Deluge 2.0 - TinyOS Network Programming

Jonathan Hui

July 28, 2005

Contents

2 uick Start
BI TheSoftward o oo
2.2 Setting Up Your TinyOS Node| o o o o

2.2.1 Formatting the Flash| o o
2.2.2 Installing Deluge|l 0 o oo

[2.2.3 Pinging the Node|. o
[2.3 Installing the fzo Qen !ma§e|
P4 Preparing Your Code|.

2.5 Injecting a New Program Image|. o oo
2.6 Reprogramming with a New Program Image|. oo oL,
2.7 Congratulations|.o

[3 Deluge Java Toolchain|

[4 Network Programming API|
K1 Deluge API] o o e
4.2 NetProg APIl o . o e

[Network Programming Details|
h. 1 TOSBootl e
P2 Golden Image| e
9.3 Theory of Operation] e e e e e e e e

[6 Frequently Asked Questions|

10
10
11
11

12

1

Introduction

Deluge provides an efficient method for disseminating large data objects, such as program binaries, to
many nodes within a wireless sensor network. Combining this mechanism with a bootloader and command
dissemination allows for the wireless programming of nodes. The following features are included with Deluge:

1.1

Multihop support: Wirelessly program all nodes in a multihop network without touching your nodes.

Epidemic propagation: Continuous propagation effort by all nodes helps ensure reachability of those
nodes with intermittent connectivity.

Redundant data integrity checks: Overlapping CRC calculations to help ensure integrity of pro-
gram images at all nodes.

Store multiple program images: With each node storing multiple program images, quickly switch
your network between different programs without continuous downloading.

Golden image: A program image with minimal support for network programming stored in a safe
location on external flash. Always have a piece of code that will allow for recovery.

Isolated bootloader: A piece of code that is guaranteed to execute after each reset independent
of the TinyOS application. The bootloader is responsible for programming the microcontroller and
recovers from programming errors by loading the Golden Image.

Rollback gesture: Nodes crashed without setting a watchdog timer? Load the Golden Image simply
by flicking the reset switch a few times and they’re ready to accept a new program wirelessly.

Small RAM footprint: Less than 150 bytes.

Deluge 2.0

Deluge 2.0 tackles lessons learned from its initial version. The main goal of this version is to enhance
robustness and useability. Deluge 2.0 is currently supports the following platforms: Mica2, Mica2-dot,
MicaZ, Telos rev. A, Telos rev. B, Tmote Sky, and TOSSIM platforms. The following is a list of notable
improvements found in Deluge 2.0.

Verify image before programming: TOSBoot first verifies the CRCs in the image before programming
to help ensure the program is valid.

Check system voltage before programming: Make sure the system voltage is above the required thresh-
old to ensure that bits are written correctly.

Rollback to Golden Image on failure: TOSBoot will automatically attempt to load the Golden Image
if a programming attempt has failed, bringing the node into a network programmable state.

Hardware write protect: Support for hardware write protection to prevent application code from
modifying the Golden Imagd]

Verbose information: Know everything about your program images including program name, compile
time, hostname that compiled the code, and user that compiled the code.

Protected data structures: Metadata data-structures include CRCs generated by the host PC to limit
propagation of corrupt data-structures.

Auto-detection of TOSBase: The Deluge java toolchain operates exactly the same whether a Deluge
or TOSBase node is connect.

Auto-resume incomplete images: Auto-resume of incomplete images, using program name, UNIX time,
and user hash to identify identical images.

1Only available on some platforms

e Auto-detect identical images: Auto-detection of identical images so that images are not accidentally
downloaded more than once by the user.

e Operator error protection: Metadata information clearly displayed and now requires user confirmation
to continue execution.

o Reset images: Reset Deluge images before shifting your nodes from network to network and prevent
unintentional infection “cross-pollination” between networks.

e Download Deluge images from any node: The program image can be downloaded from any node,
including all metadata.

2 Quick Start

In this section, you will learn how to add network programming support to TinyOS hardware, your applica-
tion, and how to inject a new program image and reboot a set of network programmable nodes.

2.1 The Software

Deluge 2.0 is included with TinyOS 1.1.14 and higher and we recommend that you start with this version of
the distribution. You can also check out the latest version of the source tree directly from Sourceforge.

