
The TinyScript Language

Philip Levis

pal@cs.berkeley.edu

Version 1.0

July 12, 2004

Contents

1 Introduction 3

2 Script Structure 3

3 Variables 4

4 Functions 6

5 Arithmetic, Logic, and Conditionals 7

5.1 Control Structures . 8

6 Appendix A: Grammar 10

2

1 Introduction

This document describes TinyScript, a language that the Maté VM framework supports

for programming sensor networks. TinyScript is an imperative, BASIC-like language with

dynamic typing and basic control structures such as conditionals and loops.

2 Script Structure

This is an example TinyScript program that increments a counter:

! Define a shared variable, counter
shared counter;

! Increment it
counter = counter + 1;

In TinyScript programs, all variables must be declared before any program statements.

For example, the following program is invalid (and will throw a compilation error):

! Define a shared variable, counter
shared counter;

! Increment it
counter = counter + 1;

! Define a shared variable, index: ERROR
shared index;

Statements generally end with a semicolon. ! declares the start of a comment, which

extends to the end of a line. For example,

shared counter; ! Define a shared variable, counter
counter = counter + 1; ! Increment it

is valid TinyScript code.

TinyScript function and variable identifiers are case insensitive: var is the same as VAR or

Var. Identifiers are composed of alphanumeric characters and the underscore (’ ’), but the

first character of an identifier must be a letter or the underscore. The following are all valid

identifiers:

3

temp
a51_b
TEMP
temp7
buffer_Index
_3

The following are invalid identifiers:

@a
4b
sd?
a 5

To be precise, identifiers must follow the pattern [A-Za-z][A-Za-z0-9]*.

Certain words are TinyScript keywords, and cannot be used in programs to name variables

or functions. In the above scripts, shared is a keyword, declaring counter to be a shared

variable. The full list of keywords is:

not and or xor eqv imp
for to next step until while
end private shared buffer if then
else

TinyScript function and variable identifiers are case insensitive: var is the same as VAR

or Var. Keywords exist as both their uppercase and lowercase versions: shared can also be

written SHARED, but cannot be written sHarEd.

3 Variables

TinyScript programs have two basic variable types: scalars and buffers. Scalars represent

a single data item, such as an integer or a sensor reading. Buffers are small collections of

values. In the above programs, the keyword shared declared the variables to be scalars.

Handlers can declare two kinds of scalars: private and shared. Private variables are local

to that handler; the statement private a; in two different handlers refers to two different

variables. In contrast, shared a; in two different handlers refer to the same variable. Using

a shared variable, handers can pass data to one another. Buffers, declared with buffer, are

implicitly shared variables.

Both values and buffers are dynamically typed. That is, the variables themselves have

no explicit type in a program; instead, their type is determined dynamically as a program

runs. In this program,

4

shared counter;
shared sensor;
counter = random();
sensor = light();

the variable counter takes the type integer (rand() returns an integer) while sensor takes

the type light (light() returns a light value).

Types constrain how values can be modified, and how buffers can be accessed. There is

one basic scalar type, integer (16-bit, signed). Additionally, every sensor has its own type.

Integers can be modified freely, through arithmetic, assignment, and other transformation.

Sensor readings, however, are immutable. You cannot add two sensor readings, even if from

the same sensor.

The idea is that sensor readings should only be what is actually read from a sensor.

Transformations on these readings should be distinguishable from actual readings. To modify

sensor readings, they must be cast to an integer with the int() function. For example, this

program computes an exponentially weighted moving average of the light sensor:

shared sensor;
shared aggregate;

sensor = light();
aggregate = (aggregate / 2) + (int(sensor) / 2); ! Cast light reading to integer

Buffers also have a type, which defines what values can be placed in it. A cleared buffer

has no type, and takes the type of the first value placed in it. In the following program,

aggBuffer is cleared, which clears its type. An integer (aggregate) is added to the buffer,

making the buffer of the type integer.

shared sensor;
shared aggregate;
buffer aggBuffer;

sensor = light();
aggregate = aggregate + int(sensor); ! Cast light reading to integer
aggregate = aggregate / 2;

bclear(aggBuffer); ! Clear all buffer entries and type
aggBuffer[] = aggregate; ! Append aggregate value to buffer

