
University of California, Berkeley

Software Design for 
Cyber-Physical Systems

Edward A. Lee

Vienna, Austria, May 2022
Technical University of Vienna

Module 2: Motivation for Lingua Franca



References

2

Class website: Lingua Franca website:

https://ptolemy.berkeley.edu/~eal/cps/ https://lf-lang.org/

https://ptolemy.berkeley.edu/~eal/cps/
https://lf-lang.org/


Cyber Physical Systems

3

The major challenge: Integrating complex subsystems with 
adequate reliability, repeatability, and testability.



Popular Techniques

• Publish and Subscribe
– ROS, MQTT, Azure, Google Cloud

• Actors
– Akka, Erlang, Orleans, Rebeca, Scala …

• Service-oriented architecture
– gRPC, Bond, Thrift, …

• Shared memory
– Linda, pSpaces, …

4



Pub-Sub

• Components publish events on topics.
• Other components subscribe to topics.
• Message handlers are invoked in subscribers.
• No ordering guarantees.

ROS 2 (Robotic Operating System) uses pub-sub 
built on top of DDS (Data Distribution Service).

5



A ROS-Based Autonomous Driving 
Application: Autoware.Auto

ROS component architecture:

6

Soroush Bateni, of UT 
Dallas, studied this open-
source system, which has 
been deployed on full-
size cars.

LGSVL simulation of the vehicle:

topics



Out-of-Order Message Handling

7

●LGSVL Interface:
1. Produce a “forward” gear
2. Produce a (+) kinematic state
3. Produce a “reverse” gear
4. Produce a (-) kinematic state

●Behavior Planner: What will it see?
○ 2 -> 1 -> 3 -> 4 
○ 1 -> 2 -> 4 -> 3 
○ 1 -> 2 -> 3 -> 4 
○ 2 -> 1 -> 4 -> 3 

Thanks to Soroush Bateni.

Soroush ran 300,000 tests 
under benign conditions and 
found occurrences of all four 
sequences.

The odd occurrences were rare 
enough that they are likely to 
not show up in testing!



Port of Autoware.auto to 
Lingua Franca

8

Soroush Bateni



Popular Techniques

• Publish and Subscribe
– ROS, MQTT, Azure, Google Cloud

• Actors
– Akka, Erlang, Orleans, Rebeca, Scala …

• Service-oriented architecture
– gRPC, Bond, Thrift, Adaptive AUTOSAR, …

• Shared memory
– Linda, pSpaces, …

9



Service-Oriented Architectures

• A service is a procedure exposed by a 
component.

• Components can invoke services on remote 
components.

• Caller may wait for results (synchronous) or 
retrieve results later (future).

• Service invocations are mutually exclusive, 
but there are no ordering guarantees.

10



Nondeterminism in SoA

11

Invocation order on 
services is not constrained.

Thanks to Christian Menard.



Emergency Brake Assist

12
Slide by Christian Menard.



Popular Techniques

• Publish and Subscribe
– ROS, MQTT, Azure, Google Cloud

• Actors
– Akka, Erlang, Orleans, Rebeca, Scala …

• Service-oriented architecture
– gRPC, Bond, Thrift, …

• Shared memory
– Linda, pSpaces, …

13



Actors, Loosely

Actors are concurrent objects that communicate 
by sending each other messages.

14



Hewitt/Agha Actors

Data + Message Handlers

15

Private Data

Message 
QueueMessages In Messages Out

Handler B

Handler A

X

X.A(args)

X.B(args)

X.A(args)

Y.C(args)

Y.D(args)

[Hewitt, 1977] [Agha, 1986, 1990, 1997]



Example

16

An actor with simple operations on its state:

Actor Foo {
int state = 1;
handler dbl(){

state *= 2;
}
handler inc(arg){

state += arg;
print state;

}
}



Example

17

An actor that uses actor Foo:

Semantics is “send and forget.”

Actor Bar {
handler main(){

Foo x = new Foo();
x.dbl();
x.inc(1);

}
}



Composition

18

What is printed?

Actor Bar {
handler main(){

Foo x = new Foo();
x.dbl();
x.inc(1);

}
}

Actor Foo {
int state = 1;
handler dbl(){

state *= 2;
}
handler inc(arg){

state += arg;
print state;

}
}



Pass-Through Actor

19

Baz: Given an actor of type Foo, send it “double”:

Actor Baz {
handler pass(Foo x){

x.dbl();
}

}



New Composition

20

What is printed?Actor Bar {
handler main(){

Foo x = new Foo();
Baz z = new Baz();
z.pass(x);
x.inc(1);

}
}

Actor Foo {
int state = 1;
handler dbl(){

state *= 2;
}
handler inc(arg){

state += arg;
print state;

}
}

Actor Baz {
handler pass(Foo x){

x.dbl();
}

}



Aircraft Door Using Actors

21

What assumptions are 
needed for it to be safe for 
the open_door handler to 
open the door?

