
Nucleus Network Management

Gilman Tolle

August 14, 2005

Contents

1 Introduction 2

2 Installation 3

2.1 Obtaining the Software . 3

2.2 Compiling the Java Tools . 4

2.3 Compiling a TinyOS Program with Nucleus . 4

3 RAM Queries 5

3.1 Preparing your TinyOS Application . 5

3.2 Using the Java Query Tools . 5

4 Attribute Queries 7

4.1 Exposing an Attribute in TinyOS . 7

4.2 Using the Java Query Tools . 9

4.2.1 Retrieving Attributes from One Mote . 9

4.2.2 Retrieving Attributes from a Whole Network . 9

4.3 More Ways to Expose Attributes . 10

4.3.1 Exposing List Attributes . 10

4.3.2 Exposing Split-Phase Attributes . 11

4.3.3 Exposing Globally-Unique Attributes . 12

5 Event Logging 13

1

1 Introduction

The purpose of a network management system for you, the developer, is to make it easy to expose information
about the functioning of your networked applications. The purpose of a network management system for
you, the administrator, is to make it easy to gather information about the functioning of the networked
application you are monitoring.

In your previous applications, you have probably written your own message types, generated mig classes, and
written client-side Java applications just to get data out of your motes. The Nucleus system is a matched
set of TinyOS components and Java tools that make exposing and collecting network information easier.

You can use Nucleus to expose information in three different ways:

• Attribute Queries: Let’s say that you are writing a multihop routing component, and want to get a
snapshot of the current state of the routing graph. You can expose the address and cost of each node’s
next hop and the list of potential next hops as Nucleus Attributes. You can then inject a Nucleus
Query into the network to gather the current contents of these attributes.

More generally, Nucleus allows the developer to associate a human-readable name with an item of
data. The item of data must have a known constant length. An attribute can also be a list of data
items each with known constant length, and individual items can be accessed by index. Nucleus then
assigns a small integer identifier to the attribute name, so that a compact query can be constructed.
The query can be submitted over the network or the serial connection, and the results can be directed
to the network or the serial connection.

• RAM Queries: Without modifying your program at all, Nucleus allows you to remotely retrieve the
contents of symbols in RAM. If you want to expose an attribute without much extra work, you can
just create a variable to store it, and use the Nucleus RAM Query to retrieve its contents.

For Nucleus, the name of a RAM symbol is the name of the variable, prefixed by the component name
if it is a component-local variable. The identifier of a RAM symbol is the actual location in RAM.
The length of the RAM symbol is the actual size of the memory referenced by the symbol. The query
processor just reads the data directly from RAM when the symbol is requested.

• Log Events: Now let’s say that your routing protocol is adaptive, and you want to study its adaptation
pattern. You can expose a Nucleus Event that contains a message like “Node %d changed its parent to
Node %d, with cost %d”, and the data necessary to make this event meaningful. When the component
changes parents you can signal the event, which can be stored locally or sent off the node immediately.

The Nucleus framework can save you the time and effort you would have spent on writing your own custom
messages for collecting this data. The RAM and code overhead of Nucleus is small enough that you can
leave the data collection framework in your program even after you have finished debugging it. Then, when
your application begins to perform strangely in the field, you will be able to gather more data about what’s
going on.

2

2 Installation

This section shows how to prepare your development machine to begin using Nucleus.

2.1 Obtaining the Software

Software to get:

1. A working TinyOS development environment. You should already have this, but if you don’t, go to
http://www.tinyos.net and follow the documentation there.

2. Cygwin, if you are using Windows.

3. The ncftp package if you are running Cygwin. The installation of XML::Simple depends on it.

4. nesC 1.2: Nucleus makes heavy use of the nesC 1.2 attribute tags and generic components.

(a) Download nesc-1.2alpha??.tar.gz from http://sourceforge.net/projects/nescc

(b) Unpack it into /opt and change to the nesc-1.2alpha?? directory.
(c) Run ./configure

(d) Run make

(e) Run make install

5. Perl XML::Simple: Nucleus also depends on the XML::Simple Perl module.

(a) Run cpan install XML::Simple

(b) Press the enter key through all the prompts
(c) Unblock the perl program if Windows asks
(d) When you can’t press enter anymore, you have to select your continent, country, and a few servers

to access. This part is only necessary if this is the first time you have run cpan.
(e) Keep pressing enter until the rest is done.

