
University of California, Berkeley

Software Design for
Cyber-Physical Systems

Edward A. Lee

Vienna, Austria, May 2022
Technical University of Vienna

Module 8: Distributed Systems

Example: Google Spanner
A Globally Distributed Database

2

Distributed database with redundant storage
and query handling across data centers.

Update to a record
comes in. Time stamp t.

Query for the same record
comes in. Time stamp r.

Example: Google Spanner
A Globally Distributed Database

Semantics of the
database is that it
handles queries in
timestamp order.

3

query

update

Web
Server

Network
Interface

Database

reply

query
reply

update
Platform B

update
query

Web
Server

Database

Pl
at

fo
rm

 A

[Corbet, et al., “Spanner: Google's Globally-Distributed Database,” OSDI 2011]

t r

One Possible Approach:
Chandy and Misra [1979]

4

• Assume events
arrive reliably in
timestamp order.

• Wait for events on
each input.

• Process the event
with the smaller
timestamp.

• E.g. r1 < t1

query

update

Web
Server

Network
Interface

Database

reply

query
reply

update
Platform B

update
query

Web
Server

Database

Pl
at

fo
rm

 A
r1

t1t2

r2
…

…

One Possible Approach:
Chandy and Misra [1979]

5

• Deterministic
• Network traffic for

“null messages.”
• Every node is a single

point of failure.
query

update

Web
Server

Network
Interface

Database

reply

query
reply

update
Platform B

update
query

Web
Server

Database

Pl
at

fo
rm

 A

r1

t1t2

r2
…

…

Another Possible Approach:
Jefferson: Time Warp [1985]

• Speculatively
execute.

• If a message with an
earlier timestamp
later arrives…

6

query

update

Web
Server

Network
Interface

Database

reply

query
reply

update
Platform B

update
query

Web
Server

Database

Pl
at

fo
rm

 A
t r

Another Possible Approach:
Jefferson: Time Warp [1985]

• Speculatively
execute.

• If a message with an
earlier timestamp
later arrives…

• Backtrack!

7

query

update

Web
Server

Network
Interface

Database

reply

query
reply

update
Platform B

update
query

Web
Server

Database

Pl
at

fo
rm

 A

t

r

Another Possible Approach:
Jefferson: Time Warp [1985]

• No single point of failure.
• Can process events

without network traffic
• Can’t backtrack side

effects.
• Overhead: Snapshots
• Uncontrollable latencies.

8

query

update

Web
Server

Network
Interface

Database

reply

query
reply

update
Platform B

update
query

Web
Server

Database

Pl
at

fo
rm

 A

t

r

A Third Possible Approach:
High Level Architecture (HLA)

9

• Next event request
(NER) with r

• Next event request
(NER) with t

• If r < t , then time
advance grant (TAG)
of q ≤ r

• If q = r, process
event

query

update

Web
Server

Network
Interface

Database

reply

query
reply

update
Platform B

update
query

Web
Server

Database

Pl
at

fo
rm

 A
t r

Run Time Infrastructure (RTI)

NER(r)NER(t) TAG(q)

A Third Possible Approach:
High Level Architecture (HLA)

10

• Deterministic.
• RTI is a single point

of failure.
• Works well for

simulation, but not
for online
processing.

query

update

Web
Server

Network
Interface

Database

reply

query
reply

update
Platform B

update
query

Web
Server

Database

Pl
at

fo
rm

 A
t

r

Run Time Infrastructure (RTI)

NER(r)NER(t) TAG(q)

Ptides/Spanner Approach

• Local clock on each platform.
• t and r from local clocks.
• Bounded execution time W.
• Bounded network latency L.
• Event is known at B by time

t +W+L (by clock at A).
• Bounded clock

synchronization error E.
• Event is known at B by time

t +W+L+E (by clock at B).

11

query

update

Web
Server

Network
Interface

Database

reply

query
reply

update
Platform B

update
query

Web
Server

Database

Pl
at

fo
rm

 A
t r

W

L

⏱ ⏱

E
Event with timestamp r is safe to process at time
r +W+L+E (by clock at B).

