Software Design for
Cyber-Physical Systems

Edward A. Lee

Module 8: Distributed Systems

Technical University of Vienna
Vienna, Austria, May 2022

University of California, Berkeley

‘— Example: Google Spanner

A Globally Distributed Database

Distributed database with redundant storage
and query handling across data centers.

Update to a record
comes in. Time stamp t.

ON Qc

f‘. D
L MN @ NB I o
SD W T ME Yo" NS
WY ir ' e I
NE £ @ »

LA - North
sultor | Query for the same record
Mexi .

%52 comes in. Time stamp r.

México

‘— Example: Google Spanner

A Globally Distributed Database

Semantics of the

<
. . E Web
database is that it 5 | serer
handles queries in &
' dat
timestamp order. :Eefyi t

Database

Network
Interface update

Platform B

:
;
.
.
.
.
.‘

Database
reply

Web
Server

[Corbet, et al., “Spanner: Google's Globally-Distributed Database,” OSDI 2011]

7 One Possible Approach:

Chandy and Misra [1979]

* Assume events

é Web Network Platform B
arrive reliably in B |sene 0" a Ir t
. I X 1 [Database
timestamp order. a : reply
. pdate
* Wait for events on :ueryI

Web
Server

each input. ;
..

* Process the event
with the smaller
timestamp.

Database

 Eg.r<t;

One Possible Approach:

Chandy and Misra [1979]

* Deterministic 2 Web Network Platform B
. = |S Interf
* Network traffic for - Jo"e o bt
® atabase
“null messages.” = | reply
)) update
* Every node is a single query
. . Web
point of failure. o |]%=™
Database
Iy

‘= Another Possible Approach:

Jefferson: Time Warp [1985]

e Speculatively
execute.

Web Network Platform B
Server Interface update

Platform A

Database

e If a message with an reply
. . dat
earlier timestamp :Eefyi t

later arrives...

Web
Server

:
;
.
.
.
.
.‘

Database

‘= Another Possible Approach:

Jefferson: Time Warp [1985]

Speculatively
execute.

If a message with an
earlier timestamp
later arrives...

Backtrack!

Platform A

Web
Server

update
query

Database

Network Platform B
Interface update

Database

reply

:
;
.
.
.
.
.‘

Web
Server

@/

‘= Another Possible Approach:

Jefferson: Time Warp [1985]

No single point of failure.

Can process events
without network traffic

Can’t backtrack side
effects.

Overhead: Snapshots
Uncontrollable latencies.

Platform A

Web
Server

update
query

Database

:
;
.
.
.
.
.‘

Network Platform B
Interface update
Database
reply
Web

Server

‘= AThird Possible Approach:

High Level Architecture (HLA)

Next event request
(NER) with r
Next event request
(NER) with t

If r<t,then time
advance grant (TAG)
ofg<r

If g =r, process
event

Platform A

Web Network
Server Interface update

Platform B

Database
reply

\NER(t)\/TAG(q) f NER(r)

Run Time Infrastructure (RTI)

‘= AThird Possible Approach:

High Level Architecture (HLA)

° Determ Inistic. é Web Network Platform B
. o . = | Server Interface update
(e)

* RTlis a single point 2 p ———

of failure. o ' reply

updat t
 Works well for query
. . Web

simulation, but not o ||=*

for online Databas\ ® f

processing. ‘ f

\NER(t)\/TAG(q) / NER(r)

Run Time Infrastructure (RTI)

Local clock on each platform.

t and r from local clocks.
Bounded execution time W.
Bounded network latency L.

Event is known at B by time
t +W+L (by clock at A).

Bounded clock
synchronization error E.

Event is known at B by time
t +W+L+E (by clock at B).

é Web Network Platform B
3 Server Interface update
"'g ',1 Database
o reply
updat :
queryi t L
Web
W Server
..
@ Database @

Event with timestamp r is safe to process at time
r +W+L+E (by clock at B).

Ptides/Spanner Approach

* No ssingle point of failure.

e (Can process events with
no network traffic.

e Latencies are well
defined.

