

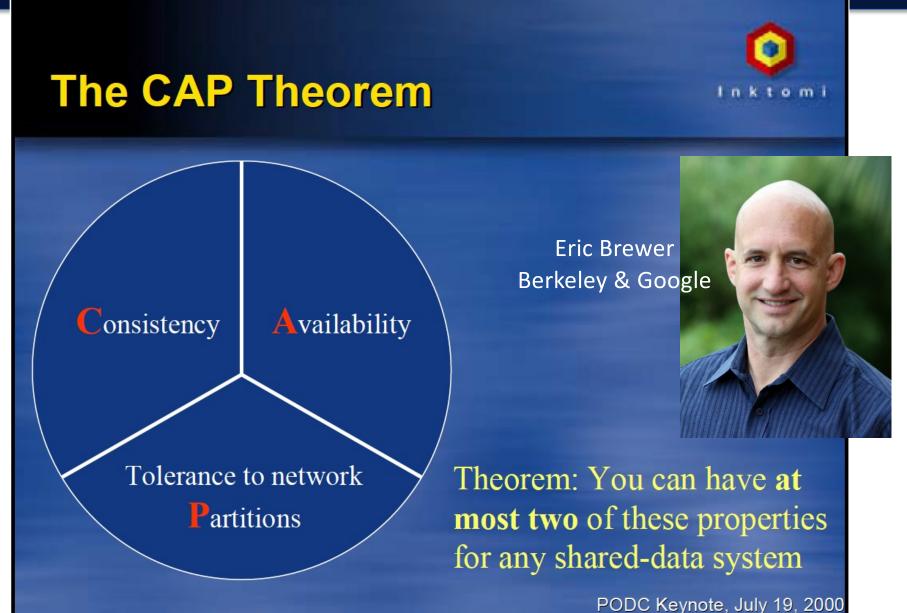
Software Design for Cyber-Physical Systems

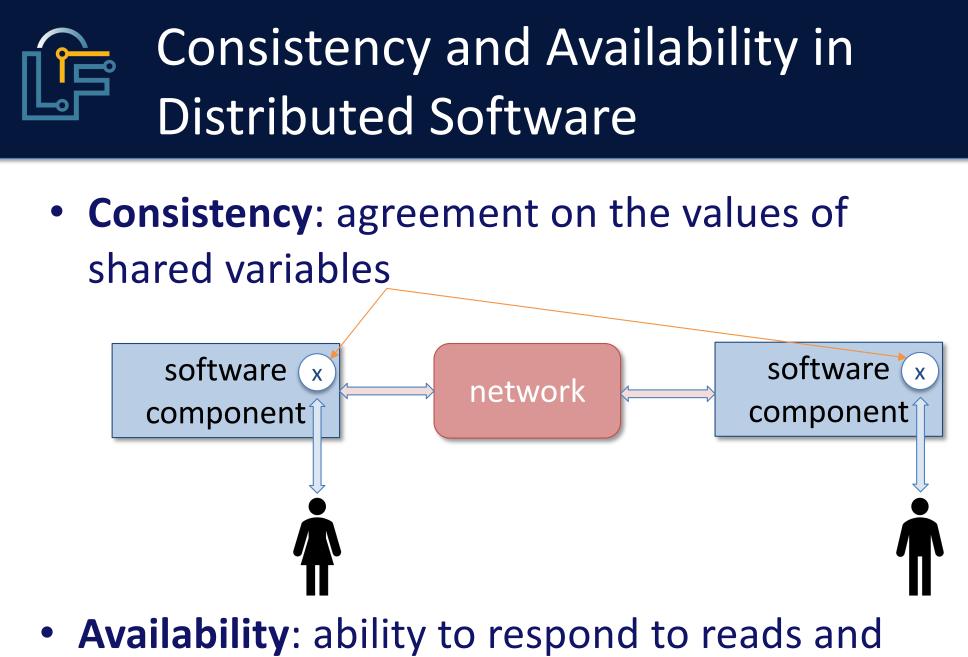
Edward A. Lee

Module 9: Consistency and Availability Tradeoffs

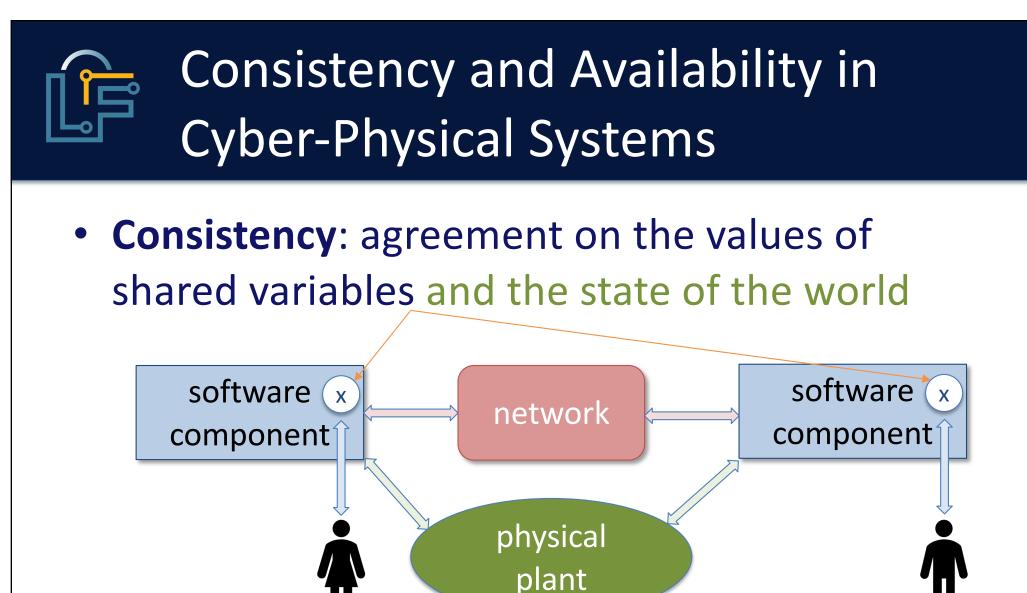
Technical University of Vienna Vienna, Austria, May 2022

