
Maté Manual

Philip Levis

pal@cs.berkeley.edu

Version 2.19a

November 30, 2004

Contents

1 Introduction 4

2 Maté Interfaces 4

2.1 MateAnalysis . 4

2.2 MateBuffer . 4

2.3 MateBytecodeLock . 5

2.4 MateBytecode . 5

2.5 MateContextLocks . 5

2.6 MateContextStatus . 5

2.7 MateContextSynch . 5

2.8 MateEngineControl . 5

2.9 MateEngineStatus . 6

2.10 MateError . 6

2.11 MateHandlerStore . 6

2.12 MateLocks . 6

2.13 MateQueue . 6

2.14 MateScheduler . 6

2.15 MateStacks . 6

2.16 MateTypes . 7

2.17 MateVirus . 7

2.18 MateType . 7

3 Maté Template 7

3.1 Scheduling: MateEngine . 8

3.2 Data Model: MStacks and MTypeManager . 10

3.3 Concurrency Management: MContextSynchProxy 11

3.3.1 Synchronization Algorithms . 13

3.4 Code Propagation: MHandlerStoreProxy . 14

3.4.1 Trickle: The Code Propagation Algorithm 15

4 Maté Operations 16

4.1 Operation Component Naming Convention . 16

4.2 Primitives . 17

5 Languages 19

6 VM Options 20

2

7 Java Toolchain 20

7.1 Constants Class . 21

7.2 Message Classes . 21

8 Conclusion 22

3

1 Introduction

Maté is a framework for building accessible programming interfaces to TinyOS sensor net-

works. The core of Maté is a bytecode interpreter template. A user can customize the

interpeter’s instruction set and execution events to match the abstractions needed by a par-

ticular deployment, and programs a network with high-level scripts. Given the right set of

abstractions, a user script can express complex behavior concisely and simply. Conciseness

allows programs to compile to a small number of instructions, so code propagation can be

rapid and inexpensive. Simplicity makes bugs less likely.

Once introduced, Maté programs self-propagate through a network using an epidemic

broadcast protocol. Reprogramming only requires introducing a single copy of a new pro-

gram: this copy will then install itself across the entire network.

This document describes the Maté architecture and how to use it. It outlines the major

TinyOS components that comprise a Maté template, the interfaces they use to interact,

describes the algorithms Maté uses for services such as code propagation and synchronization,

and covers how the VMBuilder tool builds a virtual machine from user specifications. It

assumes you have already read the Maté tutorials, and provides details beyond them, such

as how to implement a new language.

2 Maté Interfaces

The nesC components that comprise Maté have a wide range of interfaces. This section con-

tains a brief description of each interface. Detailed information on the individual commands

and events can be found in the standard nesdoc documentation.

2.1 MateAnalysis

MateAnalysis is for invoking resource utilization analysis. When new a handler arrives, the

Maté’s viral propagation subsystem calls MateAnalysis to compute what shared resources

the code uses. Maté uses this information to determine which handlers can safely run

concurrently, and which cannot.

2.2 MateBuffer

MateBuffer is for accessing buffer data structres as an abstract data type. MateBuffer has

commands for inserting, removing, sorting, and typechecking.

4

2.3 MateBytecodeLock

MateBytecodeLock is how Maté’s code analysis determines what shared resource an instruc-

tion uses, so it can determine what handlers can safely run concurrently. If an instruction

encapsulates a shared resource, then it must implement this interface.

2.4 MateBytecode

MateBytecode is the bytecode execution interface. When the interpreter executes a bytecode,

it executes an instance of this interface. The interface also has a command that returns the

byte width of the instruction, so the scheduler knows how much to increment a context’s

program counter by.

2.5 MateContextLocks

MateContextLocks has commands for acquiring and releasing locks on a context basis, and

determinig whether a context can acquire all of the locks it needs. These commands are rarely

called by external components; they are used by implementations of MateContextSynch to

halt and resume contexts.

2.6 MateContextStatus

MateContextStatus has a single event, which fires when a context halts. Among other things,

this allows a context that has queued execution requests to know when it can handle the

next one.

2.7 MateContextSynch

MateContextSynch is how components interact with the Maté concurrency manager. Com-

ponents can submit contexts to the Maté concurrency manager for execution. The concur-

rency manager decides which contexts can safely run concurrently and forwards them to the

scheduler. MateContextSynch has commands for resuming, halting, and yielding contexts.