Check out the tinyos-1.x tree from CVS.

If you already have the tree, then run cvs update -d in these directories:

• tinyos-1.x/tools/make/, which is needed by the Nucleus build process.

• tinyos-1.x/beta/Drip/, which contains the TinyOS components and Java tools for the Drip dissem-
ination layer.

• tinyos-1.x/beta/Drain/, which contains the TinyOS components and Java tools for the Drain col-
lection layer.

• tinyos-1.x/contrib/nucleus/, which contains the TinyOS components, Java tools, and build scripts
for the Nucleus system.

If you don’t have these directories, run cvs update -d in the tinyos-1.x/beta directory and in the
tinyos-1.x/contrib directory.

Enable the new Make system by adding this line to your /.bashrc:

export MAKERULES=$TOSDIR/../tools/make/Makerules

3

2.2 Compiling the Java Tools

Once you have updated your CVS tree, you can compile the Nucleus Java tools.

First, you need to add the Java directories to your $CLASSPATH environment variable. Here is how to do this
if you are running the bash shell. Your mileage may vary.

Insert these lines into your $(HOME)/.bashrc.

export CLASSPATH="$CLASSPATH;<full path>/tinyos-1.x/beta/Drip/tools/java/"
export CLASSPATH="$CLASSPATH;<full path>/tinyos-1.x/beta/Drain/tools/java/"
export CLASSPATH="$CLASSPATH;<full path>/tinyos-1.x/contrib/nucleus/tools/java/"

NOTE: You must replace the <full path> in those lines with the full path to your TinyOS tree. If you are
running in Cygwin, you MUST include the Windows drive specifier, like this: C:/Program Files/UCB/cygwin/opt.
Forward slashes are preferred.

Once you have edited .bashrc, type source $HOME/.bashrc, or close and re-open your terminal window.

Then, you can compile the Java tools. Run make in each of the following directories:

1. tinyos-1.x/beta/Drip/tools/java/net/tinyos/drip

2. tinyos-1.x/beta/Drain/tools/java/net/tinyos/drain

3. tinyos-1.x/contrib/nucleus/tools/java/net/tinyos/nucleus

2.3 Compiling a TinyOS Program with Nucleus

Now, we are going to modify an TinyOS application to compile with Nucleus. If you are doing this for the
first time, try this on the CntToLeds application in tinyos-1.x/apps. You will perform these steps for every
application that you want to make Nucleus-enabled.

Add the following lines to your application’s Makefile:

TOSMAKE_PATH += $(TOSDIR)/../contrib/nucleus/scripts

CFLAGS += -I$(TOSDIR)/../beta/Drip
CFLAGS += -I$(TOSDIR)/../beta/Drain
CFLAGS += -I$(TOSDIR)/../contrib/nucleus/tos/lib/Nucleus

Make sure to place them before the include ... Makerules line. Also, make sure you use CFLAGS, not
PFLAGS. The Nucleus build process needs to place an include before the includes specified here, and it
depends on setting PFLAGS for this.

Now, to compile your application with Nucleus, use this command:

make <platform> nucleus

The application should compile normally, with some extra messages in the build process.

This procedure makes it possible to compile an application with Nucleus. The next section will show you how
to actually add the Nucleus components to your application, and how to gather data from the application.

4

3 RAM Queries

The simplest use of Nucleus is to retrieve RAM symbols from your running application.

3.1 Preparing your TinyOS Application

Enable the Nucleus query components by adding the following lines to your application’s top-level configu-
ration, usually located in <your application name>.nc:

components MgmtQueryC;
Main.StdControl -> MgmtQueryC;

Including MgmtQueryC will also include the rest of the components needed by Nucleus.

Then, compile and install your application on a mote:

make <platform> nucleus install,<nodeid>

3.2 Using the Java Query Tools

Now that your application has become Nucleus-enabled and has been installed, you can retrieve the values
of RAM symbols.

First, attach a SerialForwarder to your mote. Use the following command:

java net.tinyos.sf.SerialForwarder -comm <your MOTECOM> &

For details on the MOTECOM, see the TinyOS Tutorial.