University of California, Berkeley

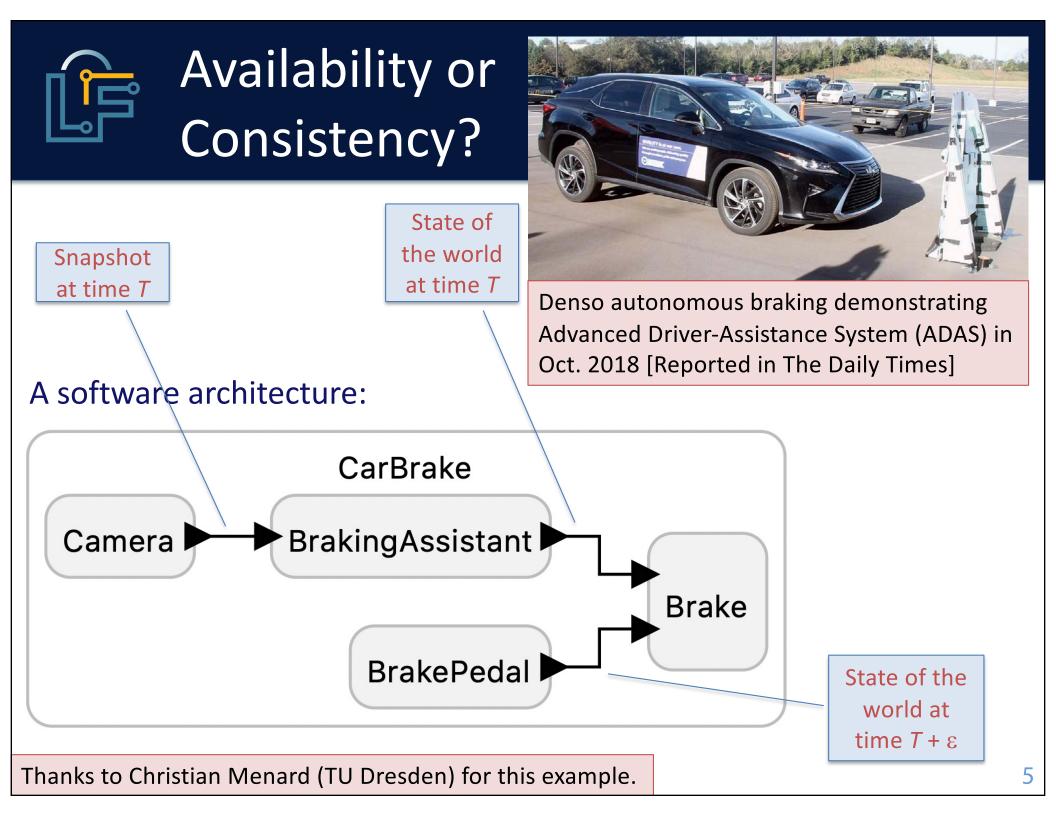


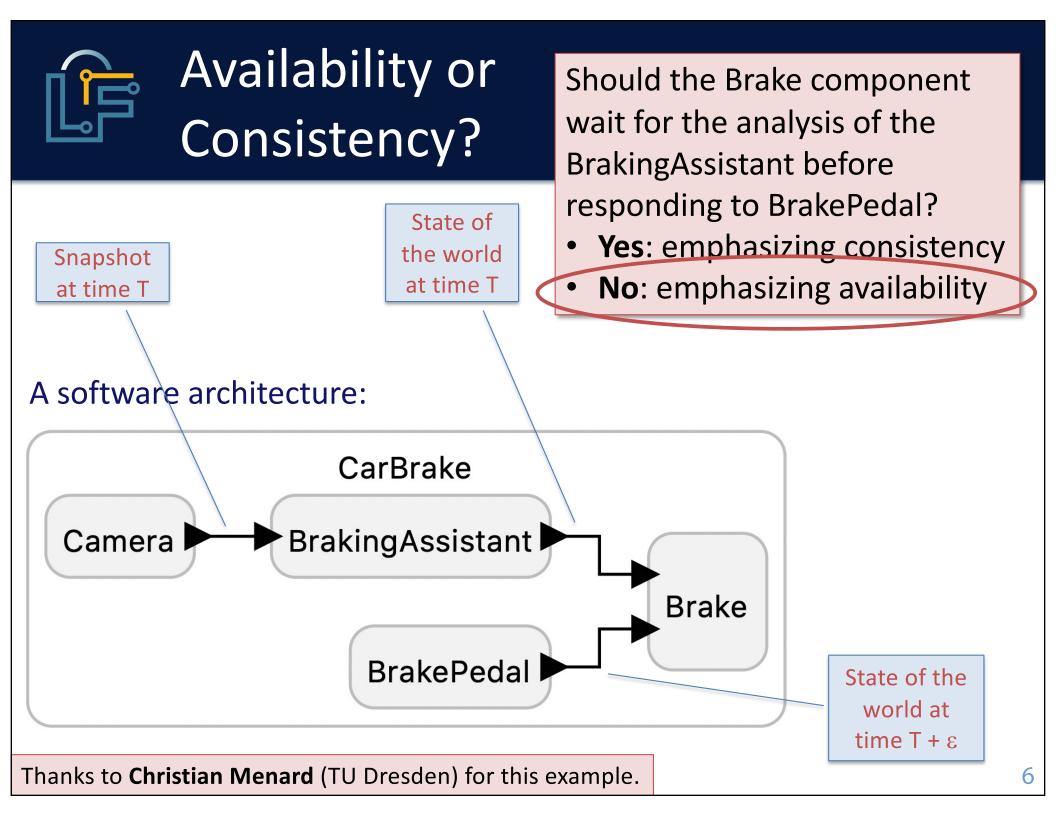


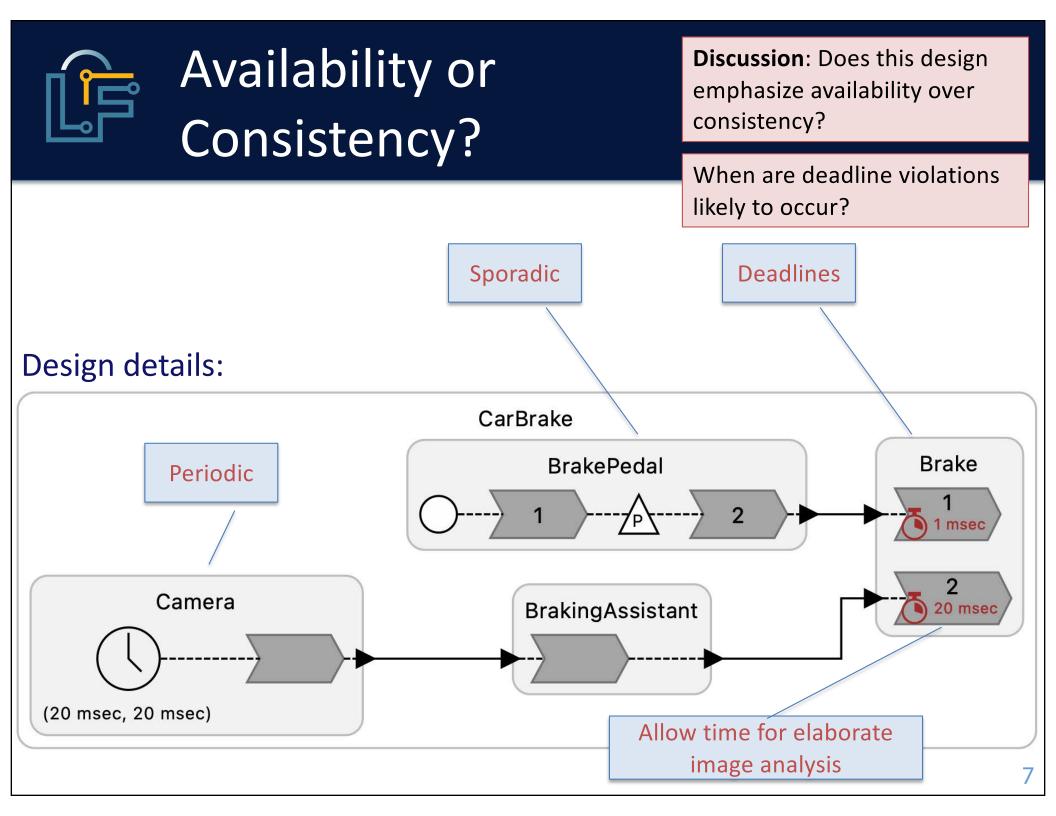