Actor Source {
handler main(){

x = new Door();
x.disarm_door();
x.open_door();

}
}

Actor Door {
handler open_door(){

…
}
handler disarm_door(){

…
}

}



Aircraft Door Using Actors

22

Now what assumptions are 
needed for it to be safe for 
the open_door handler to 
open the door?

Actor Source {
handler main(){

x = new Door();
r = new Relay();
r.check();
x.open_door();

}
}

Actor Relay {
handler check(Door x){

x.disarm_door();
}

}

Actor Door {
handler open_door(){

…
}
handler disarm_door(){

…
}

}



Hewitt/Agha Actors are 
Not Predictable

Messages are handled in nondeterministic order.

23

Private Data

Message 
QueueMessages In Messages Out

Handler B

Handler A

X



One Solution:
Analyze and Use Dependencies

24

But how? Where is the 
dependence graph?

Actor Source {
handler main(){

x = new Door();
r = new Relay();
r.check();
x.open_door();

}
}

Actor Relay {
handler check(Door x){

x.disarm_door();
}

}

Actor Door {
handler open_door(){

…
}
handler disarm_door(){

…
}

}



One Solution:
Analyze and Use Dependencies

25

And what if the dependence 
graph is data dependent?

Actor Source {
handler main(){

x = new Door();
r = new Relay();
r.check();
x.open_door();

}
}

Actor Relay {
handler check(Door x){

if (something) {
x.disarm_door();

}
}

}

Actor Door {
handler open_door(){

…
}
handler disarm_door(){

…
}

}



Return to simple, 
concrete example

26

How to achieve 
deterministic behavior?

Actor Bar {
handler main(){

Foo x = new Foo();
Baz z = new Baz();
z.pass(x);
x.inc(1);

}
}

Actor Foo {
int state = 1;
handler dbl(){

state *= 2;
}
handler inc(arg){

state += arg;
print state;

}
}

Actor Baz {
handler pass(Foo x){

x.dbl();
}

}



Part 1 of our Solution:
Ports

27

reactor Bar {
output dbl:bool;
output inc:int;
reaction(startup) -> dbl, inc {=

lf_set(dbl, true);
lf_set(inc, 1);

=}
}

reactor Baz {
input in:bool;
output out:bool;
reaction(in) -> out {=

lf_set(out, in);
=}

}

Instead of 
referring to other 
actors, an actor 
refers only to its 
own ports (and 
ports of contained 
reactors).



Part 1 of our Solution:
Ports

28

Input ports look 
like the message 
handlers of actors.

reactor Foo {
input dbl:bool;
input inc:int;
state s:int(1);
reaction(dbl) {=

self->s *= 2;
=}
reaction(inc) {=

self->s += inc.value;
=}

}



Part 2 of our Solution:
Hierarchy

29

main reactor {
b = new Bar();
r = new Baz();
f = new Foo();
b.dbl -> r.in;
r.out -> f.dbl;
b.inc -> f.inc;

}



main reactor Top {
x = new Foo();
y = new Bar();
z = new Baz();
y.double -> z.in;
y.increment -> x.increment;
z.out -> x.double;

}

Part 3 of our Solution:
Scheduling

30

Scheduling becomes especially 
interesting when production or 
consumption of messages is data 
dependent.

Ensure that Baz
completes before Foo’s 
handlers are invoked.



The Lingua Franca Team

31

TU Dresden
Jerónimo Castrillón

Maiko Brands
Hugo Forrat
Clément Fournier
Andrés Goens
Christian Menard
Marcus Rossel
Felix Wittwer

Kiel University
Reinhard von Hanxleden

Sören Domrös
Christoph Fricke
Niklas Rentz
Alexander Schulz-Rosengarten

Inria
Julien 
Deantoni

João Cambeiro

DTU Compute
Martin 

Schoeberl

Tórur Biskopstø Strøm

UT Dallas
Cong Liu

Soroush Bateni

Hanyang 
Universit
y & UCB
Hokeun 
Kim

UC Berkeley
Edward A. Lee

Soroush Bateni
Abanob Bostouros
Matt Chorlian
Arthur Deng
Peter Donovan
Steve Foryoung
Thee Ho
Shaokai Lin
Marten Lohstroh

Yatin Manerkar
Efsane Soyer
Rohan Tabish (U of I, Illinois)
Anirudh Rengarajan
Steven Wong



Active, Ongoing Project

32

https://repo.lf-lang.org

Give us 
some ⭐s

Plenty of 
“good first 

issues”

Contribute

https://repo.lf-lang.org


Slack Workspace

I have created a Slack workspace called:

lf-community

You should have gotten an invitation to join it.
Please use it for discussions, questions, and 
problems with Lingua Franca.

33



Conclusion

• Pub-Sub, SoA, and Actors are all problematic.
• The problems are solvable (Lingua Franca).

34


