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Example MoCs

Sequential:
• Finite state machines
• Pushdown automata
• Turing machines

Functional:
• Lambda calculus
• Recursive functions
• Combinatory logic
• Rewriting systems

Concurrent:
• Cellular automata
• Kahn process networks
• Petri nets
• Dataflow
• Actors
• CSP (rendezvous)

Timed & Concurrent:
• Synchronous/Reactive
• Discrete events
• Continuous time
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Outline

• Definitions
• Threads
• Alternatives to Threads
• Deterministic Concurrency
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Concurrent MoCs
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http://ptolemy.org/systems

“the rules that govern 
concurrent execution of 
the components and the 
communication between 
components”



Concurrency

From the Latin, 
concurrere, 
“run together”



Concurrency

Google:
• the fact of two or more events or circumstances 

happening or existing at the same time.

Dictionary.com:
• simultaneous occurrence; coincidence.

Webster:
• the simultaneous occurrence of events or 

circumstances
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Points of Confusion

• The role of time
• Synchrony and asynchrony
• Concurrent vs. parallel
• Concurrent vs. nondeterministic



Layers of Abstraction for 
Concurrency in Programs



Uses of Concurrency in 
Software

u Reacting to external events (interrupts)

u Exception handling (software interrupts)

u Creating the illusion of simultaneously running different 
programs (multitasking)

u Exploiting parallelism in the hardware (multicore, VLIW, 
server farms)

u Dealing with real-time constraints (preemption, deadlines, 
priorities)

u Distributed computation (networked)



Outline

• Definitions
• Threads
• Alternatives to Threads
• Deterministic Concurrency
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Threads

Threads are sequential concurrent procedures that 
share memory.

They have been the most commonly used 
mechanism for building concurrent software, but this 
is changing, for good reasons.

Processes are collections of threads with their own 
memory. Communication between processes occurs 
via OS facilities (like pipes, sockets, or files).



Thread Mechanisms

uWithout an OS, multithreading is achieved with interrupts. 
Timing is determined by external events.

uGeneric OSs (Linux, Windows, OSX, …) provide thread 
libraries (e.g. pthreads) and provide no guarantees about 
when threads will execute.

uReal-time operating systems  (RTOSs), like FreeRTOS, 
QNX, VxWorks, RTLinux, support a variety of ways of 
controlling when threads execute (priorities, preemption 
policies, deadlines, …).



Posix Threads (pthreads)

pthreads is an API (Application Program Interface) 
implemented by many operating systems, both real-time 
and not. It is a library of C procedures.

Standardized by the IEEE in 1988 to unify variants of 
Unix. Subsequently implemented in most other operating 
systems.

Some languages have threads built in, like Java, which 
uses pthreads under the hood.



Creating and Destroying 
Threads

#include <pthread.h>

void* threadFunction(void* arg) {
...

return pointerToSomething or NULL;

}

int main(void) {

pthread_t threadID;

void* exitStatus;

int value = something;

pthread_create(&threadID, NULL, threadFunction, &value);
...

pthread_join(threadID, &exitStatus);

return 0;

}

Can pass in pointers to shared variables.

Can return pointer to something.
Do not return a pointer to a local variable!

Return only after all threads have terminated.

Becomes arg parameter to 
threadFunction. 
Why is it OK that this is a 
local variable?

Create a thread (may or may not start running!)



What’s Wrong with This?
#include <pthread.h>

#include <stdio.h>

void *my_thread() {

int ret = 42;

return &ret;

}

int main() {

pthread_t task_id;

void *status;

pthread_create(&task_id, NULL, my_thread, NULL);

pthread_join(task_id, &status);

printf("%d\n",*(int*)status); return 0;

}

Don’t return a pointer to a local 
variable, which is on the stack. 



