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Example: Google Spanner
A Globally Distributed Database
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Distributed database with redundant storage 
and query handling across data centers.

Update to a record 
comes in. Time stamp t.

Query for the same record 
comes in. Time stamp r.



Example: Google Spanner
A Globally Distributed Database

Semantics of the 
database is that it 
handles queries in 
timestamp order.
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[Corbet, et al., “Spanner: Google's Globally-Distributed Database,” OSDI 2011]
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One Possible Approach:
Chandy and Misra [1979]
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• Assume events 
arrive reliably in 
timestamp order.

• Wait for events on 
each input.

• Process the event 
with the smaller 
timestamp.

• E.g. r1 < t1

query

update

Web
Server

Network
Interface

Database

reply

query
reply

update
Platform B

update
query

Web
Server

Database

Pl
at

fo
rm

 A
r1

t1t2

r2
…

…



One Possible Approach:
Chandy and Misra [1979]
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• Deterministic
• Network traffic for 

“null messages.”
• Every node is a single 

point of failure.
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Another Possible Approach:
Jefferson: Time Warp [1985]

• Speculatively 
execute.

• If a message with an 
earlier timestamp 
later arrives…
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Another Possible Approach:
Jefferson: Time Warp [1985]

• Speculatively 
execute.

• If a message with an 
earlier timestamp 
later arrives…

• Backtrack!
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Another Possible Approach:
Jefferson: Time Warp [1985]

• No single point of failure.
• Can process events 

without network traffic 
• Can’t backtrack side 

effects.
• Overhead: Snapshots
• Uncontrollable latencies.
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A Third Possible Approach:
High Level Architecture (HLA)
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• Next event request 
(NER) with r

• Next event request 
(NER) with t

• If r < t , then time 
advance grant (TAG) 
of q ≤ r

• If q = r, process 
event
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NER(r)NER(t) TAG(q)



A Third Possible Approach:
High Level Architecture (HLA)
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• Deterministic.
• RTI is a single point 

of failure.
• Works well for 

simulation, but not 
for online 
processing.
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Ptides/Spanner Approach

• Local clock on each platform.
• t and r from local clocks.
• Bounded execution time W.
• Bounded network latency L.
• Event is known at B by time 

t +W+L (by clock at A).
• Bounded clock 

synchronization error E.
• Event is known at B by time 

t +W+L+E (by clock at B).
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Event with timestamp r is safe to process at time 
r +W+L+E (by clock at B).



Ptides/Spanner Approach

• No single point of failure.
• Can process events with 

no network traffic.
• Latencies are well 

defined.
• Time thresholds 

computed statically.
• Assumptions are clearly 

stated.
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[Zhao, Liu, and Lee, “A Programming Model for Time-Synchronized Distributed Real-Time Systems,” RTAS, 2007]
[Corbet, et al., “Spanner: Google's Globally-Distributed Database,” OSDI 2011]
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Networked Scheduling: PTides
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When is this “safe to process”? [Zhao et al., 2007]

T

WCET
W1

[Edison et al., 2012]
[Corbett et al., 2012]When T ≥ t + W1 + E + N,  where

• T is the local physical clock time
• W1 is worst-case execution time
• E is the bound on the clock synchronization error
• N the bound on the network delay

D = 0.1

D = 0.2



Roots of the Idea

ACM Transactions on Programming Languages and Systems, 1984.

Lee, Berkeley 14



Abstract: Discrete-event (DE) models are formal system specifications that 
have analyzable deterministic behaviors. Using a global, consistent notion of 
time, DE components communicate via time-stamped events. DE models have 
primarily been used in performance modeling and simulation, where time 
stamps are a modeling property bearing no relationship to real time during 
execution of the model. In this paper, we extend DE models with the 
capability of relating certain events to physical time…

15Lee, Berkeley

Ptides – A Robust Distributed DE 
MoC for IoIT Applications 



Google Spanner – A Reinvention

Google 
independently 
developed a 
very similar 
technique and 
applied it to 
distributed 
databases.

Lee, Berkeley 16

Proceedings of OSDI 2012



Federated LF Programs

17

federated reactor {
c = new Count();
p = new Print();
c.out -> p.in;

}



Federated LF Programs
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federated reactor at wessel.eecs.berkeley.edu {
c = new Count();
p = new Print();
c.out -> p.in;

}

This will put the RTI (runtime 
infrastructure) on the specified machine. 
The federates can go anywhere.



