outputs. This is like an untimed notion

of causality. Note that if  or  then the function is always monotonic.

A function :  iscontinuous if for every chain ,  has a least upper bound

, and

( ) = . (2)

The notation  denotes a set obtained by applying the function  to each element of . Intu-

itively, this says that the response of the function to an infinite input sequence is the limit of its

response to the finite approximations of this input. Note again that if  or  then the func-

tion is always continuous.

“Continuous” here is exactly the topological notion of continuity in a particular topology called

theScott topology. In this topology, the set of all sequences with a particular finite prefix is an open set.

The union of any number of such open sets is also an open set, and the intersection of a finite number

of such open sets is also an open set.

A continuous process is always monotonic. To see this, suppose :  is continuous, and

consider two signals  and  in  where . Define the increasing chain

. Then  = , so from continuity,

 = ( ) =  = . (3)

Therefore , so the process is monotonic.

s
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Not all monotonic functions are continuous. Consider for example a system where the set of

tokens is binary, , and

. (4)

It is easy to show that this is monotonic but not continuous.

A concatenation of a finite sequence  and another (possibly infinite) sequence  is written .

An example of a continuous function that we will discuss further is theunit delay. It is defined by

(5)

where  is a token value. The effect of the delay is to insert an initial token with value  onto the

head of a sequence. The term “delay” reflects the fact that a given token on the input appears on the

output also, but one token later in the sequence.

2.3  COMPOSITIONS OF KAHN PROCESSES AND DETERMINACY

A finite composition of Kahn processes is a collection  of sequences and a collec-

tion  of continuous functions relating them, such that no sequence is the input or out-

put of more than one function. Any sequence that is not the output of any of the functions is an input to

the composition.

A composition isdeterminate if given the input sequences, all other sequences are determined.

Obviously, a Kahn process by itself is determinate, since it is a functional mapping from input

sequences to output sequences.

Some examples of finite compositions of Kahn processes are shown in figure 1. In each of these

examples, given the component functions, it is obvious how to construct a function that maps the input

V 0 1,{ }=

F s( ) 0[ ]; if s is finite

0 1,[ ]; otherwise



=

s′ s s′.s

Dv s( ) v[ ].s=

v V∈ v

s1 s2 … sp, , ,{ }

F1 F2 … Fq, , ,{ }
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sequences (those that are not outputs of any function) to the other sequences. Thus, each of these com-

positions is determinate. Moreover, if the component functions are continuous (or monotonic), then the

composite functions are also continuous (or monotonic).

Feedback compositions of Kahn processes may or may not be determinate. Consider for example

the identity function, . This function is obviously continuous. Suppose we create a very sim-

ple composition of the identity process by feeding back the output to the input, letting  in figure

2. There are no inputs to the composition, the composition is determinate only if the sequence  is

determined. But any sequence  satisfies the composition, so it is not determined.

FIGURE 1.  Examples of composition of processes.
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FIGURE 2.  Feedback (a directed self-loop).
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2.4  LEAST FIXED POINT SEMANTICS

There is an alternative interpretation due to Kahn [8] of a feedback composition that makes the

example in figure 2 determinate. Under this interpretation, any composition of continuous processes is

determinate. Moreover, this interpretation is consistent with execution policies typically used for such

systems (their operational semantics), and hence is an entirely reasonable denotational semantics for

the composition. This interpretation is theleast-fixed-point semantics.

A well-known fixed point theorem states that a continuous function :  in a CPO  has a

least fixed point ,  (see [6], page 89). By “least fixed point” we mean that for any  such

that , . Moreover, the theorem gives us a constructive way to find the least fixed point.

Putting it into our context, suppose we have a continuous function : . Then define the

sequence of sequences

, , , ... (6)

Since  is monotonic and the tuple of empty sequences  is a prefix of all other tuples of sequences,

this sequence is a chain. Since  is a CPO, this chain has a LUB. The fixed-point theorem tells us that

this LUB is the least fixed point of .