writes accessing those shared variables

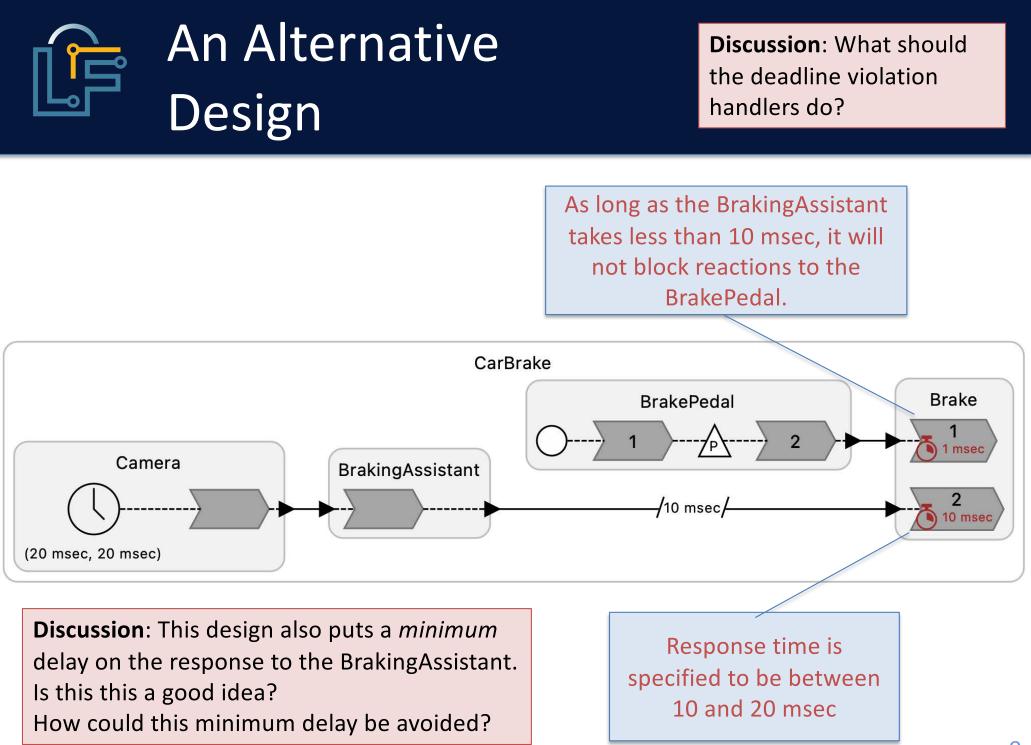


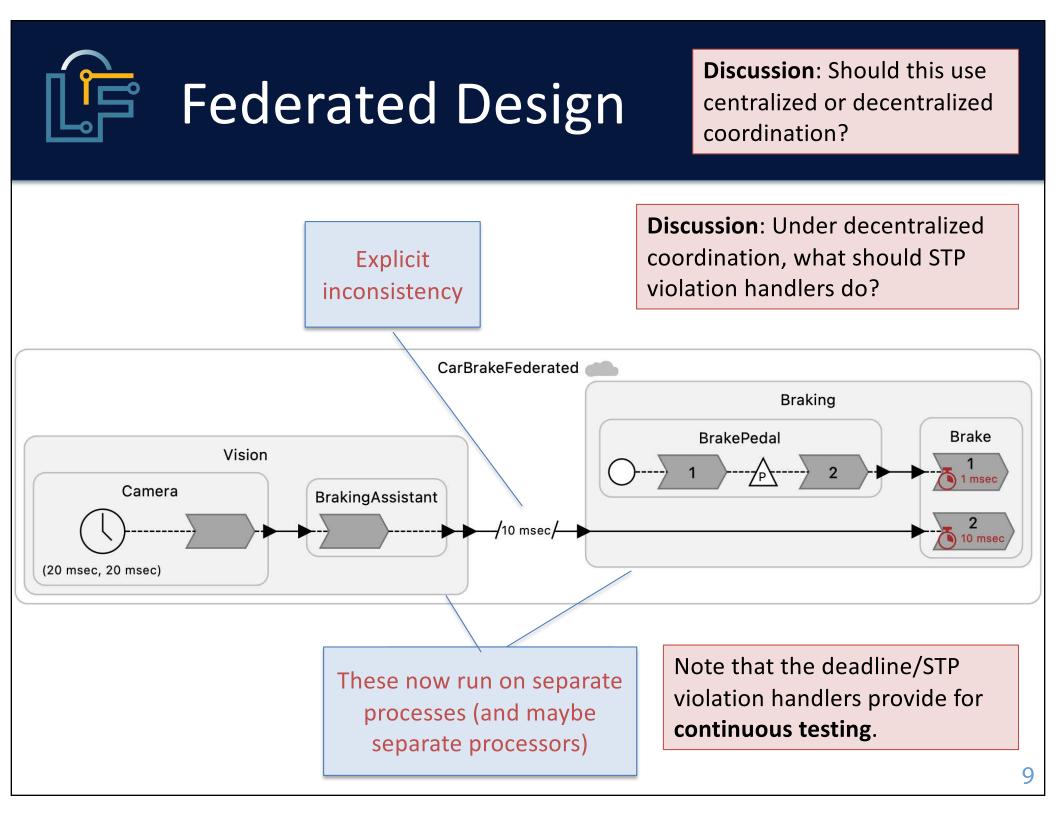
 Availability: ability to respond to reads and writes accessing those state variables