Install the RTI

https://lf-lang.org/docs/handbook/distributed-execution

git clone https://github.com/lf-lang/reactor-c.git
cd reactor-c/core/federated/RTI/ 
mkdir build && cd build 
cmake ../ 
make 
sudo make install
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Download Epoch and/or command-line tools from the 
nightly build (0.2.0 and VS Code extension will not work)

https://www.lf-lang.org/docs/handbook/distributed-execution


Running by Hand

20

> RTI –n 2 –i myFedID
RTI: Number of federates: 2
RTI: Federation ID: myFedID
Starting RTI for 2 federates in federation ID myFedID
RTI using TCP port 15045 for federation myFedID.
RTI: Listening for federates.
…

> bin/Federated_c –i myFedID
Federation ID for executable bin/Federated_c: myFedID
Federate 0: Connected to RTI at localhost:15045.
---- Start execution at time Fri May 13 06:01:30 2022
---- plus 447993000 nanoseconds.
Federate 0: ---- Using 6 workers.
…

> bin/Federated_p –i myFedID
Federation ID for executable bin/Federated_p: myFedID
Federate 1: Connected to RTI at localhost:15045.
---- Start execution at time Fri May 13 06:02:19 2022
---- plus 563334000 nanoseconds.
Federate 1: ---- Using 6 workers.
Federate 1: Starting timestamp is: 1652414540563681000.
Federate 1: ***** Received: 0
Federate 1: ***** Received: 1
Federate 1: ***** Received: 2
…



Running Using Script
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> bin/Federated
RTI: Federation ID: 244caf75c3fe2deeda5001d944a256c3637b7c4d796824e5
…
Federate 1: ***** Received: 0
Federate 1: ***** Received: 1
Federate 1: ***** Received: 2



Coordination Across a Distributed System
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Centralized: Enforces deterministic semantics 
regardless of network delays and execution 
times (based on HLA). (This is the default.)

Decentralized: Enforces forward progress and 
detects violations of deterministic semantics 
when network delays get too large (based on 
Ptides).



Federated Startup
Initial Connection
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RTI
Other federates 
do the same.



Centralized Coordination Only:
Tell RTI of Connection Structure

24

RTI



Clock Synchronization
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RTI



How Clock Synchronization Works
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Federated Startup:
Determining the Starting Logical Time
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RTI



Centralized Coordination :
Next Event Request (NET)
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RTI



Centralized Coordination:
Next Event Request (NET)
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RTI



Centralized Coordination :
Tagged Message Sending via RTI
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RTI



Centralized Coordination :
Next Event Request (NET)
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RTI



Centralized Coordination:
Next Event Request (NET)
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RTI



Shutdown
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RTI



Feedback with 
Centralized Coordination
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RTI



Decentralized Coordination
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target C {
coordination: decentralized

};



Decentralized Coordination
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EALMAC:c eal$ bin/Decentralized_p
…
Federate 1: ERROR: STP violation occurred in a trigger to reaction 1, and 
there is no handler.
**** Invoking reaction at the wrong tag!
Federate 1: Received: 0 at (0, 1)
Federate 1: Received: 1 at (1000000000, 0)
Federate 1: Received: 2 at (2000000000, 0)
Federate 1: Received: 3 at (3000000000, 0)
Federate 1: Received: 4 at (4000000000, 0)
Federate 1: ERROR: Received message too late. Already at stop tag.
Current tag is (5000000000, 0) and intended tag is (5000000000, 0).
Discarding message.

What happened?



With
Timer
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Federate 1: Starting timestamp is: 1652852093838036000.
Federate 1: Timer ticked at (0, 0).
Federate 1: ERROR: STP violation occurred in a trigger to reaction 
1, and there is no handler.
**** Invoking reaction at the wrong tag!
Federate 1: Received: 0 at (0, 1)
Federate 1: Timer ticked at (1000000000, 0).
Federate 1: ERROR: STP violation occurred in a trigger to reaction 
1, and there is no handler.
**** Invoking reaction at the wrong tag!
Federate 1: Received: 1 at (1000000000, 1)
Federate 1: Timer ticked at (2000000000, 0).
Federate 1: ERROR: STP violation occurred in a trigger to reaction 
1, and there is no handler.
**** Invoking reaction at the wrong tag!
Federate 1: Received: 2 at (2000000000, 1)
Federate 1: Timer ticked at (3000000000, 0).
…

Situation is even worse 
when destination has 
timed activity.



With
After
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Federate 1: Starting timestamp is: 1652852276394596000.
Federate 1: Timer ticked at (0, 0).
Federate 1: Received: 0 at (10000000, 0)
Federate 1: Timer ticked at (1000000000, 0).
Federate 1: Received: 1 at (1010000000, 0)
Federate 1: Timer ticked at (2000000000, 0).
Federate 1: Received: 2 at (2010000000, 0)
Federate 1: Timer ticked at (3000000000, 0).
Federate 1: Received: 3 at (3010000000, 0)
Federate 1: Timer ticked at (4000000000, 0).
Federate 1: Received: 4 at (4010000000, 0)
Federate 1: Timer ticked at (5000000000, 0).
Federate 1 has resigned.

If after delay is 
greater than network 
delay, then no STP 
violations occur. 



