
University of California, Berkeley

Software Design for
Cyber-Physical Systems

Edward A. Lee

Vienna, Austria, May 2022
Technical University of Vienna

Module 7: Concurrent Models of Computation

Example MoCs

Sequential:
• Finite state machines
• Pushdown automata
• Turing machines

Functional:
• Lambda calculus
• Recursive functions
• Combinatory logic
• Rewriting systems

Concurrent:
• Cellular automata
• Kahn process networks
• Petri nets
• Dataflow
• Actors
• CSP (rendezvous)

Timed & Concurrent:
• Synchronous/Reactive
• Discrete events
• Continuous time

2

Outline

• Definitions
• Threads
• Alternatives to Threads
• Deterministic Concurrency

3

Concurrent MoCs

4

http://ptolemy.org/systems

“the rules that govern
concurrent execution of
the components and the
communication between
components”

Concurrency

From the Latin,
concurrere,
“run together”

Concurrency

Google:
• the fact of two or more events or circumstances

happening or existing at the same time.

Dictionary.com:
• simultaneous occurrence; coincidence.

Webster:
• the simultaneous occurrence of events or

circumstances

6

Points of Confusion

• The role of time
• Synchrony and asynchrony
• Concurrent vs. parallel
• Concurrent vs. nondeterministic

Layers of Abstraction for
Concurrency in Programs

Uses of Concurrency in
Software

u Reacting to external events (interrupts)

u Exception handling (software interrupts)

u Creating the illusion of simultaneously running different
programs (multitasking)

u Exploiting parallelism in the hardware (multicore, VLIW,
server farms)

u Dealing with real-time constraints (preemption, deadlines,
priorities)

u Distributed computation (networked)

Outline

• Definitions
• Threads
• Alternatives to Threads
• Deterministic Concurrency

10

Threads

Threads are sequential concurrent procedures that
share memory.

They have been the most commonly used
mechanism for building concurrent software, but this
is changing, for good reasons.

Processes are collections of threads with their own
memory. Communication between processes occurs
via OS facilities (like pipes, sockets, or files).

Thread Mechanisms

uWithout an OS, multithreading is achieved with interrupts.
Timing is determined by external events.

uGeneric OSs (Linux, Windows, OSX, …) provide thread
libraries (e.g. pthreads) and provide no guarantees about
when threads will execute.

uReal-time operating systems (RTOSs), like FreeRTOS,
QNX, VxWorks, RTLinux, support a variety of ways of
controlling when threads execute (priorities, preemption
policies, deadlines, …).

Posix Threads (pthreads)

pthreads is an API (Application Program Interface)
implemented by many operating systems, both real-time
and not. It is a library of C procedures.

Standardized by the IEEE in 1988 to unify variants of
Unix. Subsequently implemented in most other operating
systems.

Some languages have threads built in, like Java, which
uses pthreads under the hood.

Creating and Destroying
Threads

#include <pthread.h>

void* threadFunction(void* arg) {
...

return pointerToSomething or NULL;

}

int main(void) {

pthread_t threadID;

void* exitStatus;

int value = something;

pthread_create(&threadID, NULL, threadFunction, &value);
...

pthread_join(threadID, &exitStatus);

return 0;

}

Can pass in pointers to shared variables.

Can return pointer to something.
Do not return a pointer to a local variable!

Return only after all threads have terminated.

Becomes arg parameter to
threadFunction.
Why is it OK that this is a
local variable?

Create a thread (may or may not start running!)

What’s Wrong with This?
#include <pthread.h>

#include <stdio.h>

void *my_thread() {

int ret = 42;

return &ret;

}

int main() {

pthread_t task_id;

void *status;

pthread_create(&task_id, NULL, my_thread, NULL);

pthread_join(task_id, &status);

printf("%d\n",*(int*)status); return 0;

}

Don’t return a pointer to a local
variable, which is on the stack.

Notes
u Threads can (and often do) share variables
u Threads may or may not begin running immediately

after being created.
u A thread may be suspended between any two
atomic instructions (typically, assembly instructions,
not C statements!) to execute another thread and/or
interrupt service routine.

u Threads can often be given priorities, but these may
not be respected by the thread scheduler.

u Threads may block on semaphores and mutexes.