Ptides/Spanner Approach

• No single point of failure.
• Can process events with

no network traffic.
• Latencies are well

defined.
• Time thresholds

computed statically.
• Assumptions are clearly

stated.

12

query

update

Web
Server

Network
Interface

Database

reply

query
reply

update
Platform B

update
query

Web
Server

Database

Pl
at

fo
rm

 A

[Zhao, Liu, and Lee, “A Programming Model for Time-Synchronized Distributed Real-Time Systems,” RTAS, 2007]
[Corbet, et al., “Spanner: Google's Globally-Distributed Database,” OSDI 2011]

⏱ ⏱

r

Networked Scheduling: PTides

13

When is this “safe to process”? [Zhao et al., 2007]

T

WCET
W1

[Edison et al., 2012]
[Corbett et al., 2012]When T ≥ t + W1 + E + N, where

• T is the local physical clock time
• W1 is worst-case execution time
• E is the bound on the clock synchronization error
• N the bound on the network delay

D = 0.1

D = 0.2

Roots of the Idea

ACM Transactions on Programming Languages and Systems, 1984.

Lee, Berkeley 14

Abstract: Discrete-event (DE) models are formal system specifications that
have analyzable deterministic behaviors. Using a global, consistent notion of
time, DE components communicate via time-stamped events. DE models have
primarily been used in performance modeling and simulation, where time
stamps are a modeling property bearing no relationship to real time during
execution of the model. In this paper, we extend DE models with the
capability of relating certain events to physical time…

15Lee, Berkeley

Ptides – A Robust Distributed DE
MoC for IoIT Applications

Google Spanner – A Reinvention

Google
independently
developed a
very similar
technique and
applied it to
distributed
databases.

Lee, Berkeley 16

Proceedings of OSDI 2012

Federated LF Programs

17

federated reactor {
c = new Count();
p = new Print();
c.out -> p.in;

}

Federated LF Programs

18

federated reactor at wessel.eecs.berkeley.edu {
c = new Count();
p = new Print();
c.out -> p.in;

}

This will put the RTI (runtime
infrastructure) on the specified machine.
The federates can go anywhere.

Install the RTI

https://lf-lang.org/docs/handbook/distributed-execution

git clone https://github.com/lf-lang/reactor-c.git
cd reactor-c/core/federated/RTI/
mkdir build && cd build
cmake ../
make
sudo make install

19

Download Epoch and/or command-line tools from the
nightly build (0.2.0 and VS Code extension will not work)

https://www.lf-lang.org/docs/handbook/distributed-execution

Running by Hand

20

> RTI –n 2 –i myFedID
RTI: Number of federates: 2
RTI: Federation ID: myFedID
Starting RTI for 2 federates in federation ID myFedID
RTI using TCP port 15045 for federation myFedID.
RTI: Listening for federates.
…

> bin/Federated_c –i myFedID
Federation ID for executable bin/Federated_c: myFedID
Federate 0: Connected to RTI at localhost:15045.
---- Start execution at time Fri May 13 06:01:30 2022
---- plus 447993000 nanoseconds.
Federate 0: ---- Using 6 workers.
…

> bin/Federated_p –i myFedID
Federation ID for executable bin/Federated_p: myFedID
Federate 1: Connected to RTI at localhost:15045.
---- Start execution at time Fri May 13 06:02:19 2022
---- plus 563334000 nanoseconds.
Federate 1: ---- Using 6 workers.
Federate 1: Starting timestamp is: 1652414540563681000.
Federate 1: ***** Received: 0
Federate 1: ***** Received: 1
Federate 1: ***** Received: 2
…

Running Using Script

21

> bin/Federated
RTI: Federation ID: 244caf75c3fe2deeda5001d944a256c3637b7c4d796824e5
…
Federate 1: ***** Received: 0
Federate 1: ***** Received: 1
Federate 1: ***** Received: 2

Coordination Across a Distributed System

22

Centralized: Enforces deterministic semantics
regardless of network delays and execution
times (based on HLA). (This is the default.)

Decentralized: Enforces forward progress and
detects violations of deterministic semantics
when network delays get too large (based on
Ptides).

