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i ForkJoin.If X

Multicore
execution
preserves
deterministic
semantics.
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Each instance of TakeTime takes 200 ms wall clock time to

* transport the input to the output. Four of them are

* instantiated. Note that without parallel execution, there 1is
* no way this program can keep up with real time since in every
k
%

*

200 msec cycle it has 800 msec of work to do. Given 4 workers,
however, this program can complete 800 msec of work in about
* 225 msec.

arget C {
timeout: 2 sec,
workers: 1, // Change to 4 to see speed up.

14cmain reactor(width:int(4)) {
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a = new Source();

t = new[width] TakeTime();
(a.out)+ — t.in;
b

t.

= new Destination(width = width);
out —> b.in;
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Event and Reaction Queues

Reaction queue, sorted by
Event queue, sorted by tag deadline and level.
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= Pipeline

To get parallelism,
the pipeline
pattern requires
careful attention
to tags.

i Pipeline.lf X
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%ok
* Basic pipeline pattern where a periodic source feeds
* a chain of reactors that can all execute in parallel
* at each logical time step.
> 3
* The workers argument specifies the number of worker
* workers, which enables the reactors in the chain to
* execute on multiple cores simultaneously.
K
* This uses the TakeTime reactor to perform computation.
* If you reduce the number of worker workers to 1, the
* execution time will be approximately four times as long.
%
* @author Edward A. Lee
* @author Marten Lohstroh
*/
target C {
workers: 4,

ain reactor {
re = new SendCount(period = 100 msec);
rp = new[4] TakeTime(approximate_time = 100 msec);
r5 = new Receive();
// Comment the "after" clause to eliminate parallelism.
ré.out, rp.out —> rp.in, r5.in after 100 msec;
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"= Motivating Example

a : Sensor P—® ¢ : Computation

d : Computation

Sporadic events are
assigned a time stamp
based on the local
physical-time clock

SensorActuata

Computations have
logically zero delay.

— v : Actuator

Every reactor
handles events in
time-stamp order. If
time-stamps are
equal, events are
“simultaneous”

X : Actuator

Deadline
D

Actuators can have a
deadline D. An input
with time stamp t is
required to be
delivered to the
actuator before the
local clock hits t + D.




Determinism

SensorActuator
a : Sensor P—® ¢ : Computation 74 .
, f : Fusion P—® x : Actuator
reactor Fusion { —>
input inl:int; Deadline
input in2:int; D
output out:int;
reaction(inl, in2) —> out {= —P : Actliator

int result =
if (inl_is_presen

result += in1;

} \] Whether the two triggers are

if (in2_is_present) { present simultaneously depends
result += in2; only on their timestamps, not

b on when they are received nor

set(out, result); on where in the network they

1 are sent from.




= Simple, Sequential Execution

SensorActuator

a : Sensor P—® ¢ : Computation P—»

f - Fusion P— x : Actuator
—>

b : Sensor »—¥d : Computation P—2

\ — v : Actuator

When a sporadic sensor e Sort reactions topologically based on precedences.
triggers (or an asynchronous * Global notion of “current tag” g.

event like a network message * Event queue containing future events.

arrives), assign a time stamp * Choose earliest tag g’ on the event queue.

based on the local physical- * Wait for the real-time clock to match the timestamp of g.
time clock. * Execute reactions sequentially in topological sort order.




= Smarter, Parallel Execution

SensorActuator

a : Sensor P—® ¢ : Computation P—»

f - Fusion P— x : Actuator
—>

b : Sensor »—¥d : Computation P—2
— v : Actuator

e Sort reactions topologically based on precedences.

* Global notion of “current tag” g.

* Event queue containing future events.

* Choose earliest tag g’ on the event queue.

* Wait for the real-time clock to match the timestamp of g.
* Execute reactions in parallel where possible.




= Parallel Execution Using Levels

SensorActuator

f - Fusion X : Actuator

level: 4

a : Sensor ¢ : Computation :"’.—>_"“

i i LO 10 msec

2 . 5 _i
— - - level: 3

b : Sensor d : Computation

: Actuator

o ) > >

level: 2
-
‘0 10 msec
The level is the depth in a

directed acyclic graph of Reactions with the same level can

reactions that have always execute in parallel.
dependencies at a tag.




= Parallel Execution Using Levels

SensorActuator

f - Fusion X : Actuator

level: 4
a: Sensor ¢ : Computation :" >
i i /(W) 10 msec

b : Sensor d : Computation
: Actuator
o o>
level: 2 ] T
—p-- Reactions within a
AR omsee reactor never

execute in parallel.

Reactions with the same level can
always execute in parallel.
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"= More Deterministic Timing

f.out -> x.in after 9 msec;
d.out -> y.in after 9 msec;

SensorActuatorLET
£ Eusion X : Actuator
a: Sensor c : Computation level: 0
== 1 f-—}— 9 msec/—}---
[ T > o> [
- a
-
""" level: 3

b : Sensor d : Computation

Actuators will now execute between . .
Notice that the level is now O.
9 and 10 msec after sensors, unless Combine with EDF

a deadline violation occurs. scheduling, and actuator
execution has highest priority.

What could cause a deadline violation?
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"= More Deterministic Timing

f.out -> x.in after 9 msec;
d.out -> y.in after 9 msec;

SensorActuatorLET
£ Eusion X : Actuator
a: Sensor c : Computation level: 0
== 1 f-—}— 9 msec/—}---

o> oy | [
- a
s

_____ level: 3 y : Actuator

b : Sensor d : Computation

level: O
I .
LO 1 msec

This strategy is closely related to the notion of Logical Execution Time
(LET) but generalizes that concept to permit zero execution time and
to allow deadline violation handlers.




"= More Deterministic Timing

f.out -> x.in after 9 msec;
d.out -> y.in after 9 msec;

SensorActuatorLET
f “Fusion X : Actuator
a: Sensor c : Computation level: 0
:-- f-—}——/g msec/—}---
I pme o S
_>._-‘ ]

L :
L
: Actuat
b : Sensor d : Computation Y : ACRUAtor
level: O
[ R > st ——

‘o 1 msec

Classical real-time systems scheduling and execution-time
analysis determines whether the specification can be met.

[Buttazzo, 2005] [Wilhelm et al., 2008]
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| Performance

Determinism does
not imply a cost in
performance.

Parallel execution
(multicore) does
not imply
nondeterminism.

Christian Menard
(TU Dresden)
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= Scalability

Ping Pong All-Pairs Shortest Path (APSP)
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Active Research

 More aggressive parallel execution.
* Reducing contention for reaction queue.

* Supporting parallel execution at multiple tags.

* Direct support for Logical Execution Time (LET)

* Leveraging lock-free concurrency.