Deluge requires a bootloader, TOSBoot, to reprogram the node. To ensure that TOSBoot installs
correctly when installing a TinyOS application, try building and installing Blink on a TinyOS node by
going to tinyos-1.x/apps/Blink and typing the following:

% make <platform> install

where <platform> is the TinyOS platform you are working with. Once installed, reset your node by turning
it off then on. You should notice TOSBoot’s execution by displaying a count-down sequence on the LEDs,
with the red LED turning off last. Once all the LEDs have turned off, the Blink application should start
blinking the red LED.

2.2 Setting Up Your TinyOS Node
2.2.1 Formatting the Flash

Deluge 2.0 uses the newly proposed flash storage abstractiorﬂ In the new abstraction, space allocation
of flash memory is done by formatting the flash, much like formatting a hard-drive in a desktop com-
puter. To format the flash for Deluge 2.0, compile and install the FlashFormat application provided in
tinyos-1.x/apps/TestDeluge. After reset, the yellow LED will turn on to signify that formatting is in
progress. After formatting, the green LED will turn on to signify success. Format time depends on the
platform and can range between milliseconds and tens of seconds. If you see the red LED turn on, the
formatting failed and you should post the situation to the TinyOS help mailing list.

2.2.2 Installing Deluge

Next, compile and install the DelugeBasic application provided in tinyos-1.x/apps/TestDeluge. The
install process will install both the basic Deluge application and TOSBoot, the TinyOS bootloader for
Deluge. Be sure to set the node ID appropriately when installing the application. For example:

% make <platform> install,9

will set the node ID to 9 when installing the application. Deluge will save the node ID so that it remains
persistent across reboots between different program images.

2The details are outlined in TEP103 of the TinyOS 2.x working group

2.2.3 Pinging the Node

With Deluge installed, you can now use the Deluge java toolchain to make sure that Deluge is running on
the node. First, make sure that either Serial Forwarder is running or the MOTECOM environment variable is
set appropriately and that your node is directly connected to your PC via the UART (refer to the TinyOS
tutorial for details). Then ping the node with the following command:

% java net.tinyos.tools.Deluge --ping

The ping response will display information about the currently executing image and what images are stored
on your node. You should see something similar to the output below.

Pinging node ...
Connected to Deluge node.
Currently Executing:
Prog Name: DelugeBasic
Compiled On: Thu Jul 21 20:35:10 PDT 2005
User Hash: 0x87916b92
Stored Image 0 - (Golden Image)
Prog Name: N/A
Compiled On: N/A

Platform: N/A
User ID: N/A
Hostname: N/A

User Hash: N/A
Num Pages: N/A
Stored Image 1
Prog Name: N/A
Compiled On: N/A

Platform: N/A
User ID: N/A
Hostname: N/A

User Hash: N/A
Num Pages: N/A
Stored Image 2
Prog Name: N/A
Compiled On: N/A

Platform: N/A
User ID: N/A
Hostname: N/A

User Hash: N/A
Num Pages: N/A

2.3 Installing the Golden Image

The Golden Image is a trusted TinyOS application that should contain minimal functionality to support
Deluge. In this step, you will install DelugeBasic as the Golden Image. However, you may install your
own TinyOS application as the Golden Image for your specific deployment. In the build directory for your
platform, you will find a tos_image.xml file for the application. This file contains metadata about the
application, as well as the binary code. To install the tos_image.xml binary for DelugeBasic into the
Golden Image slot, execute the following command:

% java net.tinyos.tools.Deluge --inject --tosimage=tos_image.xml --imgnum=0

You will notice that the Deluge java toolchain will warn you about writing to the Golden Image slot. This
is expected as the Golden Image is a special application and should only be overwritten when necessary.
Simply confirm the operation and execution will continue.

After installing the Golden Image, you should repeat the process of installing Deluge and the Golden
Image on a second node to demonstrate reprogramming over the air.

2.4 Preparing Your Code

In this section, you will modify Blink and add Deluge support to it. As you will find with many applications,
the only file which requires modification is the top level wiring file, in this case Blink.nc. The modified
version of this file is shown below:

(1) configuration Blink {

2) 1}

(3) implementation {

4) components Main, BlinkM, SingleTimer, LedsC, DelugeC;
(5) Main.StdControl -> DelugeC;

(6) Main.StdControl -> SingleTimer.StdControl;

&) Main.StdControl -> BlinkM.StdControl;

(8) BlinkM.Timer -> SingleTimer.Timer;

(9) BlinkM.Leds -> LedsC;

(10) }

In Blink.nc, DelugeC is added to the list of components in Line (4) and is wired to StdControl in Line (5).
With these changes, compile Blink without installing it on the node as follows:

% make <platform>

2.5 Injecting a New Program Image

In this section, you will inject the newly compiled Blink application. Locate your tos_image.xml file. Using
the Deluge java toolchain, execute the following command:

% java net.tinyos.tools.Deluge --inject --tosimage=tos_image.xml --imgnum=1

Note that Deluge allows a node to store multiple program images simultaneously. In this example, we
are replacing image number 1. Again, when the Deluge java toolchain asks, confirm the continuation of this
operation. The following is example output when executing this command. The exact values on the size of
the binary, number of sections, and number of pages is platform dependent.