This theorem is very similar to the so-calledKnaster-Tarski fixed point theorem, which applies to

complete lattices rather than CPOs [6]. For this reason, this approach to semantics is sometimes called

Tarskian. The application of this theorem to semantics was pioneered by Scott [12] and Kahn [8].

Note that the constructive technique given by (6) might be a reasonable implementation of Kahn

process networks. Begin with all sequences empty, and start iteratively applying functions. If we

choose this constructive technique as the operational semantics, then this theorem tells us that this

operational semantics is consistent with the denotational semantics (the least fixed point semantics), so

F X X→ X

x F x( ) x= y

F y( ) y= x y

F S
n

S
n→

s0 Λ= s1 F s0( )= s2 F s1( )=

F Λ

S
n

F
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we have full abstraction. For a complete treatment of full abstraction, see Winskel [14].

Under this least-fixed-point semantics, the value of  in figure 2 is , the empty signal, when

. Under this semantics, this is the only sequence that satisfies the composite process, so the

composite process is determinate. Intuitively, this solution agrees with a reasonable execution of the

process, in which we would not produce any output from  because there are no inputs.

Another fixed-point theorem deals with monotonic processes that are not necessarily continuous.

This theorem states that a monotonic function on a CPO has a unique least fixed point, but gives no

constructive way to find the least fixed point (see [6], page 96). Fortunately, this lack of constructive

solution is not a problem in practice since practical monotonic processes are invariably continuous, at

least in the context of Kahn process networks.

2.5  PRACTICAL OPERATIONAL SEMANTICS — SCHEDULING

There are serious practical problems with choosing (6) as the operational semantics. First, the

functions that need to be iteratively applied map entire sequences into entire sequences. If any of these

sequences becomes infinite, the computation of a single function will not terminate, precluding itera-

tive application. This happens immediately if one of the functions happens to be a source (e.g.

: ) with an infinite output. In practice, we need to partially compute the functions, carefully

controlling the length of the sequences. Sometimes it is possible to store only finite windows into

potentially infinite sequences and execute a process network in bounded memory. For a complete and

up-to-date exposition on these scheduling issues, see Parks [11].

2.6  HIGHER-ORDER FUNCTIONS

Using the fact that compositions like those in figure 1 preserve continuity, and that feedback as in

figure 2 is determinate under a least-fixed-point semantics, we can conclude that arbitrary finite com-

s λ

F I=

F I=

F S
0

S
1→
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positions of continuous functions are determinate under such semantics. This determinacy, however, is

not constrained to bounded or static compositions, where the number of sequences and functions isa-

priori  determined. To generalize the result, we can view the compositions of figures 1 and 2 to be

examples of higher order functions. Higher-order functions are functions that take functions as argu-

ments and return functions. We can define a CPO over functions, and arrive at a very powerful general-

ization of the determinacy result. We will then use a similar technique to study dataflow with firing

(Dennis dataflow).

Consider the set of all functions : . The prefix order on sequences induces an ordering

on functions in this set. We write  if for all , . This is just a pointwise

extension of the prefix ordering. Denote the set of functions with the pointwise prefix order by

. It is a CPO. To show this, we need to show that all chains in  have a LUB in

. Consider such a chain,

: , : , ... (7)

where . Let  be any tuple of sequences in . Note that , so

 is a chain in . Since  is known to be a CPO, this chain has a LUB. Define the

function :  by

 = . (8)

In the pointwise prefix order, this can be written

 = . (9)

Thus, every such chain has a LUB, so the set of functions with the pointwise prefix order is a CPO.

F S
m

S
n→

F F′ s S
m∈ F s( ) F′ s( )

S
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S
n→( ) S

m
S

n→( )

S
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S
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n→ F1 S

m
S
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i j≤ Fi⇒ F j s S
m

i j≤ Fi s( )⇒ F j s( )
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S
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F S
m
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Following Davey and Priestley [6], let  denote the set ofcontinuous functions mapping

 into  ordered by the same pointwise prefix order. Clearly, . Moreover,

 is itself a CPO ([6], theorem 3.17), so it is called a sub-CPO of . This means

that any chain of continuous functions has a least upper bound that is also a continuous function.

