NestArch:PrototypeTime Synchronizatiorservice

TedHerman,Universityof lowa, her man@s. ui owa. edu

6 January2003

Abstract

Thisdocuments abrief explanationof arudimentarytime service(Tsync)
developedfor the NEST ChallengeArchitecture. The documentdescribes
the basicdesign,performancexpectationdor Tsync, andits TinyOS im-
plementation.

1 Introduction

Time synchronizatiorin a distributed, real-time,systemis a basicservice.It can
be usefulfor the NEST ChallengeProjectin severalways: calculationof veloci-
ties, coordinationof middlevareservicesandresourceallocationalgorithms.Ini-
tial specificationdor a time synchronizatiorservicewere proposedn the Fall of
2002; subsequengxperienceimplementingtime synchronizatiorin the mote ar-
chitecturealongwith the pressuref projectdeadlineshave motivateda few mod-
ificationsto theinitial specificationHoweverthespirit of theoriginal specification
remainsin place:globalsystemtime is representetdy aninteger, denominatedn
30.5176psecunits (ie, 32,768ticks persecond).Theremaindemf this document
explainsthebasicsof theinitial implementationconsequences its simpledesign
with respecto expectedperformanceandavenuesor improvement. Throughout
thisdocumentve referto thetime synchronizatiorserviceasTsync.

2 Thelnterface

Usersof Tsync will be happy to seethatit offersa simpleinterface.In additionto
the standardcontrolinterfaceSt dCont r ol (usedby mary components)Tsync
supportgheTi e interface. This interfaceprovidestwo commandgor obtaining
the currenttime, get G obal Ti ne andget Local Ti me. The caller of these
commandssuppliesa pointerto at i mneSync structure,which is nothing more
thana ui nt 32-integer to storethe time (in future, this structurecould become



richer). In most practice,thereis no differencebetweenthesetwo commands;
during initialization of a motenetwork, get A obal Ti ne couldreturna FAI L
statusin casemote clockshave not yet beensynchronizedwhereagyet Local -
Ti me alwayssucceeds.

In theinitial draftof thetime synchronizationime wasspecifiedasaui nt 48-
integer;elsavhere, SuPingproposedhattimeberepresentety ui nt 64-integers.
We choseui nt 32 for thepresenbecausdt is adequatdor the challengedemon-
strationand can easily be changedater Note that ui nt 32-valuedtime corre-
spondgo about36 hours.

Earlierin our efforts to specifyatime synchronizatiorservice we considered
the possibility of regional time baseglocal time, someavhat like a “time zone”)
suchasthe ReferenceBroadcasSystem[1] uses.Otherpossibilitiesnot contem-
platedinclude using time intenals (a pair of numbersdenotesan intenal, and
this interval containsthe truetime), vectorsor matrices,andeven graph-theoretic
structures.Also, it is reasonabléo considerenhancinghet i neSync structure
somedayto have indicationsof thequality of theclockreturnedoy acall to the ser
vice. In addition,theinterfacecouldhave interactiondor long-termenegy saving,
tuning,andotherfactors.

3 Some Facts about Mote Clocks

We explain someof the basicsabouthow motesdealwith clocks,sincethis influ-
encesourimplementatiorandexplainssomeof the performanceonsequences.
Motesdo nothave “clocks” assuch;rather someregistersof the processocan
be programmedsubjectto several limitations) to incrementwith eachprocessor
cycle (eg at 4 MHz) and generatean interruptuponreachinga maximumecount.
Thereforewe’ve gotto simulateaclock. Sinceourdesiredclock precisionis 32768
Hz, our simulatedclock shouldideally advanceonceper 122.07processocycles.
This turns out to be impracticalfor two reasons.First, the effort of processing
interruptsto incrementa software counteris too expensve (competingwith other
processingieeds);secondthe processois not soflexible in how it canprogram
its hardwarecounters.
Thehardwarecounterbehindthe simulatedclock canbeprogrammingn eight
differentgranularitiesandfor eachof thesegranularitieshereis a multiplier. If
the granularityis setat 32768Hz, thenaninterruptwill occurafter30.5176usec
(minimum) up to 7.78198msec(maximum),dependingon the value of the 8-bit
multiplier. Othergranularitiesare4096,1024,512,256,128,32,and0 Hz. This
impliesthatif we desireaninterruptto occuraboutevery secondegitheramultiplier
of 32 with agranularityof 32 canbe usedor a multiplier of 128with a granularity



of 128canbe used;highergranularitiesvon’t work if we wantoneclock interrupt
persecondWhy is thisimportant?lt hasconsequencesr our desiredmplemen-
tation of atime servicewith 32 KHz precision.lt is just too expensve to actually
incrementheclock at 32768Hz; however if the hardwarecounteris programmed
to interruptoncepersecondtheneachinterruptwill trigger

clock = clock + 32768

the overheads acceptablyow, andwe have the desiredresult!? Well, not really.
Whatif someapplicationquerieshetime servicefor the currentclock betweerthe
counterdriveninterrupts?Theaccurag will bearoundhalf asecondon average-
we might aswell usea clock whoseunits are half seconds Fortunately the story
doesnt endhere.