A Scenario
Under Integrated Modular Avionics, software
in the aircraft engine continually runs
diagnostics and publishes diagnostic data on
the local network.

Proper software
engineering practice
suggests using the
observer pattern.

An observer process
updates the cockpit
display based on
notifications from
the engine
diagnostics.

Typical thread programming
problem

“The Observer pattern defines a one-to-many
dependency between a subject object and any
number of observer objects so that when the
subject object changes state, all its observer
objects are notified and updated
automatically.”

Design Patterns, Eric Gamma, Richard Helm,
Ralph Johnson, John Vlissides
(Addison-Wesley, 1995)

Observer Pattern in C
// Value that when updated triggers notification
// of registered listeners.
int value;

// List of listeners. A linked list containing
// pointers to notify procedures.
typedef void* notifyProcedure(int);
struct element {…}
typedef struct element elementType;
elementType* head = 0;
elementType* tail = 0;

// Procedure to add a listener to the list.
void addListener(notifyProcedure listener) {…}

// Procedure to update the value
void update(int newValue) {…}

// Procedure to call when notifying
void print(int newValue) {…}

// Value that when updated triggers notification of registered
listeners.
int value;

// List of listeners. A linked list containing
// pointers to notify procedures.
typedef void* notifyProcedure(int);
struct element {…}
typedef struct element elementType;
elementType* head = 0;
elementType* tail = 0;

// Procedure to add a listener to the list.
void addListener(notifyProcedure listener) {…}

// Procedure to update the value
void update(int newValue) {…}

// Procedure to call when notifying
void print(int newValue) {…}

Observer Pattern in C

typedef void* notifyProcedure(int);
struct element {
notifyProcedure* listener;
struct element* next;

};
typedef struct element elementType;
elementType* head = 0;
elementType* tail = 0;

Observer Pattern in C
// Value that when updated triggers notification of registered listeners.
int value;

// List of listeners. A linked list containing
// pointers to notify procedures.
typedef void* notifyProcedure(int);
struct element {…}
typedef struct element elementType;
elementType* head = 0;
elementType* tail = 0;

// Procedure to add a listener to the list.
void addListener(notifyProcedure listener) {…}

// Procedure to update the value
void update(int newValue) {…}

// Procedure to call when notifying
void print(int newValue) {…}

// Procedure to add a listener to the list.
void addListener(notifyProcedure listener) {
if (head == 0) {
head = malloc(sizeof(elementType));
head->listener = listener;
head->next = 0;
tail = head;

} else {
tail->next = malloc(sizeof(elementType));
tail = tail->next;
tail->listener = listener;
tail->next = 0;

}
}

// Value that when updated triggers notification of registered
listeners.
int value;

// List of listeners. A linked list containing
// pointers to notify procedures.
typedef void* notifyProcedure(int);
struct element {…}
typedef struct element elementType;
elementType* head = 0;
elementType* tail = 0;

// Procedure to add a listener to the list.
void addListener(notifyProcedure listener) {…}

// Procedure to update the value
void update(int newValue) {…}

// Procedure to call when notifying
void print(int newValue) {…}

Observer Pattern in C

// Procedure to update the value
void update(int newValue) {
value = newValue;
// Notify listeners.
elementType* element = head;
while (element != 0) {
(*(element->listener))(newValue);
element = element->next;

}
}

// Value that when updated triggers notification of registered
listeners.
int value;

// List of listeners. A linked list containing
// pointers to notify procedures.
typedef void* notifyProcedure(int);
struct element {…}
typedef struct element elementType;
elementType* head = 0;
elementType* tail = 0;

// Procedure to add a listener to the list.
void addListener(notifyProcedure listener) {…}

// Procedure to update the value
void update(int newValue) {…}

// Procedure to call when notifying
void print(int newValue) {…}

Observer Pattern in C

Will this work in a
multithreaded context?

Will there be
unexpected/undesirable
behaviors?

Observer Pattern in C:
How to make this thread safe?