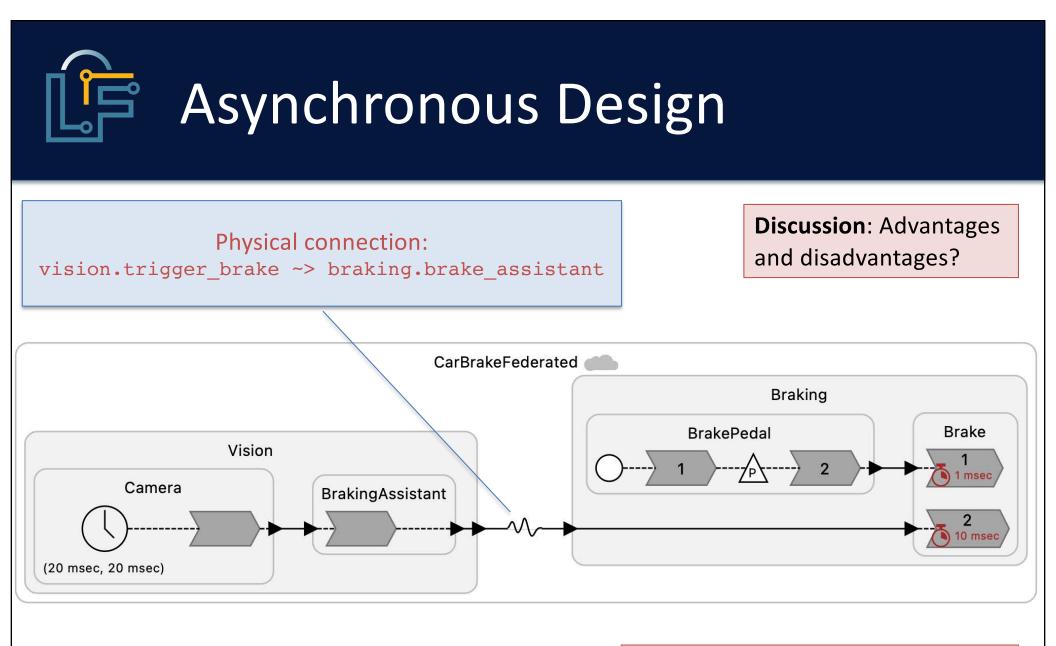




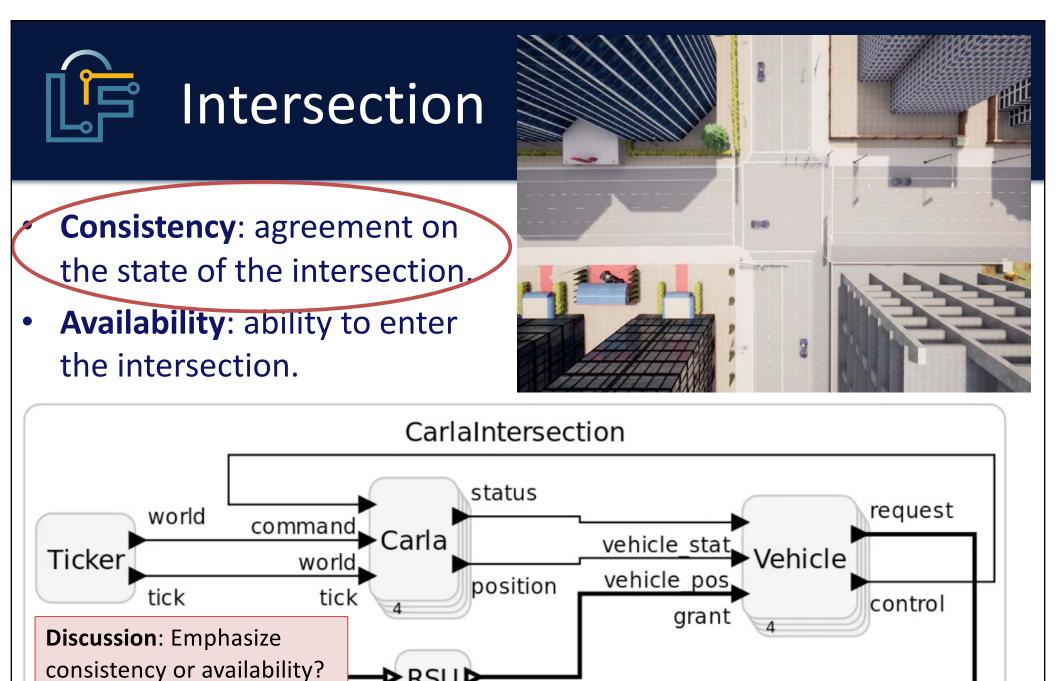








Network failures and failures of the Vision subsystem are undetectable.



