
University of California, Berkeley

Software Design for 
Cyber-Physical Systems

Edward A. Lee

Vienna, Austria, May 2022
Technical University of Vienna

Module 6: Parallel Execution



Parallelism

Multicore 
execution 
preserves 
deterministic 
semantics.



Event and Reaction Queues

3

Event queue, sorted by tag
Reaction queue, sorted by 
deadline and level.

Worker 1 Worker 2 Worker 3 Worker 4



Pipeline

4

To get parallelism, 
the pipeline 
pattern requires 
careful attention 
to tags.



Motivating Example

5

Sporadic events are 
assigned a time stamp 
based on the local 
physical-time clock

Computations have 
logically zero delay.

Every reactor 
handles events in 
time-stamp order. If 
time-stamps are 
equal, events are 
“simultaneous”

Actuators can have a 
deadline D. An input 
with time stamp t is 
required to be 
delivered to the 
actuator before the 
local clock hits t + D.

Deadline
D



Determinism

6

Deadline
D

reactor Fusion {
input in1:int;
input in2:int;
output out:int;
reaction(in1, in2) -> out {=

int result = 0;
if (in1_is_present) {

result += in1;
}
if (in2_is_present) {

result += in2;
}
set(out, result);

=}
}

Whether the two triggers are 
present simultaneously depends 
only on their timestamps, not 
on when they are received nor 
on where in the network they 
are sent from.



Simple, Sequential Execution

7

• Sort reactions topologically based on precedences.
• Global notion of “current tag” g.
• Event queue containing future events.
• Choose earliest tag g’ on the event queue.
• Wait for the real-time clock to match the timestamp of g.
• Execute reactions sequentially in topological sort order.

When a sporadic sensor 
triggers (or an asynchronous 
event like a network message 
arrives), assign a time stamp 
based on the local physical-
time clock.



Smarter, Parallel Execution

8

• Sort reactions topologically based on precedences.
• Global notion of “current tag” g.
• Event queue containing future events.
• Choose earliest tag g’ on the event queue.
• Wait for the real-time clock to match the timestamp of g.
• Execute reactions in parallel where possible.



Parallel Execution Using Levels

9

Reactions with the same level can 
always execute in parallel.

The level is the depth in a 
directed acyclic graph of 
reactions that have 
dependencies at a tag.



Parallel Execution Using Levels

10

Reactions with the same level can 
always execute in parallel.

Reactions within a 
reactor never 
execute in parallel.



More Deterministic Timing

11

f.out -> x.in after 9 msec;
d.out -> y.in after 9 msec;

Notice that the level is now 0. 
Combine with EDF 
scheduling, and actuator 
execution has highest priority.

Actuators will now execute between 
9 and 10 msec after sensors, unless 
a deadline violation occurs.

What could cause a deadline violation?



More Deterministic Timing

12

f.out -> x.in after 9 msec;
d.out -> y.in after 9 msec;

This strategy is closely related to the notion of Logical Execution Time 
(LET) but generalizes that concept to permit zero execution time and 
to allow deadline violation handlers.



More Deterministic Timing

13

f.out -> x.in after 9 msec;
d.out -> y.in after 9 msec;

Classical real-time systems scheduling and execution-time 
analysis determines whether the specification can be met.

[Buttazzo, 2005] [Wilhelm et al., 2008]



Determinism does 
not imply a cost in 
performance.

Parallel execution 
(multicore) does 
not imply 
nondeterminism. Precise Pi Computation Recursive Matrix Multiplication All−Pairs Shortest Path NQueens first N solutions

Radix Sort Filter Bank Producer Consumer (bounded) Trapezoidal Approximation

Philosophers Sleeping Barber Cigarette Smokers Bank Transaction

Chameneos Big Concurrent Dictionary Concurrent Sorted Linked List

Ping Pong Counting Actor Fork Join (throughput) Thread Ring

1 2 4 8 12 16 20 1 2 4 8 12 16 20 1 2 4 8 12 16 20 1 2 4 8 12 16 20

1 2 4 8 12 16 20 1 2 4 8 12 16 20 1 2 4 8 12 16 20 1 2 4 8 12 16 20

1 2 4 8 12 16 20 1 2 4 8 12 16 20 1 2 4 8 12 16 20 1 2 4 8 12 16 20

1 2 4 8 12 16 20 1 2 4 8 12 16 20 1 2 4 8 12 16 20 1 2 4 8 12 16 20

1 2 4 8 12 16 20 1 2 4 8 12 16 20 1 2 4 8 12 16 20 1 2 4 8 12 16 20
0

200

400

600

0

5000

10000

15000

0

200

400

600

0

200

400

600

800

0

100

200

300

400

0

100

200

300

400

0

100

200

0

30

60

90

0

500

1000

1500

2000

0

300

600

900

0

50

100

150

200

0

1000

2000

3000

4000

0

50

100

150

0

500

1000

1500

2000

0

250

500

750

1000

0

500

1000

1500

0

100

200

300

400

0

200

400

0

250

500

750

0

100

200

300

Number of Threads

M
ea

n 
Ex

ec
ut

io
n 

tim
e 

in
 m

s

Framework: LX C Target (unthreaded) Akka CAF LX C++ Target

Performance

14

Christian Menard
(TU Dresden)



Scalability

15

Christian Menard
(TU Dresden)



Active Research

• More aggressive parallel execution.
• Reducing contention for reaction queue.
• Supporting parallel execution at multiple tags.
• Direct support for Logical Execution Time (LET)
• Leveraging lock-free concurrency.

16