2.8 MateEngineControl

MateEngineControl has events for signalling the VM to reboot, halt, or resume. Telling the

VM to reboot will make it signal its own reboot event to interested components through the

MateEngineStatus interface.

5

2.9 MateEngineStatus

MateEngineStatus is how the VM engine notifies interested components when it reboots.

For example, when the VM reboots, context components reset their contexts and split-phase

instructions clear their queues.

2.10 MateError

MateError is for indicating an error has occured, that should halt execution. When invoked,

this causes the VM to enter an error state, blinking the LEDs and broadcasting the cause of

the error.

2.11 MateHandlerStore

MateHandlerStore is how components interact with the underlying code store and propaga-

tion subsystem. It presents code handlers as an abstract data type, with accessor commands

and an event for notifying when code has changed.

2.12 MateLocks

MateLocks presents shared resources locks as an abstract data type. The Maté concurrency

manager uses MateLocks to manage utilization of shared resources.

2.13 MateQueue

MateQueue is for manipulating context queues as an abstract data type. It supports en-

queueing, dequeueing, removal, and initialization. Several Maté components use context

queues, including the scheduler, concurrency manager, and blocking operations.

2.14 MateScheduler

MateScheduler is the interface the core VM interpreter provides for submitting contexts to

the run queue. The Maté concurrency manager uses this interface to submit contexts it has

determined to be safe to run.

2.15 MateStacks

MateStacks presents the operand stack of a Maté execution context as an abstract data type.

It has commands for initializing a stack, pushing various types of operands, and popping

operands.

6

2.16 MateTypes

MateTypes provides commands for operand typechecking. Generally, a command has two

forms, query and check. Queries merely return whether an operand passes a type require-

ment; checks return whether the operand passes, and automatically trigger an error condition

if the check fails.

2.17 MateVirus

MateVirus is the interface to Maté’s viral code propagation subsystem. Generally, a compo-

nent that provides MateHandlerStore sits on top of a component that provides MateVirus.

MateHandlerStore signals arrival in terms of units of execution, while MateVirus signals

arrivals in terms of code propagation (a single propagation unit, for example, may contain

two handlers).

2.18 MateType

Language-independent functions cannot make assumptions about a language’s data model.

When data is internal to a mote, this is not a problem: a VM controls access to data struc-

tures, so their internal representation is separated from a program. When VMs communicate

(over the radio, for example), however, they must agree on a data format, which can be dif-

ferent than the in-memory representation a VM uses. For example, a VM may represent a

list as a linked list in memory, but needs to compact it to a vector to transmit it. The Mate-

Type interface is for packing and unpacking network data type representations, so functions

can handle data types without knowing their internal structure.

3 Maté Template

A Maté VM’s components fall into two classes: the components every VM includes (the

basic template), and the components that define the particular Maté instance. The basic

VM template includes scheduling, concurrency managment, and code storage/propagation.

Adding an instruction set and execution contexts to the template makes a application-specific

virtual machine. This section describes the three major template components, MateEngine,

MContextSynchProxy, and MHandlerStoreProxy.

Many Maté subsystems have “Proxy” components. These proxy components separate

the interface of the subsystem from its implementation. If every Maté component wires to

the proxy, instead of the component itself, then a user can change what implementation

the VM uses by only changing the proxy component. For example, to change the MateLocks

7

implementation from MLocks to MLockSafe (the latter performs many checks the former does

not), a user only has to change the MLocksProxy component to refer to MLocksSafe. In contrast,

if a proxy were not used, then every file which wires to MLocks would have to be changed to

MLocksProxy.

3.1 Scheduling: MateEngine

MateEngine is a configuration that wires MateEngineM, the core Maté scheduler, to all of its

needed subsystems. It has the following signature:

8

Figure 1: MateEngine wiring diagram.

configuration MateEngine {

provides {

interface StdControl;

interface MateError as Error;

interface MateEngineStatus as EngineStatus;

interface MateScheduler as Scheduler;

interface MateBytecode as Functions[uint8_t functionID];

}

uses {

interface MateEngineControl as EngineControl;

interface MateBytecode as Bytecode[uint8_t bytecode];

interface MateBytecode as FunctionImpls[uint8_t fnID];

interface StdControl as SubControl;

}

}

Figure 1 shows how MateEngine wires MateEngineM. TimerC, LedsC, and QueuedSend are all for

when an error condition occurs (triggered by MateError): MateEngine starts a periodic timer,

blinking the LEDs and broadcasting the source of the error. MQueueProxy is for manipulating

the run queue and MHandlerStoreProxy is for fetching opcodes from handlers.