* Time thresholds
computed statically.

 Assumptions are clearly
stated.

Platform A

Web
Server

update
query

Database

Network Platform B

Interface update

Database

:
;
.
.
.
.
.‘

Web
Server

reply

[Zhao, Liu, and Lee, “A Programming Model for Time-Synchronized Distributed Real-Time Systems,” RTAS, 2007]
[Corbet, et al., “Spanner: Google's Globally-Distributed Database,” OSDI 2011]

"= Networked Scheduling: PTides

SensorActuator

a : Sensor P—® ¢ : Computation
f: Fusion P»—®x: AcD=0.1

f_\ D>
b : Sensor »—¥d : Computation
WCET —>y : Actuator D=0.2
Wl
When is this “safe to process”? [Zhao et al., 2007]
When T>t+ W1 +F+ N, Where [Edison et al., 2012]

. i _ [Corbett et al., 2012]
 Tisthe local physical clock time

* W, is worst-case execution time

E is the bound on the clock synchronization error
e N the bound on the network delay

Roots of the Idea

Using Time Instead of Timeout
for Fault-Tolerant Distributed Systems

LESLIE LAMPORT
SR International

A general method is described for implementing a distributed system with any desired degree of fault-
tolerance. Instead of relying upon explicit timeouts, processes execute a simple clock-driven algorithm.
Reliable clock synchronization and a solution to the Byzantine Generals Problem are assumed.

Categories and Subject Descriptors: C.2.4 [Computer-Communications Networks]: Distributed
Systems—network operating systems; D.1.3 [Programming Techniques): Concurrent Program-
ming; D.4.1 [Operating Systems]: Process Management—synchronization; D.4.3 [Operating Sys-
tems): File Systems Management—distributed file systems; D.4.5 [Operating Systems]: Reliabil-
ity—fault-tolerance; D.4.7 [Operating Systems]: Organization and Design—distributed systems;
real-time systems

General Terms: Design, Reliability

Additional Key Words and Phrases: Clocks, transaction commit, timestamps, interactive consistency,
Byzantine Generals Problem

ACM Transactions on Programming Languages and Systems, 1984.

Lee, Berkeley

’~— Ptides — A Robust Distributed DE

MoC for lolT Applications

in Proceedings of the 13th IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS 07) ,
Bellevue, WA, United States.

A Programming Model for Time-Synchronized Distributed Real-Time Systems

Yang Zhao Jie Liu Edward A. Lee
EECS Department Microsoft Research EECS Department
UC Berkeley One Microsoft Way UC Berkeley

Abstract: Discrete-event (DE) models are formal system specifications that
have analyzable deterministic behaviors. Using a global, consistent notion of
time, DE components communicate via time-stamped events. DE models have
primarily been used in performance modeling and simulation, where time
stamps are a modeling property bearing no relationship to real time during

execution of the model. In this paper, we extend DE models with the
capability of relating certain events to physical time...

Lee, Berkeley

= Google Spanner — A Reinvention

Google
independently
developed a
very similar
technique and
applied it to
distributed
databases.

Lee, Berkeley

Spanner: Google’s Globally-Distributed Database

James C. Corbett, Jeffrey Dean, Michael Epstein, Andrew Fikes, Christopher Frost, JJ Furman,
Sanjay Ghemawat, Andrey Gubarev, Christopher Heiser, Peter Hochschild, Wilson Hsieh,
Sebastian Kanthak, Eugene Kogan, Hongyi Li, Alexander Lloyd, Sergey Melnik, David Mwaura,
David Nagle, Sean Quinlan, Rajesh Rao, Lindsay Rolig, Yasushi Saito, Michal Szymaniak,
Christopher Taylor, Ruth Wang, Dale Woodford

Google, Inc.