The bottom element of both  and  is a function :  that always

returns , an -tuple of empty sequences.

We can of course define a set  of -tuples of functions, where . This is also a

CPO under an elementwise extension of the pointwise prefix order. The bottom element of this CPO,

which we denote by , is an -tuple of functions . Finally, we can define sets mixed tuples, for

example . Any member of this set is a 2-tuple where the first element is a func-

tion from  and the second element is a function from .

Consider a mapping : . Such mappings are sometimes calledfunction-

als because they map functions to functions. A functional  ismonotonic if  implies that

. It is continuous if for every chain ,  has a least upper bound

, and

( ) = . (10)

The notation  denotes a set obtained by applying the mapping  to each element of .

The compositions of figure 1 can be described as functionals over this new CPO of functions.

Beginning with figure 1(a), denote the composition by . The relevant mappings are

S
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: , : , : , and : . An alternative notation that

might be more familiar to some readers would write , the tensor products in Abramsky’s

interaction categories [1]. It is straightforward to show that  is continuous over the CPO of functions.

Figure 1(b) is little different from figure 1(a). The only difference is that  is replaced by an iden-

tity function. In this case, we can write , where : , : , and

: . Alternatively, we can write this using the tensor product notation,

, where :  is the identity function.

Figure 1(c) represents a composition of functions. This can also be described as a functional,

. The relevant mappings here are : , : , : ,

and : . With this choice, the sequence  between the two functions is hidden

by the composition (it is not exposed as an output). It is also straightforward to show that this func-

tional is continuous.

Using functionals like , , and  above, appropriately generalized to operate on functions

with various numbers of input and output sequences, a rich set of compositions can be constructed.

When doing this, it is usually more convenient to use the tensor product notation, , and

the function composition notation, . For example, the composition in figure 1(d) can be

given by the functional : , where .

More interestingly, such functionals make it possible to describe unbounded and data-dependent

compositions of processes. A classic example, used by Kahn and MacQueen [9], is the sieve of Era-

tosthenese, which given the input sequence  outputs the prime numbers. Assume

F1 S S→ F2 S S→ F S
2

S
2→ φ S S→( )2

S
2

S
2→( )→

F F1 F2×=

φ

F2

F′ φ′ F1( )= F1 S S→ F′ S
2

S
2→

φ′ S S→( ) S
2

S
2→( )→

F′ F1 I×= I S S→

F″ φ″ F1 F2,( ) F2 F1•= = F1 S S→ F2 S S→ F″ S S→

φ″ S S→( )2
S S→( )→ s2

φ φ′ φ″

F F1 F2×=

F″ F2 F1•=

φ′′′ S
2

S→( ) S S
2→( )×( ) S

2
S

2→( )→ φ′′′ I F 2×( ) F1 I×( )•=

2 3 4 …, , ,[ ]
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 is the set of possible token values, and let  be a “filter” process that, given

any sequence  of tokens in , outputs a subsequence consisting only of those tokens in  that are not

multiples of , for some . The sieve of Eratosthenese is constructed by composing such filters,

one for each prime number. Formally,

. (11)

This recursive definition is easy to understand if we assume that the input is the sequence

 and examine the first few unravelings of the recursion:

(12)

Notice that in effect, the recursion specified a cascaded composition of filters, one for each prime that

has been discovered so far. The composition grows dynamically as more primes are discovered.

3. Dataflow with Firing

Continuous functionals on posets of functions provide a convenient way to study Dennis dataflow,

which is equivalent to Kahn process networks where processes are made up of a sequence of atomic

computations calledfirings. The firings themselves can be described as functions, and the invocation of

these firings is controlled byfiring rules. We can now make this precise.