Nucleus provides a command-line query tool that you can use to retrieve RAM sybols (and attributes). For
now, we will be running this tool directly, but you could also consider running it from another script as part
of a larger data-gathering system.

The Nucleus Query tool is called net.tinyos.nucleus.NucleusQuery. To test that the query tool is
correctly set up, run the following command:

java net.tinyos.nucleus.NucleusQuery

Now, make an alias for it by adding the following line to your .bashrc:

alias nquery=’java net.tinyos.nucleus.NucleusQuery’

Run source $HOME/.bashrc or re-open your terminal window.

The tool needs to access a file called nucleusSchema.xml that has been generated by the build process and
placed in your TinyOS application’s build/<your platform>/ directory.

For now, make sure to run the Nucleus Query tool from the application’s build/<your platform>/ directory.
If you would prefer to run the query tools from the application’s main directory, then you can add this option
to the nquery command line: -f build/<your platform>/nucleusSchema.xml.

To get a list of the available RAM symbols, you can open the nucleusSchema.xml in a text editor. This file
also contains lists of attributes and events. For the list of RAM symbols, find the <symbols> section. Global

5

symbols like TOS LOCAL ADDRESS keep their original names and symbols within components are prefixed with
the name of the component, like Counter.state.

Choose the name of the RAM symbol you want to retrieve.

We are going to start by querying the mote that you just installed. This mote is directly attached to the
serial port. By default, the Nucleus Query tool disseminates queries to the entire network using Drip, and
retrieves responses over the Drain collection tree. Because we want to query a directly-attached mote, you
run nquery with a few extra flags, like this:

nquery -s link -d serial <RAM Symbol Name>

The -s link flag specifies that you are injecting the query to the mote attached to the local link. The -d
serial flag indicates that the query response should also be sent over the serial port.

One second later, which is the default delay, you should see results looking like this:

<nodeid>: <RAM Symbol Name> = <RAM Symbol Value>

You can also submit a query for multiple RAM symbols at the same time:

nquery -s link -d serial <RAM Symbol A> <RAM Symbol B> ...

<nodeid>: <RAM Symbol A> = <RAM Symbol A Value>
<nodeid>: <RAM Symbol B> = <RAM Symbol B Value>

The lack of types for RAM symbols results in some important limitations on Nucleus RAM Query:

• Every RAM symbol will be interpreted as an unsigned integer.

• RAM symbols representing structures and arrays will be returned in their entirety, but will not be
further parsed by Nucleus Query.

• To display a RAM symbol as a sequence of hex bytes instead of as an integer, add the -b flag to the
nquery command line. You can then use other tools to reconstruct the data.

6

4 Attribute Queries

In addition to implicitly exposing your data through RAM symbols, you can explicitly expose a piece of data
as a Nucleus Attribute. Exposing your data as a Nucleus Attribute gives you some additional advantages
over exposing it as a RAM symbol:

• Your data will be exposed with a type, which can be used by the tools to parse the bytes into a
meaningful structure.

• You can expose a list of items as a single attribute, and retrieve individual elements of the list. This
allows you to collect things like a neighbor table or a received messages counter for each different Active
Message type.

Nucleus attributes are not tied to a specific compilation of an application. If you are using RAM symbols
and you change your application, the location of every RAM symbol may change. Then, if some nodes are
running version 1 of your application and other nodes are running version 2 of the application, different data
items will be returned to the same query.

Nucleus attributes are more abstract than RAM symbols. They may be more appropriate when you want
to separate the name of the attribute from the name of the variable, or when you want different programs
to export the same attribute.

4.1 Exposing an Attribute in TinyOS

This section explains what you need to change in your application in order to expose a Nucleus attribute.
Nucleus Attributes are always exported by nesC modules. The easiest way to export an attribute is to add
it to the module that contains the data. As an illustrative example, consider a routing component that looks
like this:

module RoutingM {
[uses some communication components, etc]

}
implementation {
uint16_t currentParent;

[has some routing logic to change that parent]
}

We’ll expose the current parent as a Nucleus Attribute. These are the basic steps:

1. Decide on a name for the attribute (i.e. RoutingParent).

2. Expose the attribute.

3. Write code to give it out when it is asked for.

There are three changes you have to make to your module .nc file:

1. Add this line to the top of the file:

includes Attrs;

7

2. Add a line to the module definition, like this:

module RoutingM {
provides interface Attr<uint16_t> as RoutingParent @nucleusAttr("RoutingParent");

}

This line does four things:

• It provides a standard interface that can be used to access the attribute. (Attr)
• It associates a type with the attribute. (uint16 t) The < > brackets are the exact syntax you

must use, because this type is being used as an argument to a nesC 1.2 generic interface. In this
example, we are creating an interface Attr of type uint16 t.