Pinging node ...
Connected to Deluge node.
Thex read complete:
Total bytes = 20386
Sections = 2
Replace empty image with:
Image: 1
Prog Name: Blink
Compiled On: Thu Jul 21 20:39:24 PDT 2005

Platform: telosb
User ID: jwhui
Hostname: £x08722

User Hash: 0x87916b92
Continue operation? (y/[n])
Injecting page [12] of [19]

With the new program image injected into the network, execute the ping command again. Your output,
showing the presence of the newly injected image, should look similar to the following:

Pinging node ...
Connected to Deluge node.
Currently Executing:
Prog Name: DelugeBasic
Compiled On: Thu Jul 21 20:35:10 PDT 2005
User Hash: 0x87916b92
Stored Image 0 - (Golden Image)

Prog Name: DelugeBasic

Compiled On: Thu Jul 21 20:35:10 PDT 2005
Platform: telosb

User ID: jwhui

Hostname: £x08722

User Hash: 0x87916b92
Num Pages: 19/19
Stored Image 1
Prog Name: Blink
Compiled On: Thu Jul 21 20:39:24 PDT 2005

Platform: telosb
User ID: jwhui
Hostname: £x08722

User Hash: 0x87916b92

Num Pages: 19/19
Stored Image 2

Prog Name: N/A

Compiled On: N/A

Platform: N/A
User ID: N/A
Hostname: N/A

User Hash: N/A
Num Pages: N/A

2.6 Reprogramming with a New Program Image

In this section, you will reprogram your network with the newly injected application. Execute the reboot
command as follows:

% java net.tinyos.tools.Deluge --reboot --imgnum=1

Again, we specify which image to program with by setting --imgnum to 1. After a few moments, the
node will begin quickly counting through the LEDs, signify the programming process. Once complete, the
nodes will display the count-down sequence and execute Blink, demonstrating that the network successfully
reprogrammed with the Blink application. Node specific TinyOS state, including TOS_LOCAL_ADDRESS and
TOS_GROUP_ID, are saved and restored across reboots. The expected output after issuing the reboot command
is as follows:

Pinging node ...
Connected to Deluge node.
Reboot From Image:
Prog Name: DelugeBasic
Compiled On: Thu Jul 21 20:35:10 PDT 2005

User Hash: 0x87916b92
To Image: 1
Prog Name: Blink
Compiled On: Thu Jul 21 20:39:24 PDT 2005

Platform: telosb
User ID: jwhui
Hostname: £x08722

User Hash: 0x87916b92

Num Pages: 19/19
Continue operation? (y/[n]) ¥y
Sending reboot message ...
Reboot message sent.

After rebooting, execute the ping command again. The output should signify that the currently executing
image is Blink as follows:

Pinging node ...
Connected to Deluge node.
Currently Executing:
Prog Name: Blink
Compiled On: Thu Jul 21 20:39:24 PDT 2005
User Hash: 0x87916b92
Stored Image O - (Golden Image)

Prog Name: DelugeBasic

Compiled On: Thu Jul 21 20:35:10 PDT 2005
Platform: telosb

User ID: jwhui

Hostname: £x08722

User Hash: 0x87916b92
Num Pages: 19/19
Stored Image 1
Prog Name: Blink
Compiled On: Thu Jul 21 20:39:24 PDT 2005

Platform: telosb
User ID: jwhui
Hostname: £x08722

User Hash: 0x87916b92

Num Pages: 19/19
Stored Image 2

Prog Name: N/A

Compiled On: N/A

Platform: N/A
User ID: N/A
Hostname: N/A

User Hash: N/A
Num Pages: N/A

You have just successfully reprogrammed a network of nodes wirelessly. To demonstrate the usefulness of
the Golden Image slot, reset your node repeatedly in succession. After repeated resets, TOSBoot will flash
all three LEDs simultaneously and reprogram your node. Connect this node to your computer and ping it
using the Deluge java tool. You should see that its executing image is now DelugeBasic again.