// Value that when updated triggers notification of registered listeners.
int value;

// List of listeners. A linked list containing
// pointers to notify procedures.
typedef void* notifyProcedure(int);
struct element {…}
typedef struct element elementType;
elementType* head = 0;
elementType* tail = 0;

// Procedure to add a listener to the list.
void addListener(notifyProcedure listener) {…}

// Procedure to update the value
void update(int newValue) {…}

// Procedure to call when notifying
void print(int newValue) {…}

// Procedure to add a listener to the list.
void addListener(notifyProcedure listener) {
if (head == 0) {
head = malloc(sizeof(elementType));
head->listener = listener;
head->next = 0;
tail = head;

} else {
tail->next = malloc(sizeof(elementType));
tail = tail->next;
tail->listener = listener;
tail->next = 0;

}
}

Using Posix mutexes on
the observer pattern in C

#include <pthread.h>
...
pthread_mutex_t lock;

void addListener(notify listener) {
pthread_mutex_lock(&lock);
...
pthread_mutex_unlock(&lock);

}

void update(int newValue) {
pthread_mutex_lock(&lock);
value = newValue;
elementType* element = head;
while (element != 0) {

(*(element->listener))(newValue);
element = element->next;

}
pthread_mutex_unlock(&lock);

}

int main(void) {
pthread_mutex_init(&lock, NULL);
...

}

However, this carries a
significant deadlock risk.
The update procedure
holds the lock while it
calls the notify
procedures. If any of
those stalls trying to
acquire another lock, and
the thread holding that
lock tries to acquire this
lock, deadlock results.

After years of use without problems, a Ptolemy Project code review found code that
was not thread safe. It was fixed in this way. Three days later, a user in Germany
reported a deadlock that had not shown up in the test suite.

One possible “fix”#include <pthread.h>
...
pthread_mutex_t lock;

void addListener(notify listener) {
pthread_mutex_lock(&lock);
...
pthread_mutex_unlock(&lock);

}

void update(int newValue) {
pthread_mutex_lock(&lock);
value = newValue;
... copy the list of listeners ...
pthread_mutex_unlock(&lock);
elementType* element = headCopy;
while (element != 0) {

(*(element->listener))(newValue);
element = element->next;

}
}

int main(void) {
pthread_mutex_init(&lock, NULL);
...

}

What is wrong with this?

Notice that if multiple
threads call update(), the
updates will occur in
some order. But there is
no assurance that the
listeners will be notified in
the same order. Listeners
may be mislead about the
“final” value.

This is a very simple, commonly used design
pattern. Perhaps Concurrency is Just Hard…

Sutter and Larus observe:

“Humans are quickly overwhelmed by concurrency and
find it much more difficult to reason about concurrent
than sequential code. Even careful people miss possible
interleavings among even simple collections of partially
ordered operations.”

H. Sutter and J. Larus. Software and the concurrency revolution.
ACM Queue, 3(7), 2005.

If concurrency were intrinsically hard, we
would not function well in the physical world

It is not
concurrency that
is hard…

…It is Threads that are Hard!

Threads are sequential processes that share
memory. From the perspective of any thread,
the entire state of the universe can change
between any two atomic actions (itself an ill-
defined concept).

Imagine if the physical world did that…

What it Feels Like to Use Mutexes

Im
ag

e
“
bo

rr
ow

ed
”

fr
om

 a
n

Io
m

eg
a

ad
ve

rt
is

em
en

t
fo

r
Y2

K
so

ft
wa

re
 a

nd
 d

is
k

dr
iv

es
, S

ci
en

ti
fi

c
A

m
er

ic
an

, S
ep

te
m

be
r

19
99

.

Claim

Nontrivial software written with threads,
semaphores, and mutexes is incomprehensible to
humans.

à Need better ways to program concurrent systems

à Better tools to analyze and reason about concurrency
(e.g. model checking)

Do Threads Have a Sound
Foundation?

If the foundation is bad,
then we either tolerate
brittle designs that are
difficult to make work,
or we have to rebuild
from the foundations.