The set of components that are wired to MateEngine’s parameterized Bytecode implement

a VM’s instruction set. The main execution loop fetches the next bytecode from a handler

(through the HandlerStore), then dispatches on this interface based on the opcode value.

For example, if the bytecode halt has value 0x2a, then the OPhalt component is wired to

MateEngine.Bytecode[0x2a]. Generally, functions included in a VM (such as send) exist as

bytecodes.

The Functions and FunctionImpls are a bit more complex. First order language (such as

9

motlle) need to be able to refer to functions by values, which can be stored and passed. The

language then needs a way to take this value and execute the function it refers to. If a VM

supports a first-class language, then all of the functions must be wired to FunctionImpls: the

parameters for this interface are distinct from those for the Bytecode interface. Functions is a

simple pass-through to FunctionImpls. An instruction component can wire to FunctionImpls

to dispatch to a function based on a value.

Any stand-alone component that has to provide StdControl should wire it to MateEngine’s

SubControl. This will allow the VM to support power management in the future.

MateEngineM follows a round-robin FIFO policy. MateEngineM has two configuration con-

stants for timeslicing, MATE CPU QUANTUM and MATE CPU SLICE. MateEngineM executes instructions

in a task. QUANTUM is the maximum number of instructions it interprets in each task exe-

cution; SLICE is the number of quanta it gives to a context before switching to a new one.

By default, MATE CPU SLICE is 5 and MATE CPU QUANTUM is 4. Unless a context halts or blocks,

MateEngine timeslices them at the granularity of 20 instructions.

3.2 Data Model: MStacks and MTypeManager

Maté VMs follow a stack architecture. Each thread (execution context) has an operand

stack. For example, to perform arithmetic addition, a program pushes two numbers onto

the stack, then executes the add instruction. The add instruction pops the two elements off

the stack, adds them and pushes the result onto the stack. The MStacks component presents

the operand stack as an abstract data type.

Operands (and more generally, variables) have an associated type. Some types, such as

integers, are simple. Variables can be more complex types, such as vectors, lists, or strings.

When Maté motes communicate, they need to take the in-memory representation of a type

and transform it into something that can be sent over a network. For example, a linked list

needs to be compacted into a linear sequence (i.e., array); the receiver can then unpack the

serialized form into its desired in-memory representation.

MTypeManager provides interfaces to the set of network-compatible types. Specifically, it

provides a parameterized interface (the parameter is the type ID) of type MateType (which is

distinct from MateTypes, which is type-checking). To transform a variable between in-memory

and network represntations, components can invoke MTypeManager. MTypeManager’s interface is

a pass-through to the implementing components: a component that supports a given type

(such as MBuffer, which supports TinyScript’s data buffers) wires to MTypeManager so calls will

be forwarded properly. If a VM tries to transform a type for which there is no support, then

MTypeManager indicates that the type is not supported: this will generally trigger an error

condition in the VM.

10

Figure 2: MContextSynchProxy wiring diagram.

3.3 Concurrency Management: MContextSynchProxy

MContextSynchProxy is encapsulates MContextSynch and wires it to needed services. MContextSynch

is responsible for analyzing code to determine when handlers can safely run concurrently.

ome instructions represent shared resources. For example, bpush3 and getvar4 access shared

variables. For race free program, the VM execution engine must be aware of this and control

scheduling appropriately.

When a component wants a context to run, it submits the context to MContextSynch; based

on its analyses, MContextSynch either forwards the context on to MateEngine for execution, or

puts it on a wait queue. If a context holding shared resources halts, MContextSynch has it

release the resources and checks if that allows any waiting contexts to run.

MContextSynch keeps track of shared resources through the MateBytecodeLock interface.

If an instruction manages a shared resource, then it must provide this interface. Additionally,

in its ODF, it must have the optional element “locks” set to true.

