NestArch: Prototype Time Synchronization Service

Ted Herman, University of lowdierman@cs.uiowa.edu

18 March 2003

Abstract

This document is a brief explanation of a distributed time serviegr{c)
developed for the NEST Challenge Architecture. The document describes
the basic design, performance expectationsT&ync, and its TinyOS im-
plementation.

1 Introduction

Time synchronization in a distributed, real-time, system is a basic service. It can
be useful for the NEST Challenge Project in several ways: calculation of veloci-
ties, coordination of middleware services, and resource allocation algorithms. Ini-
tial specifications for a time synchronization service were proposed in the Fall of
2002; subsequent experience implementing time synchronization in the mote ar-
chitecture, along with the pressure of project deadlines, have motivated a few mod-
ifications to the initial specification. However the spirit of the original specification
remains in place: global system time is represented by an integer, denominated in
30.5176pusec units i, 32,768 ticks per second) callgiffies. The remainder of

this document explains the basics of the initial implementation, consequences of
its simple design with respect to expected performance, and avenues for improve-
ment. Throughout this document we refer to the time synchronization service as
Tsync.

2 The Interface

Users ofTsync will be happy to see that it offers a simple interface. In addition to
the standard control interfa@dControl (used by many componentg)sync
supports th&ime interface. This interface provides two commands for obtaining
the current timegetGlobalTime andgetLocalTime . The caller of these
commands supplies a pointer ttimeSync structure, which is little more than a

uint32 -integer to store the time (in this version, there is also a "quality of time”
byte in the structure).

Use getLocalTime to measure elapsed real time. The local time is not
adjusted to match reference points of other motes, so the difference between two
values obtained bgetLocalTime is an accurate measure of real time. However,
the global time returned lyetGlobalTime is frequently adjusted to keep motes
in sync. My experiments indicate that the difference between global times of two
different motesp andq, could be about 3-hopcoung, milliseconds. (Where
hopcoung, denotes the number of hops in the network betwpemdq.) That
is, if both p andq read the same global tingg = g, and ifR(gp) is the real time
associated witlgp, then|R(gp) — R(dq)| ~ 2.5-hopcoung,,. During initialization of
a mote networkgetGlobalTime could return &AIL status in case mote clocks
have not yet been synchronized, wherged ocalTime always succeeds.

In the initial draft of the time synchronization time was specified as#8 -
integer; elsewhere, Su Ping proposed that time be representiéat6§ -integers.

We chosauint32 for the present because it is adequate for the challenge demon-
stration and can easily be changed later. Note tiat32 -valued time corre-
sponds to about 36 hours.

Earlier in our efforts to specify a time synchronization service, we considered
the possibility of regional time bases (local time, somewhat like a “time zone”)
such as the Reference Broadcast System [1] uses. Other possibilities not contem-
plated include using time intervals (a pair of numbers denotes an interval, and
this interval contains the true time), vectors or matrices, and even graph-theoretic
structures. Also, it is reasonable to consider enhancingitieSync structure
someday to have indications of the quality of the clock returned by a call to the ser-
vice. In addition, the interface could have interactions for long-term energy saving,
tuning, and other factors.

3 Some Facts about Mote Clocks

We explain some of the basics about how motes deal with clocks, since this influ-
ences our implementation and explains some of the performance consequences.
Motes do not have “clocks” as such; rather, some registers of the processor can
be programmed (subject to several limitations) to increment with each processor
cycle egat 4 MHz) and generate an interrupt upon reaching a maximum count.
Therefore we've got to simulate a clock. Since our desired clock precision is 32768
Hz, our simulated clock should ideally advance once per 122.07 processor cycles.
This turns out to be impractical for two reasons. First, the effort of processing
interrupts to increment a software counter is too expensive (competing with other

processing needs); second, the processor is not so flexible in how it can program
its hardware counters.

The hardware counter behind the simulated clock can be programming in eight
different granularities, and for each of these granularities there is a multiplier. If
the granularity is set at 32768 Hz, then an interrupt will occur after 30.5%&6
(minimum) up to 7.78198 msec (maximum), depending on the value of the 8-bit
multiplier. Other granularities are 4096, 1024, 512, 256, 128, 32, and 0 Hz. This
implies that if we desire an interrupt to occur about every second, either a multiplier
of 32 with a granularity of 32 can be used or a multiplier of 128 with a granularity
of 128 can be used; higher granularities won’t work if we want one clock interrupt
per second. Why is this important? It has consequences for our desired implemen-
tation of a time service with 32 KHz precision. It is just too expensive to actually
increment the clock at 32768 Hz; however if the hardware counter is programmed
to interrupt once per second, then each interrupt will trigger

clock = clock + 32768

the overhead is acceptably low, and we have the desired result!? Well, not really.
What if some application queries the time service for the current ddetkeerthe
counter-driven interrupts? The accuracy will be around half a second on average —
we might as well use a clock whose units are half seconds. Fortunately, the story
doesn’t end here.