Abstract

Spanner is Google’s scalable, multi-version, globally-
distributed, and synchronously-replicated database. It is
the first system to distribute data at global scale and sup-
port externally-consistent distributed transactions. This
paper describes how Spanner is structured, its feature set,
the rationale underlying various design decisions, and a
novel time API that exposes clock uncertainty. This API
and its implementation are critical to supporting exter-
nal consistency and a variety of powerful features: non-
blocking reads in the past, lock-free read-only transac-
tions, and atomic schema changes, across all of Spanner.

tency over higher availability, as long as they can survive
1 or 2 datacenter failures.

Spanner’s main focus is managing cross-datacenter
replicated data, but we have also spent a great deal of
time in designing and implementing important database
features on top of our distributed-systems infrastructure.
Even though many projects happily use Bigtable [9], we
have also consistently received complaints from users
that Bigtable can be difficult to use for some kinds of ap-
plications: those that have complex, evolving schemas,
or those that want strong consistency in the presence of
wide-area replication. (Similar claims have been made
by other authors [37].) Many_applications at_Google

Proceedings of OSDI 2012

Federated LF Programs

federated reactor {
c = new Count();
p = new Print();
c.out -> p.in;

}

Federated

Count Print

O ot

Federated LF Programs

federated reactor at wessel.eecs.berkeley.edu {
c = new Count();
p = new Print();

. This will put the RTI (runtime
c.out -> p.in;

infrastructure) on the specified machine.

} The federates can go anywhere.
Federated wessel.eecs.berkeley.edu
Count Print

O~ 10

Install the RTI

https://If-lang.org/docs/handbook/distributed-execution

git clone https://github.com/lf-lang/reactor-c.git
cd reactor-c/core/federated/RTI/

mkdir build && cd build

cmake ../

make

sudo make install

Download Epoch and/or command-line tools from the
nightly build (0.2.0 and VS Code extension will not work)

https://www.lf-lang.org/docs/handbook/distributed-execution

N\

"= Running by Hand

> RTI -n 2 -i myFedID

RTI: Number
RTI: Federatiq
Starting RTI f
RTI using TCP
RTI: Listening

> bin/Federated c -i myFedID

Federation Il
Federate O: (
---- Start exe
---- plus 447
Federate O: -

> bin/Federated p -i myFedID

Federation ID for executable bin/Federated_p: myFedID
Federate 1: Connected to RTI at localhost:15045.

---- Start execution at time Fri May 13 06:02:19 2022

---- plus 563334000 nanoseconds.

Federate 1: ---- Using 6 workers.

Federate 1: Starting timestamp is: 1652414540563681000.
Federate 1: ***** Received: 0

Federate 1: ***** Received: 1

Federate 1: ***** Received: 2

\

S T——

(0, 1 sec)

)\

= Running Using Script

> bin/Federated
RTI: Federation ID: 244caf75c3fe2deeda5001d944a256¢c3637b7c4d796824e5

Federate 1: ***** Received: 0
Federate 1: ***** Received: 1
Federate 1: ***** Received: 2

Federated

c : Count D : Print

OF I=e

(0, 1 sec)

Coordination Across a Distributed System

Centralized: Enforces deterministic semantics
regardless of network delays and execution
times (based on HLA). (This is the default.)

Decentralized: Enforces forward progress and
detects violations of deterministic semantics

when network delays get too large (based on
Ptides).

7~ Federated Startup

Initial Connection

Other federates
Open do the same.
socket ACK or REJECT
Federated
c : Count S e

o~

Centralized Coordination Only:
Tell RTI of Connection Structure

Connections to
other federates

Federated

c : Count

O-T0r—10

"= Clock Synchronization

Synchronize Clocks

Federated

c : Count

Precision Time Protocols A
Round-trip delay: :

P =) = (i == o) = (s)l

where e is the clock error in the slave. Estimate

of the clock error is
€ — (t2—|—€) — U] —7“/2.

If communication latency is exactly symmetric, V
then € = e, the exact clock error. B calculates IEEE 1588
€ and adjusts its local clock. IEEE 802 1AS

Lee, Berkeley

o~

Federated Startup:

Determining the Starting Logical Time

The padding p helps
physical and logical times
to align well at startup.