Notes
u Threads can (and often do) share variables
u Threads may or may not begin running immediately 

after being created.
u A thread may be suspended between any two 
atomic instructions (typically, assembly instructions, 
not C statements!) to execute another thread and/or 
interrupt service routine.

u Threads can often be given priorities, but these may 
not be respected by the thread scheduler.

u Threads may block on semaphores and mutexes.



A Scenario
Under Integrated Modular Avionics, software 
in the aircraft engine continually runs 
diagnostics and publishes diagnostic data on 
the local network.

Proper software 
engineering practice 
suggests using the 
observer pattern.

An observer process 
updates the cockpit 
display based on 
notifications from 
the engine 
diagnostics.



Typical thread programming 
problem

“The Observer pattern defines a one-to-many 
dependency between a subject object and any 
number of observer objects so that when the 
subject object changes state, all its observer 
objects are notified and updated 
automatically.”

Design Patterns, Eric Gamma, Richard Helm, 
Ralph Johnson, John Vlissides
(Addison-Wesley, 1995)



Observer Pattern in C
// Value that when updated triggers notification
// of registered listeners.
int value;

// List of listeners. A linked list containing 
// pointers to notify procedures.
typedef void* notifyProcedure(int);
struct element {…}
typedef struct element elementType;
elementType* head = 0;
elementType* tail = 0;

// Procedure to add a listener to the list.
void addListener(notifyProcedure listener) {…}

// Procedure to update the value
void update(int newValue) {…}

// Procedure to call when notifying
void print(int newValue) {…}



// Value that when updated triggers notification of registered 
listeners.
int value;

// List of listeners. A linked list containing 
// pointers to notify procedures.
typedef void* notifyProcedure(int);
struct element {…}
typedef struct element elementType;
elementType* head = 0;
elementType* tail = 0;

// Procedure to add a listener to the list.
void addListener(notifyProcedure listener) {…}

// Procedure to update the value
void update(int newValue) {…}

// Procedure to call when notifying
void print(int newValue) {…}

Observer Pattern in C

typedef void* notifyProcedure(int);
struct element {
notifyProcedure* listener;
struct element* next;

};
typedef struct element elementType;
elementType* head = 0;
elementType* tail = 0;



Observer Pattern in C
// Value that when updated triggers notification of registered listeners.
int value;

// List of listeners. A linked list containing 
// pointers to notify procedures.
typedef void* notifyProcedure(int);
struct element {…}
typedef struct element elementType;
elementType* head = 0;
elementType* tail = 0;

// Procedure to add a listener to the list.
void addListener(notifyProcedure listener) {…}

// Procedure to update the value
void update(int newValue) {…}

// Procedure to call when notifying
void print(int newValue) {…}

// Procedure to add a listener to the list.
void addListener(notifyProcedure listener) {
if (head == 0) {
head = malloc(sizeof(elementType));
head->listener = listener;
head->next = 0;
tail = head;

} else {
tail->next = malloc(sizeof(elementType));
tail = tail->next;
tail->listener = listener;
tail->next = 0;

}
}



// Value that when updated triggers notification of registered 
listeners.
int value;

// List of listeners. A linked list containing 
// pointers to notify procedures.
typedef void* notifyProcedure(int);
struct element {…}
typedef struct element elementType;
elementType* head = 0;
elementType* tail = 0;

// Procedure to add a listener to the list.
void addListener(notifyProcedure listener) {…}

// Procedure to update the value
void update(int newValue) {…}

// Procedure to call when notifying
void print(int newValue) {…}

Observer Pattern in C

// Procedure to update the value
void update(int newValue) {
value = newValue;
// Notify listeners.
elementType* element = head;
while (element != 0) {
(*(element->listener))(newValue);
element = element->next;

}
}



// Value that when updated triggers notification of registered 
listeners.
int value;

// List of listeners. A linked list containing 
// pointers to notify procedures.
typedef void* notifyProcedure(int);
struct element {…}
typedef struct element elementType;
elementType* head = 0;
elementType* tail = 0;

// Procedure to add a listener to the list.
void addListener(notifyProcedure listener) {…}

// Procedure to update the value
void update(int newValue) {…}

// Procedure to call when notifying
void print(int newValue) {…}

Observer Pattern in C

Will this work in a 
multithreaded context?