3.1  DATAFLOW ACTORS

First, we need a little more notation. A tuple  of sequences is said to befinite if each of the

sequences in the tuple has a finite number of tokens. If  is finite and  is some other tuple

V 2 3 4 …, , ,{ }= Gv s( )

s V s

v v V∈

F s( ) λ if s = λ
v[ ].F Gv s′( )( ) if s = v[ ].s′ for somev V∈ s′ S∈,


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=

s 2 3 4 …, , ,[ ]=

2.F G2 3 4 …, ,[ ]( )( )
2.3.F G3 G2 4 5 …, ,[ ]( )( )( )
2.3.5.F G5 G3 G2 6 7 …, ,[ ]( )( )( )( )

s S
m∈

s S
m∈ s′ S

m∈
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of sequences, then  is theconcatenation of the two tuples of sequences. This is constructed in the

obvious way so that . Concatenation was defined above for single sequences rather than

tuples.

Given two tuples of sequences , theirjoin, written , if it exists, is defined to be

least upper bound of the two sequences. If the join exists, and  are said to bejoinable.

We begin with a simpler definition that excludes some useful cases, and then generalize. Adata-

flow actor with  inputs and  outputs is a pair , where:

1. :  is a function mapping called thefiring function,

2.  is a set of finite sequences called thefiring rules,

3.  is finite for all , and

4. no two distinct  are joinable.

The last constraint implies that for any given  there is at most one  such thatr s. If

there is such anr, then there will be a unique  such that .

3.2  DATAFLOW PROCESSES

A Kahn process  based on the dataflow actor  can now be defined as follows:

. (13)

Notice that this definition is self-referential. It is by no means obvious that a function  exists that sat-

isfies (13), nor is it obvious that this function is unique. We will show that such a function exists, and

that there is a unique least function in the pointwise prefix order. Consider the functional

s.s′

s s.s′

s s′, S
m∈ s s′

s s′

m n f R,{ }

f S
m

S
n→

R S
m⊂

f r( ) r R∈

r r ′, R∈

s S
m∈ r R∈

s′ S
m∈ s r.s′=

F f R,{ }

F s( ) f r( ).F s′( ) if there existsr R such thats = r .s′∈
Λ otherwise


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=

F
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:  associated with a particular dataflow actor  defined as follows,

. (14)

Theorem 1:The functional  is monotonic.

Proof: Consider a particular . We consider two cases. First, assume that there exists one

 such thatr s and . In this case,  and

 for any two functions : . If , then clearly

. (15)

Second, suppose that there is no  such thatr s. Then  for

any two functions : . Again, if , then (15) holds. Thus, (15) holds for any

 and  such that , implying that  is monotonic.

Since the functional  given in (14) is a monotonic function over a CPO, it has a least fixed point

such that  [6]. This least fixed point satisfies (13), so we take it to be the semantics of the

dataflow process.

The existence of a least fixed point is reassuring, but we can go a step further and give a construc-

tive procedure for finding that least fixed point. Moreover, this constructive procedure will exactly

match a reasonable operational semantics for single dataflow actors.

Theorem 2:The functional  given by (14) is continuous.

Proof: Consider any chain . We need to show that (F ) = ( F ). Write

 and note that for any

φ S
m

S
n→( ) S

m
S

n→( )→ f R,{ }

φ F( )( ) s( ) f r( ).F s′( ) if there existsr R such thats = r .s′∈
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 = . (16)

Since  is monotonic, this is a chain in , a CPO, and therefore has a LUB. There are two cases

to consider. First, if there exists an  such thatr s and , then

 = .

= .( F)( ) = ( ( F))(s). (17)

The second case we need to consider is where there is no  such thatr s. In this case,

 =  =  = ( ( F))(s). (18)

Thus, in both cases, (F ) = ( F ), so  is continuous.