• It sets a local name for the Attr interface by using the as command.
• It marks the provided interface as an exposed attribute with the @nucleusAttr() tag. Remove

this tag, and the Nucleus system will not expose the attribute. The argument to this tag becomes
the human-readable name of the attribute. (RoutingParent)

3. Then, add code to respond with the attribute when it is requested.

implementation {
uint16_t currentParent;

[has some routing logic to change that parent]

command result_t RoutingParent.get(uint16_t* buf) {
memcpy(buf, ¤tParent, sizeof(uint16_t));
signal RoutingParent.getDone(buf);
return SUCCESS;

}
}

This piece of code does four things:

• It implements a command that will be called by the query system when the attribute is requested.
• It copies the attribute value from a module variable into the given buffer pointer. Note that you

must use memcpy to copy the attribute. Using =, like *buf = currentParent; will not work due
to pointer alignment restrictions.

• It sends a signal to indicate that the attribute has been copied.
• It returns SUCCESS to the querier to indicate that the attribute has been successfully retrieved.

And that’s it. During compilation, the Nucleus scripts will:

1. find every exposed attribute in your application by looking for the @nucleusAttr() tags

2. assign each attribute a unique numeric identifier

3. generate a nesC configuration that wires each of them into the Attribute dispatching component.

If your attribute is not wired to anything, the code will be eliminated by the nesC compiler. When you
compile without make <platform> nucleus the attributes will not be included. Future releases will include
the ability to select which attributes will be included in the application.

Now, reinstall your application with make <platform> nucleus install,<nodeid>.

8

4.2 Using the Java Query Tools

Querying for Attributes is very similar to querying for RAM symbols. After building your application,
open the nucleusSchema.xml file in a text editor. The <attributes> section contains the list of available
attributes, with names and types as specified in the program.

As described in section 3.2, you must first run SerialForwarder and set up the nquery alias.

4.2.1 Retrieving Attributes from One Mote

You can retrieve the value of an Attribute from your attached node with this command:

nquery -s link -d serial <Attribute Name>

You should see output like this:

<nodeid>: <Attribute Name> = <Attribute Value>

You can submit queries for multiple Attributes at the same time:

nquery -s link -d serial <Attribute Name A> <Attribute Name B> ...

You should see output like this:

<nodeid>: <Attribute Name A> = <Attribute Value A>
<nodeid>: <Attribute Name B> = <Attribute Value B>

To keep Nucleus Query as simple as possible, the size of a Nucleus Query response is limited to a single
message. This results in the following limitations:

• If the value of a single Attribute or RAM symbol is too large to fit in a single message, it will not be
returned.

• If the combined size of the Attribute or RAM symbol values is too large to fit in a single message,
values at the end of the list will not be returned.

4.2.2 Retrieving Attributes from a Whole Network

If you want to retrieve Attributes or RAM symbols from the entire network, you must take the following
steps:

1. Attach a mote running the TOSBase application to your PC. To query a whole network with Nucleus,
you have to inject the queries and retrieve the responses through a TOSBase.

2. Build a Drain collection tree by running the following Java command:

java net.tinyos.drain.Drain

9

Once this command has completed, the tree is built. It will take a few seconds to run. This tree will
then be used to collect values from remote nodes. It will persist until you build another tree. If you
start to have trouble retrieving data from the network, the environment may have shifted enough to
justify building a new tree. You may also want to rebuild the tree before each query, if you query
infrequently enough.

3. Run the Nucleus Query command without the -s and -d flags:

nquery <Attribute Name> ...

The nquery tool waits for a specified amount of time to collect responses before returning the results. Set this
response delay with the -t <delay in 10ths of a second> flag. The default value is 10, or one second.