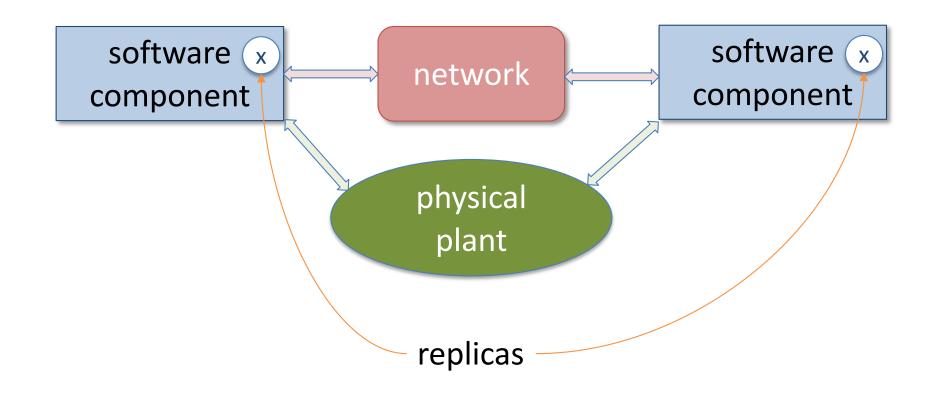
Thanks to **Soroush Bateni** (UT Dallas) and **Ravi Akella** (Denso) for this example.

RSL

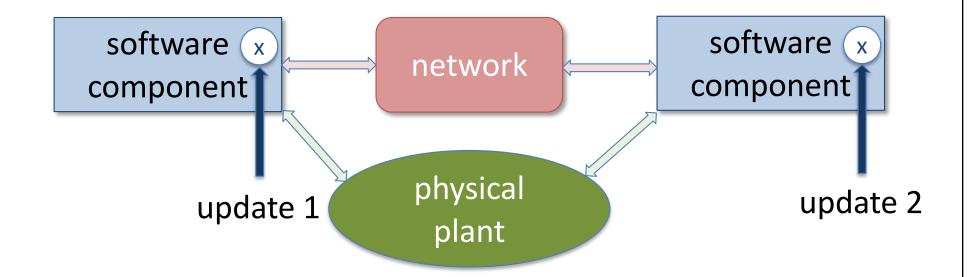
grant

request

If there are shared variables, then, to tolerate network latency, replication is necessary.

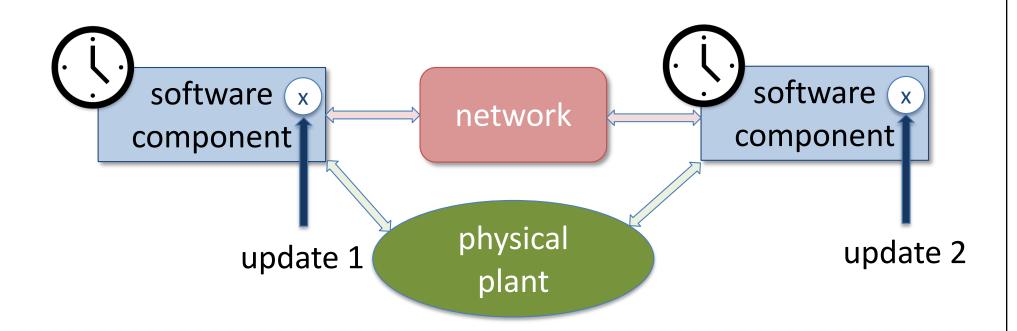


Assume updates can occur in multiple places:



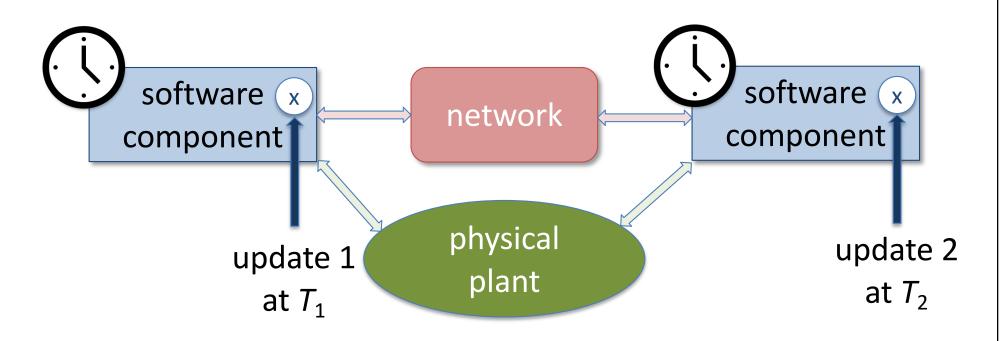
Consistency requires agreement on the order of these updates.

We have *imperfect* measurements of time.