With
STP 
Offset
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Federate 1: Starting timestamp is: 1652852565042039000.
Federate 1: Received: 0 at (0, 0)
Federate 1: Timer ticked at (0, 0).
Federate 1: Received: 1 at (1000000000, 0)
Federate 1: Timer ticked at (1000000000, 0).
Federate 1: Received: 2 at (2000000000, 0)
Federate 1: Timer ticked at (2000000000, 0).
Federate 1: Received: 3 at (3000000000, 0)
Federate 1: Timer ticked at (3000000000, 0).
Federate 1: Received: 4 at (4000000000, 0)
Federate 1: Timer ticked at (4000000000, 0).
Federate 1: Received: 5 at (5000000000, 0)
Federate 1: Timer ticked at (5000000000, 0).
Federate 1 has resigned.

If STP offset is greater 
than network delay, 
then no STP violations 
occur. 

Note: STP_offset here is STA in CAL paper
(Safe To Advance).



What is the difference?
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Inconsistency of 10 msec.

Unavailability of 10 msec.



Unavailability
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Unavailability of 10 msec.

Federate 1: Starting timestamp is: 1652853187696038000.
Federate 1: Received: 0 at (0, 0)
Federate 1: **** Deadline violation at (0, 0).
Federate 1: Received: 1 at (1000000000, 0)
Federate 1: **** Deadline violation at (1000000000, 0).
Federate 1: Received: 2 at (2000000000, 0)
Federate 1: **** Deadline violation at (2000000000, 0).
Federate 1: Received: 3 at (3000000000, 0)
…

timer t(0, 1 sec);
reaction(t) {=

…
=} deadline(10 msec) {=

…
=}



The CAL Theorem (Preview)

CAL:

Consistency and/or Availability must be 
sacrificed as network Latency increases in 
any distributed system.
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STP Violation Handlers
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Inconsistency of 10 msec.

Unavailability of 10 msec.

reaction(in) {=
…

=} STP(0) {=
// Handle STP violation

=}

reaction(in) {=
…

=} STP(0) {=
// Handle STP violation

=}



If Assumptions are Met, 
Determinism!
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Assumptions:
• Deadlines

o WCET
o Schedulability

• Federated Execution (centralized)
o Reliable, in-order network (TCP/IP)

• Federated Execution (decentralized)
o Deadlines
o Network latency
o Clock synchronization error



Contrast With…

• Publish and subscribe (e.g. ROS, MQTT)
• Actors (e.g. Akka, Ray)
• Shared memory
• Service-oriented architectures (RPC)
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At What Cost Determinism?

• Synchronized clocks
– These are becoming ubiquitous

• Bounded network latency
– Violations are faults. They are detectable.

• Bounded execution times
– Only needed in particular places.
– Solvable with PRET machines 

(another talk).
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Clock Synchronization

• NTP is widely available but not precise enough.
• IEEE 1588 PTP is widely supported in networking 

hardware but not yet by the OSs.
• Lingua Franca can work without clock synchronization 

by reassigning timestamps to network messages.
– In this case, determinism is preserved within each multicore 

platform, but not across platforms.
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Using Synchronized Clocks in Practice

Despite using TCP/IP 
on Ethernet, this 
network achieves highly 
reliable bounded 
latency.

TSN (time-sensitive 
networks) is starting to 
become pervasive…

Lee, Berkeley 53

This Bosch Rexroth printing press is a cyber-
physical factory using Ethernet and TCP/IP with 
high-precision clock synchronization (IEEE 1588) 
on an isolated LAN.



Predicting the Future

Clock synchronization is going to 
change the world 

(again)

1500s
days

Gregorian Calendar (BBC history)
Lackawanna Railroad Station, 1907, Hoboken. 
Photograph by Alicia Dudek

1800s
seconds

2000s
nanoseconds

2005: first IEEE 1588 plugfest
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Global Positioning System

Provides ~100ns 
accuracy to devices 
with outdoor 
access.
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Precision Time Protocols (PTP)
IEEE 1588 on Ethernet

It is routine for physical 
network interfaces 
(PHY) to provide 
hardware support for 
PTPs.

With this first generation 
PHY, clocks on a LAN 
agree on the current time 
of day to within ns, far 
more precise than GPS 
older techniques like 
NTP.

Press Release October 1, 2007
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An Extreme Example: 
The Large Hadron Collider

The WhiteRabbit project at CERN is synchronizing the clocks of computers 
10 km apart to within 10s of psec using a combination of GPS, IEEE 1588 
PTP and synchronous ethernet.

Lee, Berkeley 57



Conclusions

• Lingua Franca programs are testable
(timestamped inputs -> timestamped outputs)

• LF programs are deterministic under 
clearly stated assumptions.

• Violations of assumptions are detectable
at run time.

• Actors, Pub/Sub, SoA, and shared memory 
have none of these properties.
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