For example, let’s look at OPbpush3. This instruction pushes the eight shared buffers,

buffer0-7, onto the operand stack. It is not a library function; instead, it is an element of

the instruction set that TinyScript compiles to. In tscript.ldf (Section 5 describes language

files in greater depth), it lists

<OPCODE opcode="bpush3" locks=true>

Then, in OPbpush3M:

module OPbpush3M {

provides interface MateBytecode;

provides interface MateBytecodeLock;

}

MateBytecodeLock has a single command:

11

interface MateBytecodeLock {

command int16_t lockNum(uint8_t instr);

}

This takes a instruction opcode and returns a unique lock number. The idea is that certain

opcodes have a lock associated with them. bpush3, for example, has three bits of embedded

operand, for the eight buffers. If bpush3 0 is passed to OPbpush3M.nc, then it returns the lock

number for buffer zero, while bpush3 1 will return the lock number for buffer one.

The full OPbpush1M.nc logic:

module OPbpush3M {

...

provides interface MateBytecodeLock;

...

}

implementation {

typedef enum {

BOMB_BUF_LOCK_3_0 = unique("MateLock"),

BOMB_BUF_LOCK_3_1 = unique("MateLock"),

...

BOMB_BUF_LOCK_3_7 = unique("MateLock"),

} BufLockNames;

...

command int16_t MateBytecodeLock.lockNum(uint8_t instr) {

uint8_t which = instr - OPbpush3;

switch (which) {

case 0:

return BOMB_BUF_LOCK_3_0;

case 1:

return BOMB_BUF_LOCK_3_1;

...

case 7:

return BOMB_BUF_LOCK_3_7;

default:

return 255;

}

}

...

}

It declares eight unique lock numbers with the nesC unique function. When lockNum()

is called, it returns the lock number associated with the corresponding buffer. Every context

has

uint8_t heldSet[(BOMB_LOCK_COUNT + 7) / 8];

uint8_t releaseSet[(BOMB_LOCK_COUNT + 7) / 8];

uint8_t acquireSet[(BOMB_LOCK_COUNT + 7) / 8];

where BOMB LOCK COUNT is defined to be uniqueCount(”MateLock”);

12

3.3.1 Synchronization Algorithms

Maté’s concurrency manager is responsible for ensuring that handlers execute atomically.

Although it may allow them to run concurrently, atomicity requires that doing so should be

indistinguishable from their running serially. The concurrency manager maintains a bitmask

of the shared resoures each handler uses (the uses set), and each context has three bitmasks:

the set of resources it holds (the held set), the set of resources it can release (the release set),

and the set of resources it needs to acquire (the acquire set). Initializing a context through

MateContextSynch.initializeContext sets a context’s acquire set to its handler’s uses set. Every

time MContextSynch acquires a lock for a context, it adds that resource to the context’s

held set.

When new code for a handler arrives, the concurrency manager runs a context and flow

insensitive program analysis to determine the set of shared resources that handler uses. It

iterates over each instruction in the handler, using the MateBytecodeLock interface to determine

whether an instruction requires a shared resource, updating the uses set of the handler.

The concurrency manager maintains a lock for each shared resource; only one context

may access a shared resource. When a component submits a context to run through the

MateContextSynch.resumeContext command, MContextSynch checks the acquire set of the con-

text. If every resource in the acquire set is available, MContextSynch atomically acquires

all of the locks for the context and submits it to the scheduler to run. If one or more of

the resources in the context’s acquire set are already held, then MContextSynch puts the

context on a wait queue and sets its state to MATE STATE WAITING.

While they execute, contexts may add resources to their release set. This does not re-

lease those resources. When a context yields, through the MateContextSynch.yield command,

MContextSynch has it unlock each of the resources in its release set, then clears the set.

MContextSynch then tests each context on the wait queue to see if it is now runnable (the

release of locks means all locks in its acquire set are free). If a context is runnable, MCon-

textSynch resumes it.

When a context adds a resource to its release set, it may also add it to its acquire set.

This means that the context will release those resources at the next yield point, but will not

continue execution until it can reacquire them: it can temporarily release the resources.

Currently, TinyScript does not manipulate context release sets, although it has instruc-

tions for doing so. This is an area for future work.

Because, once it starts running, the acquire set of a context is always a subset of its

release set, the set of resources a context holds while running is montonically decreasing.

A context can never hold a resource that it did not hold when it started running. This

ensures that contexts can run deadlock-free, while the program analysis (barring incorrect

lock releases at runtime) ensures race-free execution.