This flag sets two different things: how long each node will wait before responding, and how long the tool
will wait before assuming that each node has responded. Nodes respond at a random time less than or equal
to the delay. The tool waits an additional second te account for routing delays. If your network has many
nodes, response traffic sent with the default delay may overwhelm the network. You may want to increase
the delay in these situations.

4.3 More Ways to Expose Attributes

4.3.1 Exposing List Attributes

To expose an attribute that represents a list of data items, such as a neighbor table, you must use a slightly
different interface in your TinyOS component. This code shows you how to do it:

module RoutingM {
<uses some communication components, etc>

provides interface AttrList<uint16_t> as RoutingNeighbors @nucleusAttr("RoutingNeighbors");
}

Note that you are now providing an AttrList interface instead of an Attr interface. Every element in the
list must be of the specified type. The rest is unchanged.

implementation {
uint16_t neighbors[ROUTING_MAX_NEIGHBORS];

<has some logic to fill that table>

command result_t RoutingNeighbors.get(uint16_t *buf, uint8_t pos) {
if (pos >= ROUTING_MAX_NEIGHBORS) {
return FAIL;

}
memcpy(buf, &neighbors[pos], sizeof(uint16_t));
signal RoutingNeighbors.getDone(buf);
return SUCCESS;

}
}

10

Note that the AttrList.get() command provides a buffer pointer as well as an index. This is the position
that is being requested. Check whether the position is valid, then copy the element at that position into the
buffer. The internal representation of your list is your choice.

To retrieve an element of a list-structured attribute, use the following nquery command:

nquery <Attribute Name>.<list index integer>

4.3.2 Exposing Split-Phase Attributes

If your attribute’s value must be obtained through a split-phase operation, like a sensor reading or the result
of a complex calculation, you can fill the attribute buffer in a split-phase fashion. Here is some example
code:

module TempSensorM {
provides interface Attr<uint16_t> as Temperature @nucleusAttr("Temperature");
uses interface ADC;

}

Exposing an split-phase attribute uses the same interface as a non-split-phase attribute.

implementation {

uint16_t *savedBuf;
uint16_t savedReading;

command result_t Temperature.get(uint16_t *buf) {
// make sure that only one request is outstanding
if (savedBuf != NULL)
return FAIL;

savedBuf = buf;
call ADC.getData();
return SUCCESS;

}
}

You will have to save the buffer pointer given to the get() command, so that you can fill it when the data
is ready.

async event result_t ADC.dataReady(uint16_t data) {
savedReading = data;
post TemperatureTask();
return SUCCESS;

}

task void TemperatureTask() {
memcpy(savedBuf, &savedReading, sizeof(uint16_t));
signal Temperature.getDone(savedBuf);
savedBuf = NULL;

}
}

11

Once the data is ready, copy it into the buffer and signal the sendDone event for the attribute.

4.3.3 Exposing Globally-Unique Attributes

Normally, the Nucleus scripts automatically assign a number to each attribute. This number is only unique
within the application, meaning that in a heterogeneous network, a different attribute may be given the
same number as your attribute. Then, your query will retrieve strange data.

To solve this problem, you can assign your own number to an attribute. This is very similar to the current
TinyOS practice of assigning AM types. Here is some example code:

[... in some .h file ...]

enum {
ATTR_ROUTINGPARENT = <some 16-bit integer>

};

Like AM, you should make an enumerated type to represent that number. The prefix doesn’t really matter,
but it may be useful to mark this value as an attribute identifier.

[... in a module .nc file ...]

includes <the .h file that defines the number>

module RoutingM {
<uses some communication components, etc>

provides interface Attr<uint16_t> as RoutingParent
@nucleusAttr("RoutingParent", ATTR_ROUTINGPARENT);

}

The only difference here is that the identifier has been passed as an argument to the @nucleusAttr tag.
This enables the build scripts to use your number instead of the default number.

By placing the number in a .h file, you make it possible for any component that wants to expose the
ATTR ROUTINGPARENT attribute to give your number to the @nucleusAttr() tag.

12

5 Event Logging

This section will be filled in once the Event Logging system is complete. But, the Query system works now!

13