Since  is continuous, not only does it have a least fixed point, but there is a constructive procedure for

finding that least fixed point [6]. We start with the “bottom” of the poset, which in this case is the bot-

tom function :  that always returns , an -tuple of empty sequences. Let ,

, , etc. This forms a chain, and the LUB of this chain is the least fixed point

of .

Examining this chain more closely, suppose for a given  there is a sequence ,

such that . Then the chain takes the following form:

(19)

This exactly describes the operational semantics of Dennis dataflow for a single actor. It says to start

with each actor producing the empty sequence. Then find the prefix of the input that matches a firing

rule, and invoke the firing function on that prefix, producing a partial output. Because of condition (4)

φ F( )( ) s( ) φ F0( )( ) s( ) φ F1( )( ) s( ) …, ,{ }

φ S
n

r R∈ s r.s′=

φ F( )( ) s( ) f r( ).F0 s′( ) f r( ).F1 s′( ) …, ,{ } f r( )= F0 s′( ) F1 s′( ) …, ,{ }

f r( ) s′ φ

r R∈

φ F( )( ) s( ) Λ Λ …, ,{ } Λ φ

φ φ φ

φ

ψ S
m

S
n→ Λ n F0 ψ=

F1 φ F0( )= F2 φ F1( )=

φ

s S
m∈ r 1 r 2 …, , R∈

s r1.r 2.…=

F0 s( ) Λ
F1 s( ) f r 1( )
F2 s( ) f r 1( ). f r 2( )
…

=
=
=
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on the firing rules, no more than one firing rule can match. Then find the prefix of the remaining inputs

that match another firing rule, invoke the firing function on that prefix, and concatenate the result with

the output.

In general, it is possible that even ifs is infinite, there will only be a finite sequence

, for some natural number , such that , and  will have no pre-

fix in . In both our operational and our denotational semantics, the firings simply stop, and the output

is finite.

3.3  CONTINUITY OF THE DATAFLOW PROCESS

The function  defined by (13) is the least fixed point of the continuous functional defined by

(14). For a given input , the value of  is the least upper bound of the chain given by (19). This

chain will be finite for some  (certainly for finite , but also for any  for which after some point, no

more firing rules match), and infinite for other . Since each  is a continuous function,

and the set  of continuous functions is a CPO, then the LUB  is continuous, and hence

describes a valid Kahn process that guarantees determinacy. Note that the firing function  need not be

continuous. In fact, it does not even need to be monotonic. It merely needs to be a function defined and

finite for each of the firing rules.

3.4  EXAMPLES OF FIRING RULES

Consider for example a system where the set of tokens is . Let us examine some pos-

sible firing rules  for unary firing functions : . We will denote a sequence of tokens

using square brackets and commas, so [0,1,1] is a sequence with three tokens. An empty sequence will

be denoted with , as usual. A set of tuples will be denoted using the usual braces for sets. The follow-

r 0 r 1 … r p, , , R∈ p s r0.r 1.….r P.s′= s′

R

F

s F s( )

s s s

s Fi S
m

S
n→[ ]∈

S
m

S
n→[ ] F

f

V 0 1,{ }=

R S
2⊂ f S S→

λ
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ing sets of firing rules all satisfy condition (4) above, that no two distinct  are joinable:

. (20)

The first of these corresponds to a function that consumes no tokens from its input sequence, and can

fire infinitely regardless of the length of the input sequence. The second consumes only the leading

zeros from the input sequence, and then stops firing. The third consumes one token from the input on

every firing, regardless of its value. The fourth consumes two tokens on the input on every firing, again

regardless of the values. An example of a set of firing rules that does not satisfy condition (4) is:

. (21)

Such firing rules would correspond to an actor that could nondeterministically consume or not con-

sume an input token upon firing.