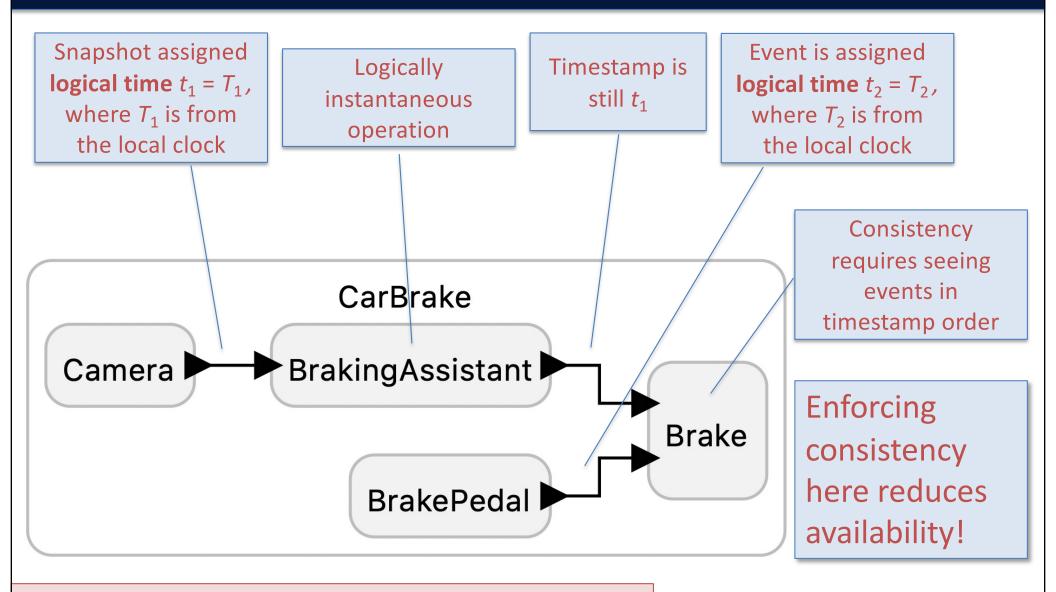


With clock synchronization (albeit imperfect), physical time can used to assign a logical time.

We have *imperfect* measurements of time.



With clock synchronization (albeit imperfect), physical time can used to assign a logical time.



Thanks to Christian Menard (TU Dresden) for this example.

Recent Result: CAL Theorem

Quantifying and Generalizing the CAP Theorem

Edward A. Lee^{1[0000-0002-5663-0584]}, Soroush Bateni^{2[0000-0002-5448-3664]}, Shaokai Lin^{1[0000-0001-6885-5572]}, Marten Lohstroh^{1[0000-0001-8833-4117]}, and Christian Menard^{3[0000-0002-7134-8384]}

arXiv:2109.07771v1 [cs.DC] 16 Sep 2021

Theorem 1. *Given a trace as defined in Section 3.2, the unavailability in Definition 2 at process i is, in the worst case,*

$$\bar{A}_i = \max\left(O_i, \max_{j \in N}(\mathcal{L}_{ij} - \bar{C}_{ij})\right),\tag{17}$$

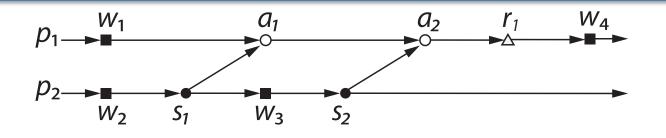
where O_i is the processing offset given by Definition 3, \mathcal{L}_{ij} is apparent latency in Definition 4 (which includes O_j), and \overline{C}_{ij} is the inconsistency of Definition 1.

Event e_1 causally effects e_2 if e_2 cannot behave as if e_1 had not occurred.

Event e_1 counterfactually causes e_2 if e_2 will not occur if e_1 had not occurred.

In both case, we write $e_1 \rightarrow e_2$

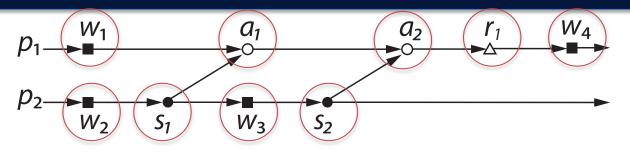
See Lee (2020), *The Coevolution*, Chapter 11, for subtleties around causation.



Event types:

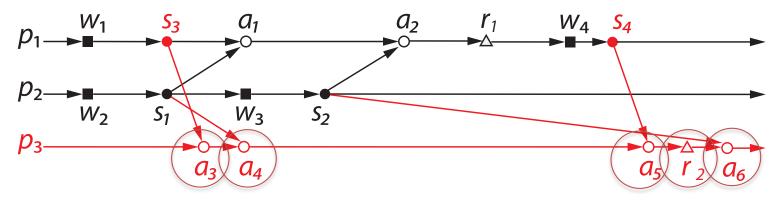
- w_x : Merge a value with the local replica of x.
- r_x : Read the value of the local replica of x.
- s_x : Send the value of the local replica of x to some set of other processes.
- *a_x*: Accept a new value for *x* and merge it with the local replica.

A Bulletin Board

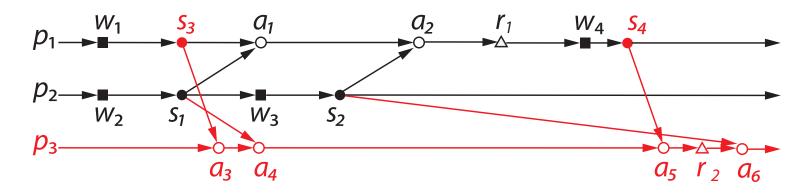


- w_1 : Joe posts a picture of Sally at a recent party by writing to a local copy.
- w_2 : Sally posts that her son Billy is missing, writing to a local copy.
- *s*₁: Sally's message is sent to Joe's process.
- a_1 : Joe's machine receives the message and updates his local copy.
- w_3 : Sally posts that her son has been found (on the local copy).
- *s*₂: Sally's message is sent to Joe's process.
- *a*₂: Joe's machine receives the second message and updates his local copy.
- r_1 : Joe reads Sally's messages.
- w₄: Joe posts "That's good news, a relief."