The processorcanalsoreadthe value of the hardware countey beforeit has
generatecdninterrupt. Thusaninstantaneouseadingof time is possible.We im-
plementedhis approachfor Tsync. Its accurag is, however, dependenbn the
granularityof the hardwarecounter If the timer hasbeensetto fire oncepersec-
ond,thenit setsthegranularityto 128Hz, soaninstantaneouseadingwill have an
accurag of about3.9 millisecondson average(andeachcounterdriven interrupt
adds256to the counter).We anticipatethisto bethenormfor timer settinggfiring
oncepersecond).Whenthe timer is setto higherfrequeng, say 10 millisecond
firing, thenthe granularitydoesbecome32768Hz, but this is expensve andonly
to beusedsparingly Applicationsthatneedto measureahedifferencebetweenwo
timesobtainedrom Tsync thereforeshouldbedesignedn thecontext of timer (ie
the TinyOSTi mer componentyettings.

In developingthe prototypeTsync implementationyve calibratedts software
clock using a GPS-deNered pulse-peisecondsignal. We obsered that Tsync
time is about1.5% slower thanreal time at typical timer settings;at the highest
granularity the clock ranabout3% slowver thanrealtime. We speculatghatmost
of this drift is dueto delaysof interruptprocessingln theinitial version,thereis
no correctionto the softwareclock to compensatéor this obsered phenomenon.

4 Basic Design

The constraintsor our basicdesignare: (1) simplicity; (2) somefault tolerance;
(3) no built-in dependencen basestationsor specializednoteroles.
Ourdesignimplicitly electsthe motewith thesmallesidentifierto bethe“root
clock”. Theroot clock periodicallyannounceshe valueof its Tsync-time; other
motescopy theroot clock. Thusthis is a pushdesign(whereasNTP usesa pull



methodto synchronize) Only onemessagéype (Beacon) is usedby the Tsync
component.

Eachnon-rootmodechoosesamongits setof neighbors,onewith leastdis-
tance(measuredn hops)to theroot. The neighborchosersuppliests clock asan
approximationto theroottime. The setof neighborss determinecby building a
tablebasednrecevedbeacommessageBeacommessagesontainfieldsto name
therootidentifier the numberof hopsto theroot, the sendes clock attheinstant
of sending,anda few othervalues.In theinitial implementationthereis no cor
rectionfor thelatengy of sendingandreceving abeacormessagéwe estimatehe
lateng to beabout36 milliseconds).

Whathappensf amotedies,or alink is somehav lostbetweemmotes?Tsync
usesan agingtechniqueto maintainthe neighbortable. If a beacorhasnt been
receved for too long, thena neighboris removed from the table. If, asa result,
no neighborcan offer a pathto the currentroot, a mote will adopta new root.
Technicallythisis doneby thewell-known “countto infinity” methodof distance-
vectorrouting protocols. The Tsync implementatiorusesa hard-codedimit on
feasiblehopdistanceso forcetheeventualextinguishingof pathinformation. Thus
if arootmotedies,eventuallyanew rootemepges.

Whathappensf a nev mote,which hasalower identifierthanary previously
known, entersthe system? We didn’t want the entire systemto adoptthe new
motes clock asit becameaoot. ThereforeTsync’'s implementatiorrefusesto ac-
ceptthe clock in a beaconmessageinlessthat beacors senderhasa nonempty
neighborhoodanda mote with an empty neighborhoodacceptshe clock of the
first beacon(with nonemptyneighborhoodjhatit receves.

To besure therearemary otherfailurecaseghatTsync doesnotcover; better
faulttolerances justoneof theareasof improvementfor futureversionsof Tsync.

5 Performance

As thereadercanseefrom the basicdesign,Tsync doesrt offer anything in the
way of performanceguaranteesWe guessthat clockswill be within about36- h

millisecondsof the root motes, whereh is the numberof hopsto the root. The
clocksare adjustedwhene&er a new root is detectedor whenerer someneighbor
hasa smallerclock thanthe currenttime. ThusTsync’s clocksarenot monotonic
in theinitial version.



References

[1] JElson,L Girod, D Estrin. Fine-grainechetwork time synchronizatiorusing
referencebroadcastavay 2002.