P.hysical Starting logical time Pr.1ysical
time T, t=max(Ty, T,) +p time T,
Federated

c : Count D : Print

OF I=e

Centralized Coordination :

Next Event Request (NET)

NET: Next Event Tag

No need for a response because

NET(O
(0 sec) there are no upstream federates!
Federated
c : Count

p : Print

O3 i

‘~— Centralized Coordination:

Next Event Request (NET)

No response yet because RTI cannot assure
that all messages have been received.

NET(5 secs)
(timeout time)

Federated

c : Count D : Print

OF I=e

‘= Centralized Coordination :

Tagged Message Sending via RTI

TAG(0 sec, 0)
Tagged Message(0 sec, 0)\\ (a5 Advance Grant)
goes through the RTI
Federated

c : Count

Advance tag to p : Print
(0 sec, 0)
and invoke ""> >"> , > >
. out in
reaction.

(0, 1 sec)

Centralized Coordination :

Next Event Request (NET)

NET(1 sec) No need for a response because
there are no upstream federates!

Advance tag to (1 sec, 0)

Federated and invoke reaction.

c : Count D : Print

OF I=e

‘~— Centralized Coordination:

Next Event Request (NET)

No response yet because RTI cannot assure
that all messages have been received.

NET(5 secs)
(timeout time)

Federated

c : Count

OF I=e

Shutdown

Upon completing execution
at timeout time, each
federate resigns.

resign resign

Federated

c : Count

—~ Feedback with

Centralized Coordination

Consider what happens a
logical time 1 sec.

LTC: Logical Tag Complete
NET: Next Event Tag

TAG: Tag Advance Grant
PTAG: Provisional TAG

Blocks until either
TAG(1 sec) is received
or a message is Q.

received. FederatedFeeba* | received -
p : PrintCount - COUV Executes
— — P

TAG(1 sec) is received
or a message is

=
'—5 Blocks until either
ﬁ

[N

w

(¢))

o)
received.

Message

Executes
in in /
Message //
received - out out
Executes (0, 1 sec) N (0, 500 msec)
Executes

Decentralized Coordination

target C { In this example, the default safe-
coordination: decentralized
Y to-process offset of zero mostly
works because each federate can

After clock synchronization, })
establish a direct socket safely immediately process an

connection and send messages. event if it knows about that event.

RTI not involved after startup.

Decentralized

c : Count

O- 110

Decentralized Coordination

EALMAC:c eal$ bin/Decentralized p

Federate 1: ERROR: STP violation occurred in a trigger to reaction 1, and
there is no handler.
***x* Tnvoking reaction at the wrong tag!

Federate 1l: Received: 0 at (0, 1)

Federate 1: Received: 1 at (1000000000, O0)

Federate 1: Received: 2 at (2000000000, O0) Wh p)
at happened:

Federate 1: Received: 3 at (3000000000, O0) PP

Federate 1: Received: 4 at (4000000000, O0)

Federate 1l: ERROR: Received message too late. Already at stop tag.
Current tag is (5000000000, O0) and intended tag is (5000000000, O0).

Discarding message.

Decentralized

c : Count | p: Print

- -

(0, 1 sec)

DecentralizedTimer

c : Count
out in
(0, 1 sec)

Situation is even worse
when destination has
timed activity.

Federate 1: Starting timestamp is: 1652852093838036000.

Federate 1: Timer ticked at (0, 0).

Federate 1l: ERROR: STP violation occurred in a trigger to reaction
1, and there is no handler.

O3

(0, 500 msec)

**** Tnvoking reaction at the wrong tag!

Federate 1: Received: 0 at (0, 1)

Federate 1: Timer ticked at (1000000000, 0).

Federate 1: ERROR: STP violation occurred in a trigger to reaction
1, and there is no handler.

**** Tnvoking reaction at the wrong tag!

Federate 1l: Received: 1 at (1000000000, 1)

Federate 1: Timer ticked at (2000000000, 0).

Federate 1l: ERROR: STP violation occurred in a trigger to reaction
1, and there is no handler.