2.7 Congratulations

You now have the basic tools and skill set to fully utilize Deluge to wirelessly program your nodes.

3 Deluge Java Toolchain

The Deluge java toolchain is a simple command line utility that allows interaction with nodes via a direct
serial connection or through TOSBase. Either Serial Forwarder must be running or the MOTECOM envi-
ronment variable must be appropriately set. The java toolchain provides the ability to ping the status of a
node, inject a new image, inject a reboot command, and extract a program image.

3.1 Ping

You can ping the network with the following command:
% java net.tinyos.tools.Deluge --ping

The ping command is useful for checking the status of the network. A ping reply will provide information
about the currently executing image and the status of each image stored in external flash. For each stored
image, the following information is given:

e Program Name: the string of the top level TinyOS application component.
e Compile Time: the exact time at which the application was compiled.

e Platform: The TinyOS hardware platform the application was built for.

e User ID: The UNIX user login that compiled the application.

e Hostname: The UNIX hostname that compiled the application.

e User Hash: A hash of the User ID and Hostname.

e Num Pages: Size of the image in units of Deluge pages.

3.2 Inject
You can inject a new program image with the following command:
% java net.tinyos.tools.Deluge --inject --tosimage=<file> --imgnum=<imgnum>

A program image is injected by specifying the --tosimage option and a tos_image.xml file. The Deluge
image to use is specified by imgnum. All versioning information is kept in the network and queried when
needed. Thus, no state is kept on the desktop PC itself.

3.3 Reboot

You can reboot with a new program image with the following command:
% java net.tinyos.tools.Deluge --reboot --imgnum=<imgnum>

The Deluge image to reprogram the network with is specified imgnum. After issuing the command, it
may take several seconds before the nodes begin programming themselves with the new image. The actual
rebooting process is signified by the quick counting of the LEDs. Also, while the inject and reboot commands
are separate, it is not necessary to wait for all nodes to receive the new program image before issuing the
reboot command. Nodes will wait to download the entire image before reprogramming.

3.4 Erase
You can erase an image with the following command:
% java net.tinyos.tools.Deluge --erase --imgnum=<imgnum>

The erase command is most useful if you wish to cancel the propagation from an injected image.

3.5 Reset
You can reset the versioning information for a given image with the following command:
% java net.tinyos.tools.Deluge --reset --imgnum=<imgnum>

Removing versioning information for an image from a node ensures that unintentional “cross-pollination”
will not occur, where a program image from one network will infect another. The reset command is not
epidemic and only affects the currently connected node.

3.6 Dump
You can extract a program image with the following command:
% java net.tinyos.tools.Deluge --dump --imgnum=<imgnum> --outfile=<xml>

The dump command will extract the entire tos_image.xml file from the node. This command is especially
useful for retrieving the program binary and metadata when needed and can be done with any node in the
network that supports Deluge.

4 Network Programming API

This section outlines the application programming interface to Deluge and the network programming layer.
These interfaces can be used to extend and customize the functionality of network programming. For exam-
ple, functionality can easily be extended to support heterogeneous networks where nodes execute different
binaries.

4.1 Deluge API

Deluge only provides the StdControl interface. Specifically, StdControl.start () and StdControl.stop()
are used to specify when the Deluge service is active or not. Disabling the Deluge service also disables its
epidemic property and nodes with the Deluge service disabled will not be able to propagate/receive new
program images or reboot commands to/from neighboring nodes.

4.2 NetProg API

The NetProg component provides both StdControl and NetProg interfaces. The NetProg interface has the
following specification:

interface NetProg {
command result_t reboot();
command result_t programImgAndReboot(uint8_t imgNum);

}

The reboot command is used to reboot the node with out reprogramming it. A successful call to reboot
will not return and TOSBoot will begin the normal boot process.

The programImgAndReboot command takes an imgNum which specifies which Deluge image to program
the node with. A successful call to programImgAndReboot will not return, as the node will program itself
with the specified program and reboot. However, it will return FAIL if the program image is invalid. An
invalid image usually means that the entire image has not yet been received by the node and is incomplete.

With the NetProg interface, the basic functionality of the network programming implementation can be
extended. The default implementation is simple and assumes a homogeneous network with all nodes running
the same application code. However, the NetProg interface allows for heterogeneous networks. Rather than
using the Deluge java toolchain to inject reboot commands, the application code can directly reprogram the
node to any stored program image. Deluge’s multiple program image support allows different application
code to coexist in the network. With some additional logic to determine which program image a specific
node should use, a heterogeneous network with different application code can exist.