Federated Startup
Initial Connection

23

RTI
Other federates
do the same.

Centralized Coordination Only:
Tell RTI of Connection Structure

24

RTI

Clock Synchronization

25

RTI

How Clock Synchronization Works

26Lee, Berkeley

Federated Startup:
Determining the Starting Logical Time

27

RTI

Centralized Coordination :
Next Event Request (NET)

28

RTI

Centralized Coordination:
Next Event Request (NET)

29

RTI

Centralized Coordination :
Tagged Message Sending via RTI

30

RTI

Centralized Coordination :
Next Event Request (NET)

31

RTI

Centralized Coordination:
Next Event Request (NET)

32

RTI

Shutdown

33

RTI

Feedback with
Centralized Coordination

34

RTI

Decentralized Coordination

35

target C {
coordination: decentralized

};

Decentralized Coordination

36

EALMAC:c eal$ bin/Decentralized_p
…
Federate 1: ERROR: STP violation occurred in a trigger to reaction 1, and
there is no handler.
**** Invoking reaction at the wrong tag!
Federate 1: Received: 0 at (0, 1)
Federate 1: Received: 1 at (1000000000, 0)
Federate 1: Received: 2 at (2000000000, 0)
Federate 1: Received: 3 at (3000000000, 0)
Federate 1: Received: 4 at (4000000000, 0)
Federate 1: ERROR: Received message too late. Already at stop tag.
Current tag is (5000000000, 0) and intended tag is (5000000000, 0).
Discarding message.

What happened?

With
Timer

37

Federate 1: Starting timestamp is: 1652852093838036000.
Federate 1: Timer ticked at (0, 0).
Federate 1: ERROR: STP violation occurred in a trigger to reaction
1, and there is no handler.
**** Invoking reaction at the wrong tag!
Federate 1: Received: 0 at (0, 1)
Federate 1: Timer ticked at (1000000000, 0).
Federate 1: ERROR: STP violation occurred in a trigger to reaction
1, and there is no handler.
**** Invoking reaction at the wrong tag!
Federate 1: Received: 1 at (1000000000, 1)
Federate 1: Timer ticked at (2000000000, 0).
Federate 1: ERROR: STP violation occurred in a trigger to reaction
1, and there is no handler.
**** Invoking reaction at the wrong tag!
Federate 1: Received: 2 at (2000000000, 1)
Federate 1: Timer ticked at (3000000000, 0).
…

Situation is even worse
when destination has
timed activity.

With
After

38

Federate 1: Starting timestamp is: 1652852276394596000.
Federate 1: Timer ticked at (0, 0).
Federate 1: Received: 0 at (10000000, 0)
Federate 1: Timer ticked at (1000000000, 0).
Federate 1: Received: 1 at (1010000000, 0)
Federate 1: Timer ticked at (2000000000, 0).
Federate 1: Received: 2 at (2010000000, 0)
Federate 1: Timer ticked at (3000000000, 0).
Federate 1: Received: 3 at (3010000000, 0)
Federate 1: Timer ticked at (4000000000, 0).
Federate 1: Received: 4 at (4010000000, 0)
Federate 1: Timer ticked at (5000000000, 0).
Federate 1 has resigned.

If after delay is
greater than network
delay, then no STP
violations occur.

With
STP
Offset

39

Federate 1: Starting timestamp is: 1652852565042039000.
Federate 1: Received: 0 at (0, 0)
Federate 1: Timer ticked at (0, 0).
Federate 1: Received: 1 at (1000000000, 0)
Federate 1: Timer ticked at (1000000000, 0).
Federate 1: Received: 2 at (2000000000, 0)
Federate 1: Timer ticked at (2000000000, 0).
Federate 1: Received: 3 at (3000000000, 0)
Federate 1: Timer ticked at (3000000000, 0).
Federate 1: Received: 4 at (4000000000, 0)
Federate 1: Timer ticked at (4000000000, 0).
Federate 1: Received: 5 at (5000000000, 0)
Federate 1: Timer ticked at (5000000000, 0).
Federate 1 has resigned.