Note that this whole thing
is held up by threads

Problems with the Foundations

A model of computation:

• Bits: B = {0, 1}
• Set of finite sequences of bits: B*

• Computation: f : B*® B*

• Composition of computations: f • f '
• Programs specify compositions of computations

Threads augment this model to admit concurrency.

But this model does not admit concurrency gracefully.

Basic Sequential Computation

initial state: b0 Î B*

final state: bN

sequential
composition

bn = fn (bn-1)

Formally, composition of computations is function composition.

When There are Threads,
Everything Changes

suspend

A program no longer
computes a function.

resume

another thread can
change the state

bn = fn (bn-1)

b'n = fn (b'n-1)

Apparently, programmers find this
model appealing because nothing has
changed in the syntax.

Succinct Problem Statement

Threads are wildly nondeterministic.

The programmer’s job is to prune away the
nondeterminism by imposing constraints on
execution order (e.g., mutexes) and limiting
shared data accesses (e.g., OO design).

Incremental Improvements to Threads

• Object Oriented programming
• Coding rules (Acquire locks in the same order…)
• Libraries (Stapl, Java concurrent collections, …)
• Message passing (Actors, …)
• Publish and subscribe (ROS, MQTT, DDS, …)
• Transactions (Databases, …)
• Patterns (MapReduce, …)
• Formal verification (Model checking, …)
• Enhanced languages (Split-C, Cilk, Guava, …)
• Enhanced mechanisms (Promises, futures,

asynchronous atomic callbacks …)

Threads: An Unnecessary Source
of Nondeterminism in Software

Threads are slowly getting replaced.
E.g.:
• Asynchronous atomic callbacks

– Python, Node.js, Vert.x, …
• Actors

– Akka, Orleans, Ray, …
• Pub-Sub

– ROS, Vert.x, DDS, …
• …

39Lee, Berkeley

2006

Message-passing programs may be better

But there is still risk of
deadlock and
unexpected
nondeterminism!

Recall Challenge Problem

A software
component on a
microprocessor in an
aircraft door provides
two network services:
1. “open”
2. “disarm”
Assume state is
closed and armed.
What should it do
when it receives a
request “open”?

41

Image by Christopher Doyle from
Horley, United Kingdom - A321 Exit
Door, CC BY-SA 2.0

Outline

• Definitions
• Threads
• Alternatives to Threads
• Deterministic Concurrency

42

Asynchronous Atomic Callbacks

• Main event loop.
• Event handlers (“callbacks”) run to completion

atomically.

Augment with worker threads that
communicate with:

• Immutable data
• Publish-and-subscribe busses

43

Asynchronous Atomic Callbacks:
Periodic Actions

• Shared variable x
• Timed actions on x

• +1 every second
• −2 every two seconds
• Observe every 4 seconds

44

var x = 0;
function increment() {

x = x + 1;
}
function decrement() {

x = x - 2;
}
function observe() {

console.log(x);
}
setInterval(increment, 1000);
setInterval(decrement, 2000);
setInterval(observe, 4000);

On Node.js v5.3.0, MacOS Sierra:

0, 0, 0, 0, 0, −1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, …

“Toyota” Style of Design

NASA's Toyota Study Released by Dept. of
Transportation released in 2011 found that
Toyota software was “untestable.”

45

Possible
victim of

unintended
acceleration.

Publish and Subscribe (Pub Sub)

46

BrokerPublisher

Subscriber

Subscriber

Subscriber
Publish to
Topic: Temperature
Data: 18

Data:
18
Data:
18
Data: 18

Subscribe to Topic:
Temperature

Etc.

Recall Challenge Problem

A software
component on a
microprocessor in an
aircraft door provides
two network services:
1. “open”
2. “disarm”
Assume state is
closed and armed.
What should it do
when it receives a
request “open”?

47Image from The Telegraph, Sept. 9, 2015

Another Answer to Threads:
Actors

Actors are concurrent objects that communicate
by sending each other messages.