NetProg.init () is responsible for restoring necessary node state, including TOS_LOCAL_ADDRESS and
TOS_GROUP_ID. Using these values before calling NetProg.init() can cause some unintended effects. We
suggest wiring NetProg.StdControl to Main.StdControl and never reference TOS_LOCAL_ADDRESS and
TOS_GROUP_ID in StdControl.init() of any other module.

5 Network Programming Details

This section provides a deeper presentation of the necessary mechanisms required to support network pro-
gramming. Deluge provides an efficient method for disseminating large data objects, such as program
binaries, to many nodes within a wireless sensor network. Combining Deluge with a bootloader (TOSBoot)
and command dissemination allows for the wireless programming of nodes.

5.1 TOSBoot

The TinyOS implementation of the bootloader, TOSBoot, provides the set of mechanisms necessary to
program the microcontroller with a stored program image. Because programming a microcontroller requires
first erasing the program flash, installing a new application must be done carefully. Thus, TOSBoot takes
into account many design decisions to achieve the highest level of safety that the hardware can provide.

TOSBoot is a self contained program that executes whenever the microcontroller exits the reset state.
Being a self-contained application means that any non-volatile state left behind by TinyOS applications
does not affect TOSBoot’s execution. The installation of TOSBoot on a node only occurs through a physical
connection and never over the network. TOSBoot does not require the use of an interrupt vector (with the
exception of the power on reset), executing with interrupts disabled.

Parameters are passed to TOSBoot through non-volatile memory. Using non-volatile memory assures
correct operation even during unexpected interruptions or power failures during the startup process. Pa-
rameters include the number of consecutive interruptions during startup, whether or not to program the
microcontroller, and the location of the binary in external flash to program the microcontroller with.

As a visual notification of the boot process, TOSBoot initiates a count-down sequence on the LEDs if the
platform supports it. When the count-down expires, it first checks if it should program the microcontroller
with a new binary. If programming is requested, TOSBoot will erase the program flash and write the new
binary to it. On completion, the programming bit is reset and TOSBoot jumps to the first instruction of
the application. If no programming is requested, only the jump into the application is executed.

TOSBoot expects a program binary format that differs from standard SREC and IHEX formats. More
standard formats include excessive addressing information, significantly increasing the size of the image.
Instead, the TOSBoot binary format includes a single field for address and length for each contiguous block
of data. The Deluge java toolchain removes redundant addressing information before injecting the image.

TOSBoot does a number of things to help protect the node from a wide range of failures during pro-
gramming.

1. TOSBoot checks the supply voltage to ensure that it is at a safe level before programming the node.
Many microcontrollers can operate on a supply voltage level that is lower than that required for
writing to the program flash. If an attempt to write is made when the supply voltage is low, the result
is undefined.

2. TOSBoot utilizes CRC information stored by Deluge to verify the image. Before programming TOS-
Boot verifies all CRCs. If the CRCs do not match, TOSBoot will abort the programming process and
continue booting the node as normal.

10

3. TOSBoot checks the address of each write to avoid overwriting TOSBoot. While some microcontrollers
provide a write-protect region of program flash, the msp430 microcontroller used on some TinyOS
platforms does not write protect the program flash.

4. If an error occurs while programming the node, TOSBoot will retry a few more times. If a successful
programming still does not occur, TOSBoot will try program the node with the Golden Image. By
automatically reverting to the Golden Image, the node will be left in a network programmable state
for recovery.

5.2 Golden Image

The Golden Image is a complete and trusted TinyOS application with the intention that it is stored at a
read-only location in external flash. As a result of this work, platforms supporting hardware write-protection
for the Golden Image are beginning to emerge. In the case of Tmote Sky platform, writes are only allowed if
the USB port is connected to a desktop computer. Using the hardware write-protection, the Golden Image
can only be installed through a physical connection. The purpose of the Golden Image is to have a mechanism
for bringing the node into a recoverable state. Thus, the Golden Image provides minimal functionality to
support Deluge, allowing the node to wireless reprogramming.

TOSBoot installs the Golden Image when the count of repeated resets exceeds a specified threshold. For
example, an error in reading the program binary could occur while writing to program flash. On such an
error, the node is reset and another attempt is made to program. When multiple attempts are made, the
Golden Image is loaded. The reset count also allows a human to install the Golden Image by resetting the
node multiple times consecutively, which we call the Rollback Gesture. The Rollback Gesture is especially
useful in cases where a buggy application no longer accepts radio communication. The user can input the
Rollback Gesture and inject a new program without the need of a physical connection to the desktop.