The processor can algead the value of the hardware counter, before it has
generated an interrupt. Thus an instantaneous reading of time is possible. We im-
plemented this approach fdisync. Its accuracy is, however, dependent on the
granularity of the hardware counter. If the timer has been set to fire once per sec-
ond, then it sets the granularity to 128 Hz, so an instantaneous reading will have an
accuracy of about 3.9 milliseconds on average (and each counter-driven interrupt
adds 256 to the counter). We anticipate this to be the norm for timer settings (firing
once per second). When the timer is set to higher frequency, say 10 millisecond
firing, then the granularity does become 32768 Hz, but this is expensive and only
to be used sparingly. Applications that need to measure the difference between two
times obtained fronsync therefore should be designed in the context of timeer (
the TinyOSTimer component) settings.

In developing this verion of sync implementation, we calibrated its software
clock using a GPS-delivered pulse-per-second signal. We observedsyiat
time is about 1% slower than real time at typical timer settings of 1-second delay
between interrupts; at the highest granularity, the clock ran about 0.01% slower or
faster than real time.

4 Basic Design

The constraints for our basic design are: (1) simplicity; (2) some fault tolerance;
(3) no built-in dependence on base stations or specialized mote roles.

Our design implicitly elects the mote with the smallest identifier to be the “root
clock”. The root clock periodically announces the value ofTisync-time; other
motes copy the root clock. Thus this ipashdesign (whereas NTP uses a pull
method to synchronize). Only one message tyg=aton) is used by th&sync
component.

Each non-root mode chooses, among its set of neighbors, one with least dis-
tance (measured in hops) to the root. The neighbor chosen supplies its clock as an
approximation to the root time. The set of neighbors is determined by building a
table based on received beacon messages. Beacon messages contain fields to name
the root identifier, the number of hops to the root, the sender’s clock at the instant
of sending, and a few other values. In the initial implementation, there is no cor-
rection for the latency of sending and receiving a beacon message (we estimate the
latency to be about 36 milliseconds).

What happens if a mote dies, or a link is somehow lost between mosss2
uses an aging technique to maintain the neighbor table. If a beacon hasn't been
received for too long, then a neighbor is removed from the table. If, as a result,
no neighbor can offer a path to the current root, a mote will adopt a new root.
Technically this is done by the well-known “count to infinity” method of distance-
vector routing protocols. Th&sync implementation uses a hard-coded limit on
feasible hop distances to force the eventual extinguishing of path information. Thus
if a root mote dies, eventually a new root emerges.

What happens if a new mote, which has a lower identifier than any previously
known, enters the system? We didn’'t want the entire system to adopt the new
mote’s clock as it became root. Therefdrgync’s implementation refuses to ac-
cept the clock in a beacon message unless that beacon’s sender has a nonempty
neighborhood; and a mote with an empty neighborhood accepts the clock of the
first beacon (with nonempty neighborhood) that it receives.

To be sure, there are many other failure caseslibatc does not cover; better
fault tolerance is just one of the areas of improvement for future versiohsyoic.

5 Performance

As the reader can see from the basic desigync doesn't offer anything in the
way of performance guarantees. We guess that clocks will be within ab®ut 2
milliseconds of the root mote’s, wheleis the number of hops to the root. The

clocks are adjusted whenever a new root is detected or whenever some neighbor
has a smaller clock than the current time. If there is a large gap (more than one
second) between neighboring mot&sync instantly adjusts clocks — the clocks
arenot monotonidn this case. However, once the system converges to clocks being
with one second, all clock adjustmemiie monotonicwhich means that if a clock

is behind, it will be increased an extra amount to catch up; and if it is ahead, it will
get a smaller increase at each Timer interrupt until it is synchronized.

References

[1] J Elson, L Girod, D Estrin. Fine-grained network time synchronization using
reference broadcasts. May 2002.