If STP offset is greater
than network delay,
then no STP violations
occur.

Note: STP_offset here is STA in CAL paper
(Safe To Advance).

What is the difference?

40

Inconsistency of 10 msec.

Unavailability of 10 msec.

Unavailability

41

Unavailability of 10 msec.

Federate 1: Starting timestamp is: 1652853187696038000.
Federate 1: Received: 0 at (0, 0)
Federate 1: **** Deadline violation at (0, 0).
Federate 1: Received: 1 at (1000000000, 0)
Federate 1: **** Deadline violation at (1000000000, 0).
Federate 1: Received: 2 at (2000000000, 0)
Federate 1: **** Deadline violation at (2000000000, 0).
Federate 1: Received: 3 at (3000000000, 0)
…

timer t(0, 1 sec);
reaction(t) {=

…
=} deadline(10 msec) {=

…
=}

The CAL Theorem (Preview)

CAL:

Consistency and/or Availability must be
sacrificed as network Latency increases in
any distributed system.

42

STP Violation Handlers

43

Inconsistency of 10 msec.

Unavailability of 10 msec.

reaction(in) {=
…

=} STP(0) {=
// Handle STP violation

=}

reaction(in) {=
…

=} STP(0) {=
// Handle STP violation

=}

If Assumptions are Met,
Determinism!

49

Assumptions:
• Deadlines

o WCET
o Schedulability

• Federated Execution (centralized)
o Reliable, in-order network (TCP/IP)

• Federated Execution (decentralized)
o Deadlines
o Network latency
o Clock synchronization error

Contrast With…

• Publish and subscribe (e.g. ROS, MQTT)
• Actors (e.g. Akka, Ray)
• Shared memory
• Service-oriented architectures (RPC)

50

At What Cost Determinism?

• Synchronized clocks
– These are becoming ubiquitous

• Bounded network latency
– Violations are faults. They are detectable.

• Bounded execution times
– Only needed in particular places.
– Solvable with PRET machines

(another talk).

51

Clock Synchronization

• NTP is widely available but not precise enough.
• IEEE 1588 PTP is widely supported in networking

hardware but not yet by the OSs.
• Lingua Franca can work without clock synchronization

by reassigning timestamps to network messages.
– In this case, determinism is preserved within each multicore

platform, but not across platforms.

52

Using Synchronized Clocks in Practice

Despite using TCP/IP
on Ethernet, this
network achieves highly
reliable bounded
latency.

TSN (time-sensitive
networks) is starting to
become pervasive…

Lee, Berkeley 53

This Bosch Rexroth printing press is a cyber-
physical factory using Ethernet and TCP/IP with
high-precision clock synchronization (IEEE 1588)
on an isolated LAN.

Predicting the Future

Clock synchronization is going to
change the world

(again)

1500s
days

Gregorian Calendar (BBC history)
Lackawanna Railroad Station, 1907, Hoboken.
Photograph by Alicia Dudek

1800s
seconds

2000s
nanoseconds

2005: first IEEE 1588 plugfest

Lee, Berkeley 54

Global Positioning System

Provides ~100ns
accuracy to devices
with outdoor
access.

Lee, Berkeley 55

Precision Time Protocols (PTP)
IEEE 1588 on Ethernet

It is routine for physical
network interfaces
(PHY) to provide
hardware support for
PTPs.

With this first generation
PHY, clocks on a LAN
agree on the current time
of day to within ns, far
more precise than GPS
older techniques like
NTP.

Press Release October 1, 2007

Lee, Berkeley 56

An Extreme Example:
The Large Hadron Collider

The WhiteRabbit project at CERN is synchronizing the clocks of computers
10 km apart to within 10s of psec using a combination of GPS, IEEE 1588
PTP and synchronous ethernet.

Lee, Berkeley 57

Conclusions

• Lingua Franca programs are testable
(timestamped inputs -> timestamped outputs)

• LF programs are deterministic under
clearly stated assumptions.

• Violations of assumptions are detectable
at run time.

• Actors, Pub/Sub, SoA, and shared memory
have none of these properties.

58