The firing rule in (21) would also be the firing rule of the unit delay defined in Section 2.2, so such

a unit delay cannot be a dataflow actor with such firing rules. In fact, delays in dataflow process net-

works are usually implemented directly as initial tokens on an arc, rather than trying to use sequences

of firings, so if we admit such implementation, then there is no loss of generality here. The run-time

cost is lower, and this strategy avoids having to have special firing rules for delays that, if allowed in

general, could introduce nondeterminism. Note further that once we admit the unit delay, it is easy to

model actors with state using a single self-loop initialized to the initial state.

Let us examine some possible sets of firing rules  for binary firing functions : . A

tuple of tokens will be denoted using parentheses, as in , a 2-tuple with two sequences of

length 1. The following firing rules all satisfy condition (4):

r r ′, R∈

λ{ }
0[ ]{ }

0[ ] 1[ ],{ }
0 0,[ ] 0 1,[ ] 1 0,[ ] 1 1,[ ], , ,{ }

λ 0[ ] 1[ ], ,{ }

R S
2⊂ f S

2
S→

1[ ] 0[ ],( )
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(22)

The first of these corresponds to an actor that consumes one input token from each of two inputs. This

could implement, for example, a logic function such as AND or OR. The second corresponds to a con-

ditional actor where the first input provides a control token on every firing, and if the control token is

“1”, then a token is consumed from the second input. Otherwise, no token is consumed from the sec-

ond input. The third corresponds to an actor that never consumes a token from the second input. The

last corresponds to the famous Gustave function [4]. It is a particularly interesting set of firing rules

because it cannot be implemented with the blocking reads of the Kahn-MacQueen implementation of

Kahn process networks [9].

The following firing rules do not satisfy condition (4):

. (23)

Such would be the firing rules of the famousnondeterminate merge, a process that can consume a

token on either input and copy it to its output. The nondeterminate merge is not a monotonic process,

and so use of it in a Kahn process network could result in nondeterminism.

While actors satisfying conditions (1) through (4) above result in continuous Kahn processes,

these conditions are more restrictive than what is really necessary. The firing rules in (23), for example,

are not only the firing rules for the dangerous nondeterminate merge, but are also the firing rules for a

perfectly harmless two-input, two-output identity function,  for all . It might seem at

first glance that such an identity function could be implemented using the first firing rule of (22), but in

fact this will not work. The two examples in figure 3 show why not. In the first of these examples, the

0[ ] 0[ ],( ) 0[ ] 1[ ],( ) 1[ ] 0[ ],( ) 1[ ] 1[ ],( ), , ,{ }
0[ ] λ,( ) 1[ ] 0[ ],( ) 1[ ] 1[ ],( ), ,{ }

0[ ] λ,( ) 1[ ] λ,( ),{ }
1[ ] 0[ ] λ, ,( ) 0[ ] λ 1[ ], ,( ) λ 1[ ] 0[ ], ,( ), ,{ }

0[ ] λ,( ) 1[ ] λ,( ) λ 0[ ],( ) λ 1[ ],( ), , ,{ }

I s( ) s= s S
2∈
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first (top) input and output should be the empty sequence, , under the least-fixed-point semantics, so

there will never be a token to trigger the firing rule of (22). In the second of these examples, the second

(bottom) input and output have the same problem. The firing rules of (23), however, have no difficulty

with these cases. In the next subsection we replace rule (4) with a more general rule.

3.5  COMMUTATIVE FIRINGS AND COMPOSITIONALITY

Many dataflow models with a notion of firing are not compositional. That is, an aggregation of

actors that can be individually described using firings cannot be collectively described using firings.

This problem was alluded to in the final example of the last section, which is the simplest example

illustrating the problem. The two-input, two-output identity function can be thought of as a aggrega-

tion of two one-input, one-output identity functions, as suggested in figure 4. One-input, one-output

identity functions are trivially described as dataflow actors satisfying constraints (1) through (4), but

the two-input, two-output identity cannot be so described.

To solve this problem, we can replace rule (4) with the following more complicated rules:

FIGURE 3.  IfF is an identity function, the appropriate firing rules are given in (23).

