
NestArch:PrototypeTimeSynchronizationService

TedHerman,Universityof Iowa,herman@cs.uiowa.edu

6 January2003

Abstract

Thisdocumentisabriefexplanationof arudimentarytimeservice(Tsync)
developedfor the NEST ChallengeArchitecture. The documentdescribes
the basicdesign,performanceexpectationsfor Tsync, and its TinyOS im-
plementation.

1 Introduction

Time synchronizationin a distributed,real-time,systemis a basicservice.It can
be usefulfor theNESTChallengeProjectin several ways: calculationof veloci-
ties,coordinationof middlewareservices,andresourceallocationalgorithms.Ini-
tial specificationsfor a time synchronizationservicewereproposedin theFall of
2002; subsequentexperienceimplementingtime synchronizationin the motear-
chitecture,alongwith thepressureof projectdeadlines,havemotivatedafew mod-
ificationsto theinitial specification.Howeverthespirit of theoriginalspecification
remainsin place:globalsystemtime is representedby aninteger, denominatedin
30.5176µsecunits (ie, 32,768ticks persecond).Theremainderof this document
explainsthebasicsof theinitial implementation,consequencesof its simpledesign
with respectto expectedperformance,andavenuesfor improvement.Throughout
thisdocumentwereferto thetimesynchronizationserviceasTsync.

2 The Interface

Usersof Tsync will behappy to seethatit offersasimpleinterface.In additionto
thestandardcontrol interfaceStdControl (usedby many components),Tsync
supportstheTime interface.This interfaceprovidestwo commandsfor obtaining
the currenttime, getGlobalTime andgetLocalTime. The caller of these
commandssuppliesa pointer to a timeSync structure,which is nothingmore
thana uint32-integer to storethe time (in future, this structurecould become

1



richer). In most practice,there is no differencebetweenthesetwo commands;
during initialization of a motenetwork, getGlobalTime could returna FAIL
statusin casemoteclockshave not yet beensynchronized,whereasgetLocal-
Time alwayssucceeds.

In theinitial draftof thetimesynchronizationtimewasspecifiedasauint48-
integer;elsewhere,SuPingproposedthattimeberepresentedbyuint64-integers.
Wechoseuint32 for thepresentbecauseit is adequatefor thechallengedemon-
strationandcan easilybe changedlater. Note that uint32-valuedtime corre-
spondsto about36hours.

Earlier in our efforts to specifya time synchronizationservice,we considered
the possibility of regional time bases(local time, somewhat like a “time zone”)
suchastheReferenceBroadcastSystem[1] uses.Otherpossibilitiesnot contem-
plated include using time intervals (a pair of numbersdenotesan interval, and
this interval containsthetruetime), vectorsor matrices,andevengraph-theoretic
structures.Also, it is reasonableto considerenhancingthetimeSync structure
somedayto have indicationsof thequalityof theclockreturnedby acall to theser-
vice. In addition,theinterfacecouldhave interactionsfor long-termenergy saving,
tuning,andotherfactors.

3 Some Facts about Mote Clocks

We explain someof thebasicsabouthow motesdealwith clocks,sincethis influ-
encesour implementationandexplainssomeof theperformanceconsequences.

Motesdonothave“clocks” assuch;rather, someregistersof theprocessorcan
be programmed(subjectto several limitations) to incrementwith eachprocessor
cycle (eg at 4 MHz) andgeneratean interruptuponreachinga maximumcount.
Thereforewe’vegotto simulateaclock. Sinceourdesiredclockprecisionis 32768
Hz, our simulatedclock shouldideally advanceonceper122.07processorcycles.
This turns out to be impracticalfor two reasons.First, the effort of processing
interruptsto incrementa softwarecounteris too expensive (competingwith other
processingneeds);second,theprocessoris not soflexible in how it canprogram
its hardwarecounters.

Thehardwarecounterbehindthesimulatedclockcanbeprogrammingin eight
differentgranularities,andfor eachof thesegranularitiesthereis a multiplier. If
thegranularityis setat 32768Hz, thenan interruptwill occurafter30.5176µsec
(minimum) up to 7.78198msec(maximum),dependingon the valueof the8-bit
multiplier. Othergranularitiesare4096,1024,512,256,128,32, and0 Hz. This
impliesthatif wedesireaninterruptto occurabouteverysecond,eitheramultiplier
of 32 with agranularityof 32canbeusedor amultiplier of 128with agranularity

2



of 128canbeused;highergranularitieswon’t work if wewantoneclock interrupt
persecond.Why is this important?It hasconsequencesfor ourdesiredimplemen-
tationof a time servicewith 32 KHz precision.It is just too expensive to actually
incrementtheclock at 32768Hz; however if thehardwarecounteris programmed
to interruptoncepersecond,theneachinterruptwill trigger

clock = clock + 32768

theoverheadis acceptablylow, andwe have thedesiredresult!? Well, not really.
Whatif someapplicationqueriesthetimeservicefor thecurrentclockbetweenthe
counter-driven interrupts?Theaccuracy will bearoundhalf asecondon average–
we might aswell usea clock whoseunitsarehalf seconds.Fortunately, thestory
doesn’t endhere.