13

Figure 3: MHanderStoreProxy wiring diagram.

3.4 Code Propagation: MHandlerStoreProxy

The MHandlerStoreProxy component encapsulates Maté’s code storage and propagation.

Figure 3 contains its wiring diagram, and the component has the following signature:

configuration MHandlerStoreProxy {

provides {

interface StdControl;

interface MateHandlerStore as HandlerStore[uint8_t id];

}

}

Every component that has a handler should wire to HandlerStore, with a unique ID (the

handler ID). VMBuilder automatically generates handler IDs for contexts, with unique("MateHandlerID");

if other components need to register handlers, they should use the same key for unique.

MateHandlerStore has the following signature:

interface MateHandlerStore {

command result_t initializeHandler();

command MateHandlerOptions getOptions();

command MateHandlerLength getCodeLength();

command MateOpcode getOpcode(uint16_t which);

event void handlerChanged();

}

It provides accessor functions for handlers, and notifies its user when the code for the

handler has changed. Currently, MHandlerStore allocates a static amount of memory for

each handler’s code (the default is 128 bytes), but by controlling access through an interface,

this can easily be changed.

MHandlerStore provides access to code at handler granularity, but Maté propagates code

in terms of capsules, which contain one or more handlers. The default implementation has

a one-to-one handler-capsule mapping, but languages or compilers may require other imple-

mentations. For example, motlle, due to its semantics, requires that all handlers propagate

together in a single capsule.

MHandlerStore is responsible for triggering program analysis via MContextSynchProxy

when a capsule arrives. MHandlerStore sits on top of MVirus, which handles capsule propa-

14

Figure 4: State diagram for Maté capsule propagation.

gation. The idea is that a particular MHandlerStore implementation determines the format

of the data regions of capsules and can parse them into handlers.

MVirus uses an epidemic-like approach to propagate capsules: a node that has newer code

will broadcast it to local neighbors. The Trickle algorithm is used to broadcast three types

of data: version packets, which contain the 32-bit version numbers of all installed capsules,

capsule status packets which describes fragments of a capsule that a mote needs (essentially,

a bitmask), and capsule fragments that are short segments of a capsule. Figure 4 contains

the state diagram used by motes for code propagation. A mote can be in one of three states:

maintain (exchanging version packets), request (sending capsule status packets), or respond

(sending fragments). Nodes start in the maintain state. They enter the request state if

they hear something that indicates someone has a newer capsule, whether it be a version,

capsule status, or fragment packet. A requesting node returns to the maintain state once

it receives the entire capsule. A node enters the respond state if it is in the maintain state

and hears that someone has an older capsule (through a version packet), or needs part of its

current capsule (through a capsule status packet). These state transitions mean that nodes

prefer requesting over responding; a node will defer forwarding capsules until it thinks it is

completely up to date.

Trickle’s suppression operates on each type of packet (version, capsule status, and capsule

fragment) individually. That is, a capsule fragment transmission will suppress all other frag-

ment transmissions, but will not suppress version packets. This allows meta-data exchanges

during propagation: sending a fragment will not cause someone to suppress a message say-

ing what fragments it needs. Trickling fragments means that code propagates in a slow and

controlled fashion, instead of as quickly as possible. This is unlikely to significantly disrupt

any existing traffic, and prevents network overload.

3.4.1 Trickle: The Code Propagation Algorithm

The Trickle algoithm uses broadcast-based suppressions to quickly propagate new data but

minimize transmissions when nodes share data. The algorithm operates on an time interval

t, which has an upper length of th and a lower length of tl.When an interval completes, Trickle

15

doubles the size of an interval, up to th. When it learns of new code (e.g., by overhearing a

capsule fragment, version vector, or capsule status packet with a higher version number), it

shrinks the interval to tl.

Essentially, when there’s nothing new to say, Maté VMs gossip infrequently: τ is set to

τh. However, as soon as a mote hears something new, it gossips more frequently, so those

who haven’t heard it yet find out. The chatter then dies down, as τ grows from τl to τh.

Trickle maintains a redundancy constant k and a counter c. Whenever it hears a packet

that would suppress its own transmission (e.g., a capsule fragment if in the respond state),

it increments c. At the beginning of an interval, the algorithm resets c to zero, and picks a

random time in the range of [t
2 , t]. When it reaches that time, it transmits data if and only

if c < k.