• Erlang [Armstrong, et al. 1996]

• Rebeca [Sirjani and Jaghoori, 2011]

• Akka [Roestenburg, et al. 2017]

• Ray [Moritz, et al. 2018]

• …

48Lee, Berkeley

Outline

• Definitions
• Threads
• Alternatives to Threads
• Deterministic Concurrency

49

Ptolemy II

50

http://ptolemy.org

Ptolemy II has
implementations of all of
these and a few more with
extensive demos.

Deterministic Concurrent MoCs

• Dataflow (DF)
• Process Networks (PN)
• Synchronous/Reactive (SR)
• Discrete Events (DE)

51

Dataflow

• Computation Graphs [Karp, 1966]
• Dataflow [Dennis, 1974]
• Dynamic dataflow [Arvind, 1981]
• Structured dataflow [Matwin & Pietrzykowski 1985]
• K-bounded loops [Culler, 1986]
• Synchronous dataflow [Lee & Messerschmitt, 1986]
• Structured dataflow and LabVIEW [Kodosky, 1986]
• PGM: Processing Graph Method [Kaplan, 1987]
• Dataflow synchronous languages [Lustre, Signal, 1980’s]
• Well-behaved dataflow [Gao, 1992]
• Boolean dataflow [Buck and Lee, 1993]
• Multidimensional SDF [Lee, 1993]
• Cyclo-static dataflow [Lauwereins, 1994]
• Integer dataflow [Buck, 1994]
• Bounded dynamic dataflow [Lee and Parks, 1995]
• Heterochronous dataflow [Girault, Lee, & Lee, 1997]
• …

52

Jack Dennis

Dataflow Solution for Scheduling:
Firing Rules

53

An actor with no inputs
can fire at any time.

Fire!

Tokens produced

[Lee & Matsikoudis, 2009]

Dataflow Solution for Scheduling:
Firing Rules

54

An actor with inputs has to
specify at all times how
many tokens it needs on
each input in order to fire.

Fire!
Produce1

1

1

Consume

[Lee & Matsikoudis, 2009]

Dataflow Solution for Scheduling:
Firing Rules

55

An actor inputs has to
specify at all times how
many tokens it needs on
each input in order to fire.

Fire!1
1

1Consume

When it fires, each reaction
is invoked in a deterministic
order.

[Lee & Matsikoudis, 2009]

Synchronous Dataflow Scheduling

When the firing rules and production
patterns are static integer constants,
then a lot of analysis and
optimization is possible.

[Lee & Messerschmitt, 1986]

56

1
1

1

1

1

1 1996

Synchronous Dataflow Scheduling
with Timing

If execution times are also known, then throughput
and latency bounds are derivable and optimal
scheduling is possible (albeit intractable).

[Lee & Messerschmitt, 1986]

57

1
1

1

1

1

1

Dataflow Scheduling with
Dynamic Firing Rules

58

What should
be the firing
rule for Foo?

1
?

1Consume

?

1

1

reactor Baz {
input in;
output out;
reaction(in){

if (something) {
send(out);

}
}

}

Boolean Dataflow

59

Associate a symbolic variable
with production and
consumption parameters. Solve
the scheduling problem
symbolically.
[Buck and Lee, 1993]

1
b

1Consume

b

1

1

Buck [1993] showed that
scheduling problems in
general are undecidable in
this framework.

Various Dataflow Variants that
Remain Decidable

60

• Cyclostatic dataflow [Lauwereins 1994]

• Heterochronous dataflow [Girault, Lee & Lee, 1997]

• Parameterized dataflow [Bhattacharya & Bhattacharyya, 2001]

• Structured dataflow [Thies, 2002]

• Scenario-aware dataflow [Theelen, Geilen, Basten, et al. 2006]

• Reconfigurable dataflow [Fradet, Girault, et al., 2019]

1
b

1Consume

b

1

1

Scenario-Aware Dataflow

61

A state machine governs the
switching between
production/consumption
patterns and also execution
times.

[Theelen, Geilen, Basten, et al. 2006]

1
b

1Consume

b

1

1

Some Strategies

• Dataflow (DF)
• Process Networks (PN)
• Synchronous/Reactive (SR)
• Discrete Events (DE)

62

A Different Solution:
Blocking Reads

[Kahn, 1974] [Kahn and MacQueen, 1977]

In Kahn Process
Networks (KPN),
every actor is a
process that blocks
on reading inputs
until data is available.