Will there be 
unexpected/undesirable 
behaviors?



Observer Pattern in C:
How to make this thread safe?

// Value that when updated triggers notification of registered listeners.
int value;

// List of listeners. A linked list containing 
// pointers to notify procedures.
typedef void* notifyProcedure(int);
struct element {…}
typedef struct element elementType;
elementType* head = 0;
elementType* tail = 0;

// Procedure to add a listener to the list.
void addListener(notifyProcedure listener) {…}

// Procedure to update the value
void update(int newValue) {…}

// Procedure to call when notifying
void print(int newValue) {…}

// Procedure to add a listener to the list.
void addListener(notifyProcedure listener) {
if (head == 0) {
head = malloc(sizeof(elementType));
head->listener = listener;
head->next = 0;
tail = head;

} else {
tail->next = malloc(sizeof(elementType));
tail = tail->next;
tail->listener = listener;
tail->next = 0;

}
}



Using Posix mutexes on 
the observer pattern in C

#include <pthread.h>
...
pthread_mutex_t lock;

void addListener(notify listener) {
pthread_mutex_lock(&lock);
...
pthread_mutex_unlock(&lock);

}

void update(int newValue) {
pthread_mutex_lock(&lock);
value = newValue;
elementType* element = head;
while (element != 0) {

(*(element->listener))(newValue);
element = element->next;

}
pthread_mutex_unlock(&lock);

}

int main(void) {
pthread_mutex_init(&lock, NULL);
...

}

However, this carries a 
significant deadlock risk. 
The update procedure 
holds the lock while it 
calls the notify 
procedures. If any of 
those stalls trying to 
acquire another lock, and 
the thread holding that 
lock tries to acquire this 
lock, deadlock results.



After years of use without problems, a Ptolemy Project code review found code that 
was not thread safe. It was fixed in this way. Three days later, a user in Germany 
reported a deadlock that had not shown up in the test suite.



One possible “fix”#include <pthread.h>
...
pthread_mutex_t lock;

void addListener(notify listener) {
pthread_mutex_lock(&lock);
...
pthread_mutex_unlock(&lock);

}

void update(int newValue) {
pthread_mutex_lock(&lock);
value = newValue;
... copy the list of listeners ...
pthread_mutex_unlock(&lock);
elementType* element = headCopy;
while (element != 0) {

(*(element->listener))(newValue);
element = element->next;

}
}

int main(void) {
pthread_mutex_init(&lock, NULL);
...

}

What is wrong with this?

Notice that if multiple 
threads call update(), the 
updates will occur in 
some order. But there is 
no assurance that the 
listeners will be notified in 
the same order. Listeners 
may be mislead about the 
“final” value.



This is a very simple, commonly used design 
pattern. Perhaps Concurrency is Just Hard…

Sutter and Larus observe:

“Humans are quickly overwhelmed by concurrency and 
find it much more difficult to reason about concurrent 
than sequential code. Even careful people miss possible 
interleavings among even simple collections of partially 
ordered operations.”

H. Sutter and J. Larus. Software and the concurrency revolution. 
ACM Queue, 3(7), 2005.



If concurrency were intrinsically hard, we 
would not function well in the physical world

It is not 
concurrency that 
is hard…



…It is Threads that are Hard!

Threads are sequential processes that share 
memory. From the perspective of any thread, 
the entire state of the universe can change 
between any two atomic actions (itself an ill-
defined concept).

Imagine if the physical world did that…



What it Feels Like to Use Mutexes
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Claim

Nontrivial software written with threads, 
semaphores, and mutexes is incomprehensible to 
humans.