4 Maté Operations

MateEngine executes programs in terms of operations. Every operation has one or more

one-byte opcodes, which map to a component that implements the MateBytecode interface.

An operation can have embedded operands, which cause it to exist as more than one opcode.

For example, the bpush3 operation (which the TinyScript language uses) has three bits of

embedded operand, corresponding to the eight data buffers TinyScript makes available.

The Maté tutorials describe how to write new functions, which are a particular kind

of operation: they never have embedded operands, and are generally expected to provide

language-independent functionality. In addition to functions, operations can also be primi-

tives, which are the operations that compose a language. This is why function components

have the prefix “OP,” such as OPid.

4.1 Operation Component Naming Convention

Operation components have the following naming convention:

OP<width><name><operand>.nc

Width and operand are both numbers. Width specifies how many bytes wide the instruc-

tion is. If no width is specified, the default is one. Operand specifies how many bytes of

embedded operand there are. If no operand is specified, the default is zero. Note that, after

considering width and operand, the instruction must have an opcode in its first byte. That

is, the instruction cannot be two bytes wide and have no embedded operand; as the Maté

scheduler dispatches on the first byte of the opcode, it would not be able to distinguish this

instruction from other ones.

16

Here are a few examples:

Component Width Name Embedded Description

OPrand 1 rand 0 Generates a random number

OPpushc6 1 pushc 6 Push a constant onto the stack

OP2jumps10 2 jumps 10 Jump to a 10-bit address

Functions are always one byte wide and never have embedded operands. In the above ex-

ample, neither pushc nor jumps are available as library functions; they are actually primitives

that compose part of what TinyScript compiles to.

4.2 Primitives

Primitives are operation components that a language compiles to. They cannot be included

in a VM in the same way functions can: they have no ODF which VMBuilder can use to

include them. The only way to include them is to use a language that compiles to them.

Operations such as branches, memory access, and arithmetic are examples of Maté primitives.

Primitives provide language storage abstractions, such as variables. For example, TinyScript

has the notion of sixteen variables that are shared between all handlers, and eight variables

which are private to each handler. The operations getvar4 and setvar4 implement the former,

while the operations getlocal3 and setlocal3 implement the latter.

The implementations of the two abstractions are very similar. A single component im-

plements getvar4 and setvar4, providing two MateBytecode interfaces. Sixteen opcodes map

to each instance of MateBytecode, for the four bits of embedded operand. The component

allocates sixteen shared variables in its frame. To determine which variable a program is

accessing, the implementation subtracts the executed opcode from the base opcode, Addi-

tionally, the implementation checks that the program holds the lock to the shared variable:

MateStackVariable heap[16];

command result_t Get.execute(uint8_t instr,

MateContext* context) {

uint8_t arg = instr - OPgetvar4;

uint8_t lock = varToLock(arg);

if ((lock == 255) || !call Locks.isHeldBy(lock, context)) {

call Error.error(context, MATE_ERROR_INVALID_ACCESS);

return FAIL;

}

dbg(DBG_USR1, "VM (%i): Executing getvar (%i).\n", (int)context->which, (int

)arg);

call Stacks.pushOperand(context, &heap[arg]);

return SUCCESS;

}

getlocal3 and setlocal3 are similar, except there are only eight variables, and there’s no

need to check locks. However, the component that implements the two primitives has to

allocate state for each context:

17

MateStackVariable vars[MATE_CONTEXT_NUM][NUM_VARS];

command result_t Get.execute(uint8_t instr,

MateContext* context) {

uint8_t arg = instr - OPgetlocal3;

dbg(DBG_USR1, "VM (%i): OPgetlocal3 (%i).\n", (int)context->which, (int)arg)

;

call Stacks.pushOperand(context, &vars[context->which][arg]);

return SUCCESS;

}

Some primitives are more than one byte wide. For example, OP2jumps10, the basic branch

instruction is two bytes wide. The byteLength() command of the MateBytecode interface must

return the byte width of an instruction, so the scheduler knows how much to increment the

program counter by. It increments the program counter before executing the instruction.