Bulletin Board Observer

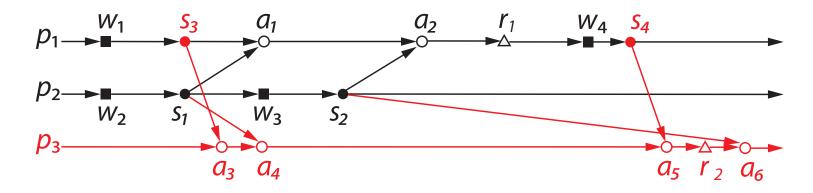


- a_3 : Akosh receives Joe's picture of Sally.
- a_4 : Akosh receives Sally's post that her son Billy is missing.
- *a*₅: Akosh receives Joe's post "That's good news, a relief.".
- r_2 : Akosh reads the posts so far.
- *a*₆: Akosh receives Sally's post that her son has been found.
 This sequence violates causal consistency.



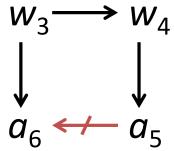
Formally, the **causality relation** is the smallest *transitive* relation such that $e_1 \rightarrow e_2$ if e_1 precedes e_2 in a process, or e_1 is the sending of a value in one process (event type s_x) and e_2 is the acceptance of the value in another process (event type a_x).

Schwarz and Mattern (1994) "Detecting causal relationships in distributed computations: in search of the holy grail." *Distributed Computing*.



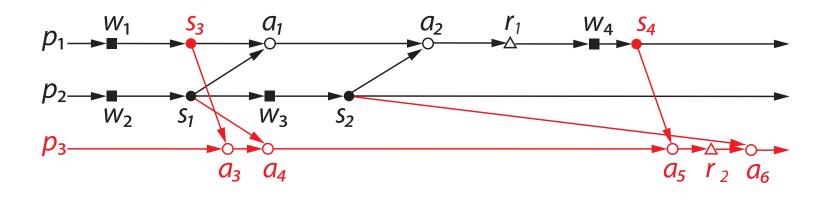
Causal consistency requires that if $w_3 \rightarrow w_4$, $w_3 \rightarrow a_6$, and $w_4 \rightarrow a_5$, then $a_5 \not\Rightarrow a_6$.

This requirement is violated by the above picture.



Schwarz and Mattern (1994) "Detecting causal relationships in distributed computations: in search of the holy grail." *Distributed Computing*.

L:ingua Franca is Causally Consistency by Default

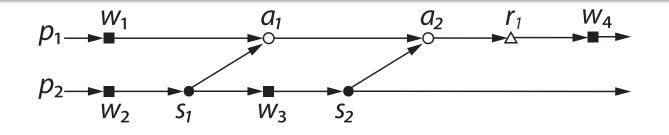


LF semantics: If a reaction r_1 can have an effect (state update or output) that influences what reaction r_2 sees in any way, then execution of r_1 must precede execution of r_2 .

Note: This guarantee does not apply to side-effects!

Note: Adding after delays can explicitly reverse the ordering.

Recall Terminology



Event types:

- w_x : Merge a value with the local replica of x.
- r_x : **Read** the value of the local replica of x.
- s_x : **Send** the value of the local replica.
- a_x : Accept a new value for x and merge.

Definition

For each write event on process *j* with tag g_j , let g_i be the tag of the corresponding accept event on process *i* or ∞ if there is no corresponding accept event. The **inconsistency** $\bar{C}_{ij} \in \mathbb{I}$ from *j* to *i* is defined to be

$$\bar{C}_{ij} = \max(\mathcal{T}(g_i) - \mathcal{T}(g_j)), \qquad (1$$

where the maximization is over all write events on process *j*. If there are no write events on *j*, then we define $\overline{C}_{ij} = 0$.

Time stamp of the tag.

Set of intervals.

A strongly consistent system is one where

 $\bar{C}_{ij}=0$

for all *i*, *j*.

In Lingua Franca, these means there are no after delays on connections between components.

Definition

For each read event on process *i*, let g_i be its tag and T_i be the physical time at which it is processed. The **unavailability** $\overline{A}_i \in \mathbb{I}$ at process *i* is defined to be

$$\bar{A}_i = \max(T_i - \mathcal{T}(g_i)), \qquad (2)$$

where the maximization is over all read events on process *i* that are triggered by user requests. If there are no such read events on process *i*, then $\overline{A}_i = 0$.

Definition For process *i*, the **processing offset** $O_i \in \mathbb{I}$ is

$$O_i = \max(T_i - \mathcal{T}(g_i)) \tag{3}$$

where T_i and g_i are the physical time and tag, respectively, of a write event on process *i* that is triggered by a local external input (and hence assigned a timestamp drawn from the local clock). The maximization is over all such write events in process *i*. If there are no such write events, then $O_i = 0$.

Definition

Let g_j be the tag of a write event in process j that is triggered by an external input at j(so $\mathcal{T}(g_j)$ is the physical time of that external input). Let T_i be the physical time of the corresponding accept event in process i (or ∞ if there is no such event). (If i = j, we assume T_i is the same as the physical time of the write event.) The **apparent latency** or just **latency** $\mathcal{L}_{ij} \in \mathbb{I}$ for communication from j to i is

$$\mathcal{L}_{ij} = \max(T_i - \mathcal{T}(g_j)), \tag{4}$$

where maximization is over all such write events in process *j*. If there are no such write events, then $\mathcal{L}_{ij} = 0$.

More on Apparent Latency

The apparent latency is a sum of four components,

$$\mathcal{L}_{ij} = O_j + X_{ij} + L_{ij} + E_{ij}, \tag{5}$$

where X_{ij} is **execution time** overhead at node *j* for sending a message to node *i*, L_{ij} is the **network latency** from *j* to *i*, and E_{ij} is the **clock synchronization error**. The three latter quantities are indistinguishable and always appear summed together, so there is no point in breaking apparent latency down in this way. Moreover, these latter three quantities would have to be measured with some physical clock, and it is not clear what clock to use. The apparent latency requires no problematic measurement since it explicitly refers to local clocks and tags.