à Need better ways to program concurrent systems

à Better tools to analyze and reason about concurrency 
(e.g. model checking)



Do Threads Have a Sound 
Foundation?

If the foundation is bad, 
then we either tolerate 
brittle designs that are 
difficult to make work, 
or we have to rebuild 
from the foundations.

Note that this whole thing 
is held up by threads



Problems with the Foundations

A model of computation:

• Bits: B = {0, 1}
• Set of finite sequences of bits: B*

• Computation: f : B*® B*

• Composition of computations: f • f '
• Programs specify compositions of computations

Threads augment this model to admit concurrency.

But this model does not admit concurrency gracefully.



Basic Sequential Computation

initial state: b0 Î B*

final state: bN

sequential
composition

bn = fn ( bn-1 )

Formally, composition of computations is function composition.



When There are Threads,
Everything Changes

suspend

A program no longer 
computes a function.

resume

another thread can 
change the state

bn = fn ( bn-1 )

b'n = fn ( b'n-1 )

Apparently, programmers find this 
model appealing because nothing has 
changed in the syntax.



Succinct Problem Statement

Threads are wildly nondeterministic.

The programmer’s job is to prune away the 
nondeterminism by imposing constraints on 
execution order (e.g., mutexes) and limiting 
shared data accesses (e.g., OO design).



Incremental Improvements to Threads

• Object Oriented programming 
• Coding rules (Acquire locks in the same order…)
• Libraries (Stapl, Java concurrent collections, …)
• Message passing (Actors, …)
• Publish and subscribe (ROS, MQTT, DDS, …)
• Transactions (Databases, …)
• Patterns (MapReduce, …)
• Formal verification (Model checking, …)
• Enhanced languages (Split-C, Cilk, Guava, …)
• Enhanced mechanisms (Promises, futures, 

asynchronous atomic callbacks …)



Threads: An Unnecessary Source 
of Nondeterminism in Software

Threads are slowly getting replaced. 
E.g.:
• Asynchronous atomic callbacks

– Python, Node.js, Vert.x,  …
• Actors

– Akka, Orleans, Ray, …
• Pub-Sub

– ROS, Vert.x, DDS, …
• …

39Lee, Berkeley
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Message-passing programs may be better

But there is still risk of 
deadlock and 
unexpected 
nondeterminism!



Recall Challenge Problem

A software 
component on a 
microprocessor in an 
aircraft door provides 
two network services:
1. “open”
2. “disarm”
Assume state is 
closed and armed.
What should it do 
when it receives a 
request “open”?

41

Image by Christopher Doyle from 
Horley, United Kingdom - A321 Exit 
Door, CC BY-SA 2.0



Outline

• Definitions
• Threads
• Alternatives to Threads
• Deterministic Concurrency
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Asynchronous Atomic Callbacks

• Main event loop.
• Event handlers (“callbacks”) run to completion 

atomically.

Augment with worker threads that 
communicate with:

• Immutable data
• Publish-and-subscribe busses

43



Asynchronous Atomic Callbacks:
Periodic Actions

• Shared variable x
• Timed actions on x

• +1 every second
• −2 every two seconds
• Observe every 4 seconds

44

var x = 0;
function increment() {

x = x + 1;
}
function decrement() {

x = x - 2;
}
function observe() {

console.log(x);
}
setInterval(increment, 1000);
setInterval(decrement, 2000);
setInterval(observe, 4000);

On Node.js v5.3.0, MacOS Sierra:

0, 0, 0, 0, 0, −1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, …



“Toyota” Style of Design

NASA's Toyota Study Released by Dept. of 
Transportation released in 2011 found that 
Toyota software was “untestable.”

45

Possible 
victim of 

unintended 
acceleration.



Publish and Subscribe (Pub Sub)

46

BrokerPublisher

Subscriber

Subscriber

Subscriber
Publish to
Topic: Temperature
Data: 18

Data: 
18
Data: 
18
Data: 18

Subscribe to Topic: 
Temperature

Etc.