**** Tnvoking reaction at the wrong tag!

Federate 1: Received: 2 at (2000000000, 1)

Federate 1: Timer ticked at (3000000000, 0).

If after delay is
greater than network

DecentralizedTimerAfter()

¢ : Count() p : PrintTimer()

O e

(0, 1 sec)

(0, 1 sec)

delay, then no STP
violations occur.

Federate 1: Starting timestamp is: 1652852276394596000.

Federate 1l: Timer ticked at (0, 0).

Federate 1l: Received: 0 at (10000000, O0)

Federate 1: Timer ticked at (1000000000, 0).

Federate 1: Received: 1 at (1010000000, 0)

Federate 1: Timer ticked at (2000000000, 0).

Federate 1: Received: 2 at (2010000000, 0)

Federate 1: Timer ticked at (3000000000, 0).

Federate 1: Received: 3 at (3010000000, 0)

Federate 1l: Timer ticked at (4000000000, 0).

Federate 1: Received: 4 at (4010000000, 0)

Federate 1: Timer ticked at (5000000000, 0).

Federate 1 has resigned.

DecentralizedTimerSTP()

¢ : Count() p : PrintTimer(STP_offset:time(10msec))

O

(0, 1 sec)

If STP offset is greater @ E
than network delay, iieee)
then no STP violations Note: STP_offset here is STA in CAL paper
OCCUr. (Safe To Advance).

Federate 1: Starting timestamp is: 1652852565042039000.

Federate 1: Received: 0 at (0, 0)

Federate 1: Timer ticked at (0, 0).

Federate 1: Received: 1 at (1000000000, O0)

Federate 1: Timer ticked at (1000000000, 0).

Federate 1: Received: 2 at (2000000000, 0)

Federate 1: Timer ticked at (2000000000, 0).

Federate 1: Received: 3 at (3000000000, O0)

Federate 1: Timer ticked at (3000000000, 0).

Federate 1: Received: 4 at (4000000000, O0)

Federate 1: Timer ticked at (4000000000, 0).

Federate 1: Received: 5 at (5000000000, O0)

Federate 1l: Timer ticked at (5000000000, 0).

Federate 1 has resigned.

DecentralizedTimerAfter()

c : Count() p : PrintTimer()

OF T

(0, 1 sec)

Inconsistency of 10 msec.

DecentralizedTimerSTP()

¢ : Count() p : PrintTimer(STP_offset:time(10msec))

OERNE R

(0, 1 sec)

Unavailability of 10 msec.

N\

= Unavailability

Federate 1: Starting timestamp is: 1652853187696038000.
Federate 1: Received: 0 at (0, 0)
Federate 1: **** Deadline violation at (0, 0).
Federate 1l: Received: 1 at (1000000000, O0)
Federate 1: **** Deadline violation at (1000000000, O0).
Federate 1l: Received: 2 at (2000000000, O0)
Federate 1: **** Deadline violation at (2000000000, 0).
Federate 1l: Received: 3 at (3000000000, 0)
DecentralizedTimerSTPDeadline()
¢ : Count() p : PrintTimer(STP_offset:time(10msec))
---_D.»—’.E timer t(0, 1 sec);
out in reaction(t) {=
(0, 1 sec)

@ =} d;adline(le msec) {=
Unavailability of 10 msec. S 5

= The CAL Theorem HEEY

CAL:

Consistency and/or Availability must be
sacrificed as network Latency increases in
any distributed system.

DecentralizedTimerAfter()

c : Count()
(0, 1 sec)

Inconsistency of 10 msec.

¢ : Count()

(0, 1 sec)

Unavailability of 10 msec.

DecentralizedTimerSTP()

;g::::::>
OF

(0, 1 sec)

p : Pring

reaction(in) {=

=} STP(0) {=
// Handle STP violation

p : PrintTimer(STP_offset:time(10msec))

reaction(in) {=

=} STP(0) {=

// Handle STP violation

‘e If Assumptions are Met,

Determinism!