The processorcanalso read the valueof the hardwarecounter, beforeit has
generatedaninterrupt.Thusaninstantaneousreadingof time is possible.We im-
plementedthis approachfor Tsync. Its accuracy is, however, dependenton the
granularityof thehardwarecounter. If thetimer hasbeensetto fire oncepersec-
ond,thenit setsthegranularityto 128Hz, soaninstantaneousreadingwill havean
accuracy of about3.9 millisecondson average(andeachcounter-driven interrupt
adds256to thecounter).Weanticipatethisto bethenormfor timersettings(firing
onceper second).Whenthe timer is setto higherfrequency, say10 millisecond
firing, thenthegranularitydoesbecome32768Hz, but this is expensive andonly
to beusedsparingly. Applicationsthatneedto measurethedifferencebetweentwo
timesobtainedfrom Tsync thereforeshouldbedesignedin thecontext of timer(ie
theTinyOSTimer component)settings.

In developingtheprototypeTsync implementation,we calibratedits software
clock using a GPS-deliveredpulse-per-secondsignal. We observed that Tsync
time is about1.5% slower thanreal time at typical timer settings;at the highest
granularity, theclock ranabout3% slower thanreal time. We speculatethatmost
of this drift is dueto delaysof interruptprocessing.In the initial version,thereis
no correctionto thesoftwareclock to compensatefor thisobservedphenomenon.

4 Basic Design

The constraintsfor our basicdesignare: (1) simplicity; (2) somefault tolerance;
(3) no built-in dependenceon basestationsor specializedmoteroles.

Ourdesignimplicitly electsthemotewith thesmallestidentifierto bethe“root
clock”. Theroot clock periodicallyannouncesthevalueof its Tsync-time; other
motescopy the root clock. Thusthis is a pushdesign(whereasNTP usesa pull

3



methodto synchronize).Only onemessagetype(Beacon) is usedby theTsync
component.

Eachnon-rootmodechooses,amongits setof neighbors,onewith leastdis-
tance(measuredin hops)to theroot. Theneighborchosensuppliesits clock asan
approximationto the root time. Thesetof neighborsis determinedby building a
tablebasedonreceivedbeaconmessages.Beaconmessagescontainfieldsto name
theroot identifier, thenumberof hopsto theroot, thesender’s clock at theinstant
of sending,anda few othervalues.In the initial implementation,thereis no cor-
rectionfor thelatency of sendingandreceiving abeaconmessage(weestimatethe
latency to beabout36 milliseconds).

Whathappensif amotedies,or a link is somehow lostbetweenmotes?Tsync
usesan agingtechniqueto maintainthe neighbortable. If a beaconhasn’t been
received for too long, thena neighboris removed from the table. If, asa result,
no neighborcan offer a path to the currentroot, a mote will adopta new root.
Technicallythis is doneby thewell-known “count to infinity” methodof distance-
vectorrouting protocols. The Tsync implementationusesa hard-codedlimit on
feasiblehopdistancesto forcetheeventualextinguishingof pathinformation.Thus
if a rootmotedies,eventuallyanew rootemerges.

Whathappensif a new mote,which hasa lower identifier thanany previously
known, entersthe system? We didn’t want the entire systemto adopt the new
mote’s clock asit becameroot. ThereforeTsync’s implementationrefusesto ac-
cept the clock in a beaconmessageunlessthat beacon’s senderhasa nonempty
neighborhood;anda motewith an emptyneighborhoodacceptsthe clock of the
first beacon(with nonemptyneighborhood)thatit receives.

To besure,therearemany otherfailurecasesthatTsync doesnotcover;better
fault toleranceis justoneof theareasof improvementfor futureversionsof Tsync.

5 Performance

As the readercanseefrom thebasicdesign,Tsync doesn’t offer anything in the
way of performanceguarantees.We guessthat clockswill bewithin about36 � h
millisecondsof the root mote’s, whereh is the numberof hopsto the root. The
clocksareadjustedwhenever a new root is detectedor whenever someneighbor
hasa smallerclock thanthecurrenttime. ThusTsync’s clocksarenot monotonic
in theinitial version.

4



References

[1] J Elson,L Girod, D Estrin.Fine-grainednetwork time synchronizationusing
referencebroadcasts.May 2002.

5