The component implementing the primitive is responsible for getting the extra bytes. For

example, this is part of OP2jumps10M:

command uint8_t MateBytecode.byteLength() {return 2;}

command result_t MateBytecode.execute(uint8_t instr,

MateContext* context) {

uint16_t addr = (instr - OP2jumps10) << 8;

MateStackVariable* cond = call Stacks.popOperand(context);

addr |= call Store.getOpcode[context->currentHandler](context->pc-1);

It generates the 10-bit jump address by taking the bottom two bits of the opcode and

incorporating the next byte. Since the VM has already incremented the program counter,

the next byte is at context->pc-1.

The Maté tutorials briefly mention a requirement when using the Maté operand stack.

When a component pops operands off the stack with popOperand, the call returns a pointer to

a stack variable. This is a pointer into the stack data structure. If a component then pushes

something onto the stack, that push can modify the region of the stack the pointer refers to.

There are situations when it is safe to access popped operands after pushes, however.

Elements on the operand stack have a fixed size. For example, a buffer (which stores

a pointer) is the same size as a value. An operand stack is an array of operands and a

stack pointer, which indicates the next free element. Pushing something onto the stack fills

the next free element, and increments the stack pointer. Popping something off the stack

decrements the stack pointer, and returns a pointer to that element. The following three

snippets of pseudocode are examples of the resulting behavior:

op1 = pop();
op2 = pop();
push(4); // op2 is now invalidated
push(op2); // BUG, unless you want to copy the top of the operand stack

18

op1 = pop();
op2 = pop();
push(op2); // SAFE; returns op2 to operand stack
push(op1); // same as above

op1 = pop();
op2 = pop();
push(op1); // invalidates op2, which is now the same as op1
push(4); // invalidates op1

5 Languages

A language is defined by the set of primitives it compiles to. A LANGUAGE element in

a VM specification file causes VMBuilder to search for a language description file (.ldf).

An LDF must have a LANGUAGE element with the NAME and DESC tags. Additionally,

it should have a series of PRIMITIVE elements. PRIMITIVE elements have one required

tag, OPCODE. They also have the optional field LOCKS, which specifies if the primitive

encapsulates a shared resources which the concurrency manager must arbitrate access to.

For example, this is a snippet of tscript.ldf:

<LANGUAGE name="TinyScript" desc="A simple, BASIC-like language.">

<PRIMITIVE opcode="halt">

<PRIMITIVE opcode="2pushc10">

<PRIMITIVE opcode="2jumps10">

<PRIMITIVE opcode="getlocal3">

<PRIMITIVE opcode="setlocal3">

<PRIMITIVE opcode="bpush3" locks=true>

<PRIMITIVE opcode="getvar4" locks=true>

<PRIMITIVE opcode="setvar4" locks=true>

<PRIMITIVE opcode="or">

<PRIMITIVE opcode="and">

<PRIMITIVE opcode="not">

<PRIMITIVE opcode="eq">

<PRIMITIVE opcode="gte">

<PRIMITIVE opcode="gt">

VMBuilder interprets PRIMITIVE elements in a language file; it does not load any

additional files in response to them. It uses the OPCODE tag to refer to the primitive’s

component when wiring the instruction set. If the LOCKS tag exists (the value is ignored),

the VMBuilder also has MateTopLevel wire the primitive component to the concurrency

manager.

The LANGUAGE element has a single optional tag, FIRSTORDERFUNCTIONS. If the

LANGAUGE element has this tag (whose value is ignored), the VMBuilder includes support

for first order functions. It does so by wiring functions to the FunctionImpls interface of

MateEngine and generating a set of function identifiers of the form fn name, where name is

19

the name of the function. These indentifiers are in an enum in MateConstants.h, and can

therefore can be accessed through the VM Java constants file.

6 VM Options

Tutorial 4 presents how to specify the language, events, and functions that a Maté VM

supports. More advanced users can also modify various VM options. These options can be

set with one or more OPTION elements. The supported options are:

Name Type Description

OPDEPTH integer Sets the maximum depth of a context operand stack.

The default value is 8.

Changing this value will change the maximum length of TinyScript statements.

Larger values increase RAM utilization.

BUF LEN integer Sets the maximum size of a data buffer.

The default value is 10.

Larger values will allow you to manage larger buffers.

However, this will increase the RAM allocated for each buffer.

If made much larger, it increase packet size, greatly increasing RAM utilization.

Decreasing this value will not reduce the RAM utilization of message buffers.

CAPSULE SIZE integer Sets the maximum size of a code capsule.