Recall Challenge Problem

A software 
component on a 
microprocessor in an 
aircraft door provides 
two network services:
1. “open”
2. “disarm”
Assume state is 
closed and armed.
What should it do 
when it receives a 
request “open”?

47Image from The Telegraph, Sept. 9, 2015



Another Answer to Threads:
Actors

Actors are concurrent objects that communicate 
by sending each other messages.

• Erlang [Armstrong, et al. 1996]

• Rebeca [Sirjani and Jaghoori, 2011]

• Akka [Roestenburg, et al. 2017]

• Ray [Moritz, et al. 2018]

• …

48Lee, Berkeley



Outline

• Definitions
• Threads
• Alternatives to Threads
• Deterministic Concurrency
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Ptolemy II

50

http://ptolemy.org

Ptolemy II has 
implementations of all of 
these and a few more with 
extensive demos.



Deterministic Concurrent MoCs

• Dataflow (DF)
• Process Networks (PN)
• Synchronous/Reactive (SR)
• Discrete Events (DE)

51



Dataflow

• Computation Graphs [Karp, 1966]
• Dataflow [Dennis, 1974]
• Dynamic dataflow [Arvind, 1981]
• Structured dataflow [Matwin & Pietrzykowski 1985]
• K-bounded loops [Culler, 1986]
• Synchronous dataflow [Lee & Messerschmitt, 1986]
• Structured dataflow and LabVIEW [Kodosky, 1986]
• PGM: Processing Graph Method [Kaplan, 1987]
• Dataflow synchronous languages [Lustre, Signal, 1980’s]
• Well-behaved dataflow [Gao, 1992]
• Boolean dataflow [Buck and Lee, 1993]
• Multidimensional SDF [Lee, 1993]
• Cyclo-static dataflow [Lauwereins, 1994]
• Integer dataflow [Buck, 1994]
• Bounded dynamic dataflow [Lee and Parks, 1995]
• Heterochronous dataflow [Girault, Lee, & Lee, 1997]
• …

52

Jack Dennis



Dataflow Solution for Scheduling:
Firing Rules

53

An actor with no inputs 
can fire at any time.

Fire!

Tokens produced

[Lee & Matsikoudis, 2009]



Dataflow Solution for Scheduling:
Firing Rules

54

An actor with inputs has to 
specify at all times how 
many tokens it needs on 
each input in order to fire.

Fire!
Produce1

1

1

Consume

[Lee & Matsikoudis, 2009]



Dataflow Solution for Scheduling:
Firing Rules

55

An actor inputs has to 
specify at all times how 
many tokens it needs on 
each input in order to fire.

Fire!1
1

1Consume

When it fires, each reaction 
is invoked in a deterministic 
order.

[Lee & Matsikoudis, 2009]



Synchronous Dataflow Scheduling

When the firing rules and production 
patterns are static integer constants, 
then a lot of analysis and 
optimization is possible.

[Lee & Messerschmitt, 1986]
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Synchronous Dataflow Scheduling 
with Timing

If execution times are also known, then throughput 
and latency bounds are derivable and optimal 
scheduling is possible (albeit intractable).

[Lee & Messerschmitt, 1986]

57
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Dataflow Scheduling with 
Dynamic Firing Rules

58

What should 
be the firing 
rule for Foo?

1
?

1Consume

?

1

1

reactor Baz {
input in;
output out;
reaction(in){

if (something) {
send(out);

}
}

}



Boolean Dataflow

59

Associate a symbolic variable 
with production and 
consumption parameters. Solve 
the scheduling problem 
symbolically.
[Buck and Lee, 1993]

1
b

1Consume

b

1

1

Buck [1993] showed that 
scheduling problems in 
general are undecidable in 
this framework.