KPNActor Foo {
input double, increment;
int state = 1;
while(true) {

read(double);
state *= 2;
x = read(increment);
state += x;
print state;

}
}

increment

double

Gilles
Kahn

Blocking reads have trouble with
data-dependent flow patterns

64

KPNActor Baz {
input in;
output out;
while(true) {

read(in);
if (something) {

send(out);
}

}
}

KPNActor Foo {
input double, increment;
int state = 1;
while(true) {

read(double);
state *= 2;
x = read(increment);
state += x;
print state;

}
}

Blocking reads have trouble with
data-dependent flow patterns

65

KPNActor Baz {
input in;
output out;
while(true) {

read(in);
if (something) {

send(out);
}

}
}

KPNActor Foo {
input double, increment;
int state = 1;
while(true) {

if (something) {
read(double);
state *= 2;

}
x = read(increment);
state += x;
print state;

}
}

Solution: Coordinated Control

66

1Consume

Actor Baz {
input in;
output out;
handler in(){

if (something) {
out.send();

}
}

}

Actor Foo {
input double, increment;
int state = 1;
while(true) {

if (something) {
read(double);
state *= 2;

}
x = read(increment);
state += x;
print state;

}
}

Some Strategies

• Dataflow (DF)
• Process Networks (PN)
• Synchronous/Reactive (SR)
• Discrete Events (DE)

67

An Alternative Approach to
Coordination

Make the notion of the “absence” of a message
as meaningful as its presence.

68

A Different Approach:
Synchronous Languages

69

In the synchronous/reactive approach, there is a conceptual
global “clock,” and on each “tick” of this clock, a connection
either has a well-defined value or is “absent.”
Each actor realizes a time-varying function mapping inputs to
outputs.

[Benveniste & Berry, 1991]

Fixed Point Semantics

70

s Î S N

At each tick of the
clock, the job of the
execution engine is to
find a valuation s for
all signals such that
F(s) = s.

This is called a fixed
point of the function F.
A theory of partial
orders guarantees
existence and
uniqueness.

[Edwards and Lee, 2003]

Distributed and Parallel Execution

Physically asynchronous,
logically synchronous (PALS)

71[Sha et al., 2009]

Some Strategies

• Dataflow (DF)
• Process Networks (PN)
• Synchronous/Reactive (SR)
• Discrete Events (DE)

72

Discrete-Event Languages

DE is a generalization of SR, where there is a
notion of “time between ticks.”

WARNING: immediately have (at least) two time
lines: logical time and physical time(s).

73[Lee & Zheng, 2007]

Discrete Events (DE)

74

• Events that are processed in timestamp order.
• Widely used in simulation
• Foundation of hardware description languages.
• A deterministic concurrent MoC.
• But how to realize on distributed machines?

A few texts that use the DE MoC

And Lingua Franca!

References

Many dataflow papers: https://ptolemy.berkeley.edu/publications/dataflow.htm
• Agha, G. A. (1997). Abstracting Interaction Patterns: A Programming Paradigm for

Open Distributed Systems. Formal Methods for Open Object-based Distributed
Systems, IFIP Transactions, Chapman and Hall.

• Agha, G. (1990). "Concurrent object-oriented programming." Communications of
the ACM 33(9): 125-140.

• Agha, G. (1986). ACTORS: A Model of Concurrent Computation in Distributed
Systems. Cambridge, MA, MIT Press.

• Armstrong, J., et al. (1996). Concurrent programming in Erlang, Prentice Hall.
• Benveniste, A. and G. Berry (1991). "The Synchronous Approach to Reactive and

Real-Time Systems." Proceedings of the IEEE 79(9): 1270-1282.
• Bhattacharya, B. and S. S. Bhattacharyya (2000). Parameterized Dataflow Modeling

of DSP Systems. International Conference on Acoustics, Speech, and Signal
Processing (ICASSP), Istanbul, Turkey.