The default value is 128.

Changing this value will affect how large a program you can write.

Larger values increase RAM utilization.

DELUGE string Support Deluge binary reprogramming.

The string specified is ignored.

Including this option will incorporate Deluge binary reprogramming.

Full information on Deluge can be found in the Deluge manual,

which is part of the a standard TinyOS release.

Deluge uses roughly 10kB of code memory and 250B of RAM.

For example, to change some options, you could add either a single element

<OPTION OPDEPTH=6 CAPSULE_SIZE=64>

or multiple elements

<OPTION OPDEPTH=6>
<OPTION CAPSULE_SIZE=64>

7 Java Toolchain

When VMBuilder generates a Makefile for a Maté VM, it includes rules for building a few

Java classes that the Maté toolchain uses. The foremost of these is a constants class, which it

generates with the ncg tool. This class contains all of the mappings between handler names

and IDs, context names and IDs, instructions and their bytecodes, error codes, and data

types. It also generates a set of message classes, for interacting with a VM.

20

7.1 Constants Class

Every VM has a constants class. The name of the class is VM-specific, to prevent users from

accidentally loading the wrong constants file. For example, the Bombilla constants class name

is BombillaConstants. The class contains all of the constants contained in MateConstants.h

as public variables. The Maté toolchain has a class, named net.tinyos.script.ConstantMapper,

for easily accessing these variables through the Java reflection API.

The constructor to ConstantMapper takes two arguments, a class name and a prefix.

The prefix acts as a filter on the constants it considers. For example, if you instantiate a

ConstantMapper like so:

ConstantMapper map = new ConstantMapper("BombillaConstants", "OP");

then all of its accessor functions will operate on the public fields of a class named

BombillaConstants whose name begins with OP, in this case the instructions of the Bombilla

VM.

ConstantMapper provides three basic methods for fetching constants: codeToName() nameToCode(),

and names(). For example, the TinyScript compiler takes a TinyScript program and produces

assembly code for it. The ScriptAssembler then takes each instruction and determines its

bytecode with the nameToCode() method. In contrast, when the Scripter displays a VM er-

ror, it reads the binary values of the error condition, context, and handler, and produces

human-readable names for them with the codeToName() method. Finally, the ScripterGUI de-

termines the set of valid handlers one can write scripts for by using names(), then translates

those names to IDs with nameToCode().

Obtaining the name of a VM’s constants file requires reading in the VM description file

that VMBuilder produces. Every VM application directory has a file named vm.vmdf, which

describes the VM. The Java class net.tinyos.script.Configuration automatically loads and

parses VM descroption files, extracting the important fields. It takes the path to the file as

an argument in its constructor. This is why you must run Scripter from the VM application

directory: it instantiates a Configuration with the name vm.vmdf. This will also ensure that

the Java loader will find the right constants file. Configuration has accessor functions to get

at the important instances of ConstantMapper, such as capsule names, opcodes, and error

codes. You can also get the constant class name, if you need to build other ConstantMappers,

with the constantClassName() method.

7.2 Message Classes

By default, the Makefile VMBuilder generates builds several Java message classes. These

classes are all built in the vm specific subdirectory. They allow Scripters to generate the

proper packets for transmitting code to a mote, as well as read mote data output.

21

The first class, code transmission, has three kinds of messages: CapsuleMsg, CapsuleStatusMsg,

and CapsuleChunkMsg. CapsuleMsg is for generating a full Maté capsule that matches the on-

mote memory layout. CapsuleStatusMsg is so tools can monitor download status as it occurs.

CapsuleChunkMsg is so the Scripters can send the chunks that make up a capsule along the

serial port to a mote.

The second class, data transmission, has three kinds of messages: BufferBCastMsg, BufferUARTMsg,

and MultiHopMsg. The first two are the format the bcast and uart functions send: a Maté

data buffer in the payload of a packet. MultiHopMsg is for packets sent through a multi-

hop routing layer: it includes multihop header fields, as well as the Maté buffer. The tool

net.tinyos.script.VMBufferReader listens for all three of these kinds of packets and outputs

information on them. It is a good place to start if you want to read data from Maté into a

Java application.

8 Conclusion

Maté is under active development. Bugs, questions, contexts, and functions can be sent to

Phil Levis (pal@cs.berkeley.edu).

22