CAL Theorem for Strongly Consistent Systems

The unavailability at process *i* for a strongly consistent system is

$$\bar{A}_i = \max_{j \in N} \max(\mathcal{L}_{ij}, O_i) = \max(O_i, \max_{j \in N} \mathcal{L}_{ij}).$$
(6)

When network latency, clock synchronization error, or execution time increase, the apparent latency increases, and so does the unavailability. "Network partitioning" means that \mathcal{L}_{ij} diverges and the system becomes unavailable at process $i, \overline{A}_i = \infty$. When enforcing strong consistency, therefore, network partitioning implies unavailability, as expected from the CAP theorem.

The CAL Theorem for Arbitrary Consistency

Theorem

Given a trace, the unavailability at process i is, in the worst case,

$$\bar{A}_i = \max\left(O_i, \max_{j \in N}(\mathcal{L}_{ij} - \bar{C}_{ij})\right), \tag{7}$$

where O_i is the processing offset, \mathcal{L}_{ij} is apparent latency (which includes O_j), and \overline{C}_{ij} is the inconsistency.

Operators:

$$a \oplus b = \max(a, b)$$

$$a \otimes b = a + B - side$$

Algebra properties:

- associativity: $(a \oplus b) \oplus c = a \oplus (b \oplus c)$ $(a \otimes b) \otimes c = a \otimes (b \otimes c)$
- commutativity:

 $a \oplus b = b \oplus a$ (note: \otimes is not commutative for matrix ops)

• distributivity: $(a \oplus b) \otimes b = (a \otimes c) \oplus (b \otimes c)$

Connection Matrix

Let *N* be the number of nodes, and define an $N \times N$ matrix Γ such that its elements are given by

$$\Gamma_{ij} = \mathcal{L}_{ij} - \bar{C}_{ij} - O_j. \tag{8}$$

That is, the *i*, *j*-th entry in the matrix is an assumed bound on $X_{ij} + L_{ij} + E_{ij}$ (execution time, network latency, and clock synchronization error), adjusted downwards by the specified tolerance \overline{C}_{ij} for inconsistency.

The CAL Theorem in Max-Plus

Let **A** be a column vector with elements equal to the unavailabilities \overline{A}_i , and **O** be a column vector with elements equal to the processing offsets O_i . Then the CAL theorem can be written as

$$\boldsymbol{A} = \boldsymbol{O} \oplus \boldsymbol{\Gamma} \boldsymbol{O}, \tag{9}$$

where the matrix multiplication is in the max-plus algebra. This can be rewritten as

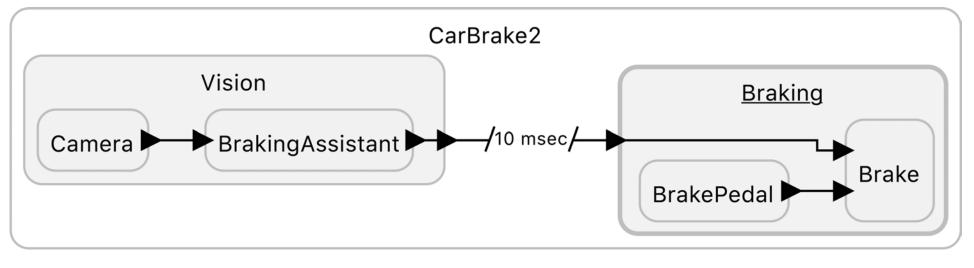
$$\boldsymbol{A} = (\boldsymbol{I} \oplus \boldsymbol{\Gamma})\boldsymbol{O}, \tag{10}$$

where *I* is the identity matrix in max-plus, which has zeros along the diagonal and $-\infty$ everywhere else.

Lingua Franca enables explicit tradeoffs between Consistency and Availability

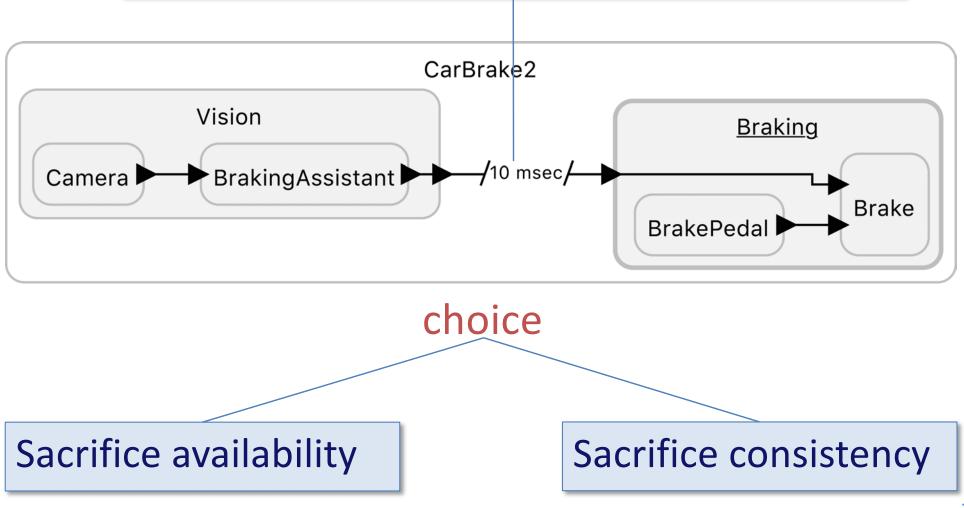
- Specify your availability requirement (deadline)
- State your requirements of the network (latency)
- Specify a tolerance for inconsistency (logical delay)

E.g., 10 msec tolerance for logical delay implies that if network latencies are less than 10 msec, availability is instantaneous:



What if the Execution Time Bound is Violated?

If communication latency exceeds 10 msec...



Fault Handling in Lingua Franca

Led by Soroush Bateni (UT Dallas, UC Berkeley)

Sacrifice availability

Centralized coordination:

- Use centralized coordination
- Provide deadline miss handlers.

Sacrifice consistency

Decentralized coordination:

- Use decentralized coordination.
- Provide safe-to-process violation handlers.