! Buffer is now of type integer

5

Buffers have a fixed maximum size of ten values. The function bfull() can be used to

see if a buffer is full, while bsize() indicates how many entries it currently has. Individual

buffer values can be accessed by indexing into a buffer. The following program obtains the

median value stored in a buffer:

shared size;
shared median;
buffer aggBuffer;

bsorta(aggBuffer); ! Sort buffer entries in ascending order
size = bsize(aggBuffer); ! Number of entries in buffer
median = aggBuffer[size / 2]; ! Return median value

An empty index value implies the tail (last value) of a buffer on access, or after the tail

on assignment (append). For example:

buffer aggBuffer;
shared val;

val = aggBuffer[]; ! Val is the last value in the buffer
aggBuffer[] = light(); ! Append a new light value to the buffer

4 Functions

The above code examples used several functions, such as light(), bsorta(), and int(). Func-

tions take a fixed number (zero or more) of parameters. For example, bclear() takes a single

parameter, a buffer to clear, and rand() takes no parameters. Some functions return values

(e.g., rand()), while others do not (e.g., bsorta()).

Function parameters may have type requirements. However, as TinyScript is dynamically

typed, these types are not checked at compile time. For example, bclear() takes a single

parameter, a buffer. Passing it an integer will cause a run-time error.

Return values of function calls may be ignored. For example,

rand();

is a valid program.

The return values of functions can be directly used as values or parameters to functions:

6

Name Operator Example

Addition + val = val + 2;

Subtraction - val = a - b;

Division / val = bsize() / 2;

Multiplication * val = 2 * b;

Exponentiation ∧ val = val ∧ 2

(a) Arithmetic Operations

Name Operator Example

Less than < val = val < 2;

Greater than > val = a > b;

Less than or equal <= val = bsize() <= 8;

Greater than or equal >= val = b >= 2;

Not equal <> cond = val <> b

(b) Comparison Operations

Figure 1: TinyScript Computational Primitives

buffer aggBuf;
shared val;

val = aggBuf[rand() \% bsize(aggBuff)]; ! Hope size isn’t zero
val = sqrt(bsize(aggBuff)) + 2;

Note that assigning to a buffer is different than assigning to an element of a buffer.

Assigning a scalar to a buffer appends it. If a scalar is assigned to an element of a buffer,

the buffer is dynamically sized to include that element if need be. Buffers can be assigned

to one another (which results in a copy), but a buffer cannot be assigned to be the element

of another buffer.

buffer aggBuf;
buffer aggBuf2
shared val;

aggBuf2 = aggBuf;
aggBuf[] = val;
aggBuf2[val \% 8] = val;
aggBuf[1] = aggBuf2; ! ERROR

Currently, TinyScript does not support scripting functions.

5 Arithmetic, Logic, and Conditionals

Figure 1(a) shows the set of arithmetic operations TinyScript provides, as well as their

syntax.

TinyScript also supports logical operations, which are show in Figure 2(a). All of these

operations only accept integers as operands. For the boolean operators (e.g., and, not), a

value of zero is considered false; all other values are considered true. All operators use 0 as

false and 1 as true. So, 1 and 2 resolves to 1, while 0 and 34 resolves to 0. Figure 2 contains

the truth tables for the boolean operators.

7

Name Operator Example

And AND, and ready = full and idle;

Or OR, or ready = full OR idle;

Not NOT, not ready = not idle;

Exclusive or XOR, xor diff = a XOR b;

Equivalent EQV, eqv rval = a eqv b;

Implies IMP, imp ready = a imp b;

Logical And & bits = packetbits & mask;

Logical Or | bits = firstbit | secondbi t;

Logical Not ∼ mask = ∼bits;

(a) Logical Operations

and or not

F T F T

F F F F T T

T F T T T F

xor eqv imp

F T F T F T

F F T T F T T

T T F F T F T

(b) Truth Tables

Figure 2: TinyScript Logical Primitives

The logical operations manipulate integer bit fields. Instead of manipulating the integer

as a singe value, they operate on each bit, in a manner similar to C operators. For example,

1 and 2 resolves to 1, while 1 & 2 resolves to zero (1 and 2 share no common bits), and 1 | 2

resolves to 3.