5.3 Theory of Operation

Ease of use is a primary design goal, trying to make management of network programming as simple and
seamless as possible. A simple command-line java toolchain is used for all operations. The java toolchain
may be used to ping the network and retrieve information about what images are in the network, inject new
images, and inject commands to program the network with a new image. One important aspect of Deluge
is that the network is viewed in aggregate as a single entity. When using the java toolchain to retrieve
information, no information about which node replied is given. The assumption is that any node should
provide information about the network’s eventual state.

To ease management, each program image is tagged at compile time with metadata including: program
name, compile time, user ID that compiled the program, the hostname the compilation occurred at, size
of the image, and the amount of the image injected into the network. Thus metadata is included with the
program image when it is propagated. Much of the metadata is useful just for identifying where the image
came from. Some useful aspects are checking which code base the image was compiled against or who was
responsible for the compilation.

The metadata also provides a convenient mechanism to uniquely identify program images. One use is
automatic resume of partially injected images. The java toolchain will automatically detect an attempt to
resume the injection of an identical image and set the version number accordingly. This is greatly useful
when there are multiple injection points in the network. Users need not concern themselves with managing
version numbers and ensuring that the version numbers are equal across the entire network.

In order to minimize operator error, user confirmation is required when requesting an expensive operation,
such as injecting a new image that may overwrite a current one. One drawback of a simple command-line
utility is its ease of issuing commands unintentionally. In recent deployments, we have witnessed these
operator errors and can cause significant energy and time expense. When requesting an expensive operation,
the java toolchain will provide information relevant to the context. In the case of injecting an image,
information for both the image for injection and the image being replaced is displayed.

Deluge does not require any persistent state on the desktop PC. All necessary state is kept in the network.
Synchronization occurs on each execution of the java toolchain and allows an administrator to switch desktop
PCs without copying persistent state.

11

Deluge works equally well no matter which node is connected to the desktop PC. A program image can
be physically injected into any Deluge node within the network. Furthermore, the Deluge node need not
be connected to the rest of the wireless network during injection. With an inaccessible deployment, a node
with a new injection can be dropped into the network and dissemination will begin. Additionally, the java
toolchain works just as well over a TOSBase node, a bridge that forwards packets between the desktop PC
and the wireless network. The java toolchain will automatically detect whether a Deluge or TOSBase node
is connected and adjust its actions accordingly.

Finally, Deluge exports a very simple interface to extend its functionality. For example, Deluge can be
enabled or disabled to control which nodes participate in the dissemination process. Additionally, nodes can
decide which program image to use and when, thus allowing for heterogeneous networks where nodes execute
different binaries. A detailed presentation of the API is given in

6 Frequently Asked Questions

This section lists a set of common mistakes that users should avoid:

1. T injected the reboot command, my node reboots, but does not reprogram itself to the
new image.

Look carefully at the LEDs displayed by TOSBoot. If TOSBoot blinks the red LED three times before
counting down, the system voltage is too low to safely reprogram the node. Replace your batteries and
try again.

2. Every time I program my node with a serial connection, it begins rebooting into a version
previously injected with Deluge.

Deluge is an epidemic protocol. It ensures reliability and reachability by periodically polling its neigh-
borhood to see if any nodes are inconsistent and brings them up-to-date if necessary. The best way to
install program images on Deluge nodes is through the Deluge protocol itself.

3. TOS_LOCAL_ADDRESS and TOS_GROUP_ID are not restored appropriately.

Important mote state including TOS_LOCAL_ADDRESS and TOS_GROUP_ID are restored when
NetProg.init() is called. It is important to remember that NetProg.init() should be
called before using any of these values. To ensure this behavior, wire DelugeC.StdControl
or NetProgC.StdControl to Main.StdControl and never reference TOS_LOCAL_ADDRESS and
TOS_GROUP_ID in StdControl.init() of any module.

12

	Introduction
	Deluge 2.0

	Quick Start
	The Software
	Setting Up Your TinyOS Node
	Formatting the Flash
	Installing Deluge
	Pinging the Node

	Installing the Golden Image
	Preparing Your Code
	Injecting a New Program Image
	Reprogramming with a New Program Image
	Congratulations

	Deluge Java Toolchain
	Ping
	Inject
	Reboot
	Erase
	Reset
	Dump

	Network Programming API
	Deluge API
	NetProg API

	Network Programming Details
	TOSBoot
	Golden Image
	Theory of Operation

	Frequently Asked Questions