Assumptions:
* Deadlines
o WCET
o Schedulability
 Federated Execution (centralized)
o Reliable, in-order network (TCP/IP)
 Federated Execution (decentralized)
o Deadlines
o Network latency
o Clock synchronization error

= Contrast With...

Publish and subscribe (e.g. ROS, MQTT)
Actors (e.g. Akka, Ray)

Shared memory

Service-oriented architectures (RPC)

®
®e o
\\ ®e o
®
0’ \ W

’ \

®
4
0’

Yo
= At What Cost Determinism?

* Synchronized clocks
— These are becoming ubiquitous

e Bounded network latency)
— Violations are faults. They are detectable. 9

e Bounded execution times

— Only needed in particular places.

— Solvable with PRET machines
(another talk).

51

/'\;

"= Clock Synchronization

* NTP is widely available but not precise enough.

EEE 1588 PTP is widely supported in networking
nardware but not yet by the OSs.

Lingua Franca can work without clock synchronization
Oy reassighing timestamps to network messages.

— In this case, determinism is preserved within each multicore
platform, but not across platforms.

This Bosch Rexroth printing press is a cyber-
. physical factory using Ethernet and TCP/IP with
on Ethernet, this high-precision clock synchronization (IEEE 1588)

network achieves highly |on anisolated LAN.

Despite using TCP/IP

reliable bounded
latency.

TSN (time-sensitive
networks) is starting to
become pervasive...

Lee, Berkeley

/%

= Predicting the Future

Clock synchronization is going to
change the world

(again)

13 {»"*ﬁﬁﬁ‘ﬁ“ ' "’“ﬂ’c‘éﬁ;
sﬁ‘tpttmhtl’

Lackawanna Railroad Station, 1907, Hoboken.

¢ LT = 2005: first IEEE 1588 plugfest
Gregorian Calendar (BBC history) Photograph by Alicia Dudek
1500s 1800s 2000s
days seconds nanoseconds

Lee, Berkeley

Glob .
al Positioning Syst
em

i
L 77,
i

7%
/ 7
7 yi I
//////////////////////
T /////////////

Provides ~100ns

acCcC

Witﬁracy to devices
outdoor

access.

Lee, Berkeley

Precision Time Protocols (PTP)

IEEE 1588 on Ethernet

Press Release October 1, 2007

National
Semiconductor

The Sight & Sound of Infoermation

For More Information Contact

Media Contact

Naomi Mitchell

National Semiconductor
(408) 721-2142
naomi.mitchell@nsc.com

Reader Information
Design Support Group
(800) 272-9959

Www.national.com "% e IEEE1588)1 v2 compliant

% o Sub100S accuracy
©412 GP10s for event trigger or capture

Industry’s First Ethernet
Transceiver with IEEE 1588 PTP
Hardware Support from National Semiconductor Delivers
Outstanding Clock Accuracy

Using DP83640, Designers May Choose Any Microcontroller, FPGA or ASIC to
Achieve 8- Nanosecond Precision with Maximum System Flexibility

Lee, Berkeley

It is routine for physical
network interfaces
(PHY) to provide
hardware support for
PTPs.

With this first generation
PHY, clocks on a LAN
agree on the current time
of day to within ns, far
more precise than GPS
older techniques like
NTP.

~ An Extreme Example:
The Large Hadron Collider

The WhiteRabbit project at CERN is synchronizing the clocks of computers
10 km apart to within 10s of psec using a combination of GPS, IEEE 1588
PTP and synchronous ethernet.

Four detectors around the 27-km-long accelerator will hunt for new particles, including the
Higgs boson or “God particle”

O Particle detectors

FRANCE

i
Ferney
Voltaire

)

SWITZERLAND

" I ‘;""/
5km 2\ GENEVA | oy
Lee, Berkeley -

Conclusions

* Lingua Franca programs are testable
(timestamped inputs -> timestamped outputs)

* LF programs are deterministic under
clearly stated assumptions.

* Violations of assumptions are detectable
at run time.

* Actors, Pub/Sub, SoA, and shared memory
have none of these properties.