Finally, TinyScript has standard comparison operators, as shown in Figure 1(b). They

resolve to one if true, zero if false.

5.1 Control Structures

TinyScript supports standard language control structures such as conditionals and loops.

The first set of control structures, conditionals, take this form:

if <expression> then if <expression> then
<block 1> <block 1>
end if else

<block 2>
end if

If expression resolves to true, then block 1 executes. If the statement has an else clause

and expression resolves to false, then block 2 executes. There can be nested if-then state-

ments:

shared idle;
buffer buf;

if bfull(buf) then
idle = 0;
if rand() & 1 then
send(buf);
bclear(buf);

8

end if
idle = 1;

end if

TinyScript provides loops through the for construct. There are two basic forms, uncon-

ditional and conditional. Unconditional (for-to) loops run a specific number of times; their

termination condition when the loop variable takes a specific value. Conditional (for-until)

loops run until an arbitrary condition becomes true. next defines the end of the loop block,

and increments the loop variable. By default, the variable increments by one. However, the

increment step can be set with the step keyword. In summary:

for <x> = <expression> to <to-constant>
...

next <x>

for <x> = <expression> to <to-constant> step <step-constant>
...

next <x>

for <x> = <expression> until <until-exp>
...

next <x>

for <x> = <expression> step <step-constant> until <until-exp>
...

next <x>

For example, this loop will run one hundred times, blinking the leds,

private i;

for i = 1 to 100
leds(i & 7)

next i

while this loop will put the values 1,3,5...21 in the buffer (when it has ten values, it will

be full),

private i;
buffer buf;

bclear(buf);
for i = 1 step 1 until i > 10
buf[] = i * 2;

next i

9

Standard while loops can be implemented by setting a step of zero. This loop, for

example, will put random values into a buffer until it is full:

private i;
buffer buf;

for i = 0 step 0 until bfull(buf)
buf[] = rand();

next i

Parenthesis pairs can be added to define precedence, or for readability.

private i;
buffer buf;

bclear(buf);
for i = 1 step 1 until i > 10
buf[] = ((i * 2) + 1);

next i
i = (5 + 2 * 2); ! i = 9
i = (5 + 2) * 2; ! i = 14
i = ((((5)))); ! i = 5

Maté is under active development. Bugs, contexts, and functions can be sent to Phil

Levis (pal@cs.berkeley.edu).

6 Appendix A: Grammar

TinyScript-file:
variable-listOPT statement-listOPT

variable-list:
variable
variable-list variable

variable:
shared identifier
private identifier
buffer identifier

statement-list:
statement
statement-list statement

statement:
assignment

10

control-statement
function-statement

control:
if-statement
for-unconditional
for-conditional

if-statement:
if expression then then-clause end if

then-clause:
statement-list
statement-list else statement-list

for-unconditional:
for variable-ref = expression to constant-expression step statement-list next variable-ref

for-conditional:
for scalar-ref = constant-expression step for-condition statement-list next scalar-ref

for-condition:
until expression
while expression

constant-expression:
constant

function-statement:
function-call ;

function-call:
name (parameter-listOPT)

parameter-list:
parameter
parameter-list , parameter

parameter:
expression

assignment:
l-value = expression ;

l-value:
var-ref
buffer-ref

scalar-ref:
identifer

var-ref:
identifier

11

buffer-ref:
identifier []
identifier [expression]

expression:
function-call
constant-expression
variable-expression
paren-expression
unary-expression
binary-expression
conditional-expression

variable-expression:
buffer-access
variable-access

buffer-access:
identifier []
identifier [expression]

variable-access:
identifier

paren-expression:
(expression)

unary-expression:
- expression
≈ expression
NOT expression

binary-expression:
expression + expression
expression - expression
expression * expression
expression / expression
expression % expression
expression & expression
expression | expression
expression # expression
expression AND expression
expression XOR expression
expression OR expression
expression EQV expression
expression IMP expression

conditional-expression:
expression = expression
expression ! = expression
expression >= expression
expression > expression
expression <= expression
expression < expression

12

constant:
[1-9][0-9]*

identifier:
[A-Za-z][A-Za-z 0-9]*

13