Various Dataflow Variants that 
Remain Decidable

60

• Cyclostatic dataflow [Lauwereins 1994]

• Heterochronous dataflow [Girault, Lee & Lee, 1997]

• Parameterized dataflow [Bhattacharya & Bhattacharyya, 2001]

• Structured dataflow [Thies, 2002]

• Scenario-aware dataflow [Theelen, Geilen, Basten, et al. 2006]

• Reconfigurable dataflow [Fradet, Girault, et al., 2019]

1
b

1Consume

b

1

1



Scenario-Aware Dataflow

61

A state machine governs the 
switching between 
production/consumption 
patterns and also execution 
times.

[Theelen, Geilen, Basten, et al. 2006]

1
b

1Consume

b

1

1



Some Strategies

• Dataflow (DF)
• Process Networks (PN)
• Synchronous/Reactive (SR)
• Discrete Events (DE)

62



A Different Solution: 
Blocking Reads

[Kahn, 1974] [Kahn and MacQueen, 1977]

In Kahn Process 
Networks (KPN), 
every actor is a 
process that blocks 
on reading inputs 
until data is available.

KPNActor Foo {
input double, increment;
int state = 1;
while(true) {

read(double);
state *= 2;
x = read(increment);
state += x;
print state;

}
}

increment

double

Gilles 
Kahn



Blocking reads have trouble with 
data-dependent flow patterns

64

KPNActor Baz {
input in;
output out;
while(true) {

read(in);
if (something) {

send(out);
}

}
}

KPNActor Foo {
input double, increment;
int state = 1;
while(true) {

read(double);
state *= 2;
x = read(increment);
state += x;
print state;

}
}



Blocking reads have trouble with 
data-dependent flow patterns

65

KPNActor Baz {
input in;
output out;
while(true) {

read(in);
if (something) {

send(out);
}

}
}

KPNActor Foo {
input double, increment;
int state = 1;
while(true) {

if (something) {
read(double);
state *= 2;

}
x = read(increment);
state += x;
print state;

}
}



Solution: Coordinated Control

66

1Consume

Actor Baz {
input in;
output out;
handler in(){

if (something) {
out.send();

}
}

}

Actor Foo {
input double, increment;
int state = 1;
while(true) {

if (something) {
read(double);
state *= 2;

}
x = read(increment);
state += x;
print state;

}
}



Some Strategies

• Dataflow (DF)
• Process Networks (PN)
• Synchronous/Reactive (SR)
• Discrete Events (DE)

67



An Alternative Approach to 
Coordination

Make the notion of the “absence” of a message 
as meaningful as its presence.

68



A Different Approach:
Synchronous Languages

69

In the synchronous/reactive approach, there is a conceptual 
global “clock,” and on each “tick” of this clock, a connection 
either has a well-defined value or is “absent.”
Each actor realizes a time-varying function mapping inputs to 
outputs.

[Benveniste & Berry, 1991]



Fixed Point Semantics

70

s Î S N

At each tick of the 
clock, the job of the 
execution engine is to 
find a valuation s for 
all signals such that 
F(s) = s.

This is called a fixed 
point of the function F.
A theory of partial 
orders guarantees 
existence and 
uniqueness.

[Edwards and Lee, 2003]



Distributed and Parallel Execution

Physically asynchronous, 
logically synchronous (PALS)

71[Sha et al., 2009]



Some Strategies

• Dataflow (DF)
• Process Networks (PN)
• Synchronous/Reactive (SR)
• Discrete Events (DE)

72



Discrete-Event Languages

DE is a generalization of SR, where there is a 
notion of “time between ticks.”

WARNING: immediately have (at least) two time 
lines: logical time and physical time(s).

73[Lee & Zheng, 2007]



Discrete Events (DE)

74

• Events that are processed in timestamp order.
• Widely used in simulation
• Foundation of hardware description languages.
• A deterministic concurrent MoC.
• But how to realize on distributed machines?

A few texts that use the DE MoC

And Lingua Franca!
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