Software Design for Cyber-Physical Systems

Edward A. Lee

Module 11: Models Revisited

Technical University of Vienna
Vienna, Austria, May 2022
Science, Engineering, and Mathematics

Abstraction → Models → Refinement → Mathematics

Science → Models → Engineering

Things
A model is any description of a system that is not the thing-in-itself. (das Ding an sich in Kantian philosophy).
Quiz: Is this a Model?

```
void foo(int32_t x) {
    if (x > 1000) {
        x = 1000;
    }
    if (x > 0) {
        x = x + 1000;
        if (x < 0) {
            panic();
        }
    }
}
```

The physical system has many properties not represented in the model (e.g. timing, temperature, physical volume).

Lee, Berkeley
Ceci n'est pas une pipe.
Purposes of Models

- Describe structure, weight, dimensions, ...
- Describe energy needs, temperatures, ...
- Describe dynamics
- Specify a design
- Simulate a behavior
- Verify that conformance with a requirement
- Specify a requirement
- ...

...
Properties of Models

Formal?

A *formal model* is a model given in a well-defined, machine-readable syntax and can be mechanistically manipulated using well-defined rules to derive properties of the model.

Executable?

An *executable model* is a formal model describing the dynamic behavior of a system where a machine can use the model to simulate that dynamic behavior.

Faithful?

A *faithful model* is a model that reasonably accurately conforms to properties of the thing being modeled.
A model is deterministic if, given the initial state and the inputs, the model defines exactly one behavior.
Laplace’s Demon cannot exist.

In 2008, David Wolpert proved that Laplace’s demon cannot exist.

His proof relies on the observation that such a demon, were it to exist, would have to exist in the very physical world that it predicts.
Even without quantum physics, Newtonian physics is not deterministic.

Metastable system that obeys all of Newton’s laws but is nondeterministic.

Lee, Berkeley
“At first, it seemed that these hopes for a complete determinism would be dashed by the discovery early in the 20th century that events like the decay of radioactive atoms seemed to take place at random. It was as if God was playing dice, in Einstein’s phrase. But science snatched victory from the jaws of defeat by moving the goal posts and redefining what is meant by a complete knowledge of the universe.”

(Stephen Hawking, 2002)
Determinism as a property of models, not things

\begin{align*}
x(t) &= x(0) + \int_0^t v(\tau) d\tau \\
v(t) &= v(0) + \frac{1}