F

F

λ

FIGURE 4.  A two-input, two-output identity function described as an aggregation of two one-
input, one-output identity functions.

I

I
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5. For any  that are joinable,  (the greatest lower bound is the tuple of empty sig-

nals) and .

6. If  then .

This rule generalizes the previous model by allowing a set of firing rules where more than one firing

rule can match the inputs. However, if more than one firing rule matches the inputs, then it should

make no difference in what order these firing rules are used. The firing function, therefore, applied to

these joinable firing rules, should commute with respect to the concatenation operator.

We will also need to redefine the functional that we used to construct the Kahn process from the

dataflow actor. To do this conveniently, let  denote the set of all firing rules

that are prefixes of . This set could be empty if there are no prefixes of  in . Then define the func-

tional

. (24)

Note that because of property (5), it makes no difference in what order we use the matching the firing

rules . In the above,  is defined by .

Although the notation gets a bit more tedious, it is straightforward to extend the above results to

conclude that the functional  and the function  that is its least fixed point are continuous. The

proofs are very similar to that above.

3.6  PRACTICAL OPERATIONAL SEMANTICS — SCHEDULING

The constructive procedure given by (19) ensures that repeated firings converge to the appropriate

Kahn process defined by the actor. If any such sequence of firings is finite, then it is only necessary to

r r ′, R∈ r r ′ Λ=

f r( ). f r ′( ) f r ′( ). f r( )=

Λ R∈ f Λ( ) Λ=

PR s( ) r 1 r 2 … r p, , ,{ } R⊂

s s R

φ′ F( )( ) s( ) f r 1( ). f r 2( ). … . f r p( ).F s′( ) for r 1 r 2 … r p, , ,{ } PR s( )∈ if PR s( ) ∅≠
Λ otherwise




=

r 1 r 2 … r p, , ,{ } s′ s r1.r 2.….r p.s′=

φ′ F
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invoke a finite number of firings. In practice, it is common for such firing sequences to be infinite, in

which case a practical issue of fairness arises. In particular, since there are usually many actors, in

order to have the operational semantics match the denotational semantics, it is necessary that the firing

function of each actor occur infinitely often, if possible.

It turns out, however, that such a fairness condition is not always desirable. It may result in

unbounded memory requirements for execution of a dataflow process network. In some such cases,

there is an alternative firing schedule that is infinite but requires only bounded memory. That firing

schedule may not match the denotational semantics, and may nonetheless be preferable to one that

does.

A simple example is shown in figure 5. The actor labeled “SELECT” has the firing rule (again

assuming )

, (25)

where the order of the inputs is top-to-bottom. If the bottom input (the control input) has value “1” (for

TRUE), then a token of any value is consumed from the top input, and no token is consumed from the

middle input. If the control input has value “0” (for FALSE), then no token is consumed from the top

input, and a token of any value is consumed from the middle input.

FIGURE 5.  An example of a dataflow process network where it may be undesirable from a practi-
cal perspective to insist that the operational semantics match the denotational semantics.

A

B

S
E

LE
C

TT

F

D

C

V 0 1,{ }=

1[ ] λ 1[ ], ,( ) 0[ ] λ 1[ ], ,( ) λ 1[ ] 0[ ], ,( ) λ 0[ ] 0[ ], ,( ), , ,{ }
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Suppose that the actors A, B, and D, all of which are sources (i.e. of type : ), are defined

to each produce an infinite sequence, and that C (which is of type : ), is defined to consume

an infinite sequence with any token values. Suppose further that the output from D is the constant

sequence . Then tokens produced by actor A will never be consumed. In most practical

scenarios, it is preferable to avoid producing them if they will never be consumed, despite the fact that

this violates the denotational semantics, which state that the output of actor A is an infinite sequence.

This problem is solved by Parks [11], who shows that the obvious solution for the example in figure 5,

demand-driven execution, does not solve the problem in general.
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