• Buck, J. T. and E. A. Lee (1993). Scheduling Dynamic Dataflow Graphs with
Bounded Memory Using the Token Flow Model. IEEE Int. Conf. on Acoustics,
Speech, and Signal Processing (ICASSP).

• Buttazzo, G. C. (2005). Hard Real-Time Computing Systems: Predictable Scheduling
Algorithms and Applications, Springer.

75

https://ptolemy.berkeley.edu/publications/dataflow.htm

References

• Edwards, S. A. and E. A. Lee (2007). The Case for the Precision Timed
(PRET) Machine. Design Automation Conference (DAC), San Diego, CA.

• Edwards, S. A. and E. A. Lee (2003). "The Semantics and Execution of a
Synchronous Block-Diagram Language." Science of Computer
Programming 48(1): 21-42.

• Fradet, P., et al. (2019). RDF: Reconfigurable Dataflow. Design Automation
in Europe (DATE), Florence, Italy.

• Girault, A., et al. (1999). "Hierarchical Finite State Machines with Multiple
Concurrency Models." IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems 18(6): 742-760.

• Hewitt, C. (1977). "Viewing control structures as patterns of passing
messages." Journal of Artificial Intelligence 8(3): 323-363.

• Kahn, G. (1974). The Semantics of a Simple Language for Parallel
Programming. Proc. of the IFIP Congress 74, North-Holland Publishing Co.

• Kahn, G. and D. B. MacQueen (1977). Coroutines and Networks of Parallel
Processes. Information Processing, North-Holland Publishing Co.

76

References

• Lee, E. A., et al. (2017). Abstract {PRET} Machines. IEEE Real-Time Systems
Symposium (RTSS), Paris, France.

• Lee, E. A. and E. Matsikoudis (2009). The Semantics of Dataflow with Firing. From
Semantics to Computer Science: Essays in memory of Gilles Kahn. G. Huet, G.
Plotkin, J.-J. Levy and Y. Bertot, Cambridge University Press.

• Lee, E. A. and D. G. Messerschmitt (1987). "Synchronous Data Flow." Proceedings
of the IEEE 75(9): 1235-1245.

• Lee, E. A. and H. Zheng (2007). Leveraging Synchronous Language Principles for
Heterogeneous Modeling and Design of Embedded Systems. EMSOFT, Salzburg,
Austria, ACM.

• Lee, E. A. and H. Zheng (2005). Operational Semantics of Hybrid Systems. Hybrid
Systems: Computation and Control (HSCC), Zurich, Switzerland, Springer-Verlag.

• Bilsen, G., et al. (1996). "Cyclo-static dataflow." IEEE Transactions on Signal
Processing 44(2): 397-408.

• Moritz, P., et al. (2018). "Ray: A Distributed Framework for Emerging AI
Applications.” Xiv:1712.05889v2 [cs.DC] 30 Sep 2018.

• Ptolemaeus, C., Ed. (2012). System Design, Modeling, and Simulation Using
Ptolemy II. Berkeley, CA, USA, Ptolemy.org.

77

References

• Sha, L., et al. (2009). PALS: Physically Asynchronous Logically Synchronous
Systems, Univ. of Illinois at Urbana Champaign (UIUC).

• Sirjani, M. and M. M. Jaghoor (2011). Ten Years of Analyzing Actors:
Rebeca Experience. Formal Modeling: Actors, Open Systems, Biological
Systems. Agha G., Danvy O. and M. J. Berlin, Heidelberg, Springer. Lecture
Notes in Computer Science, vol 7000.

• Theelen, B. D., et al. (2006). A Scenario-Aware Data Flow Model for
CombinedLong-Run Average and Worst-Case Performance Analysis.
Formal Methods and Models for Co-Design.

• Thies, W., et al. (2002). {StreamIt}: A Language for Streaming Applications.
11th International Conference on Compiler Construction, Grenoble,
France, Springer-Verlag.

• Wilhelm, R., et al. (2008). "The worst-case execution-time problem -
overview of methods and survey of tools." ACM Transactions on
Embedded Computing Systems (TECS) 7(3): 1-53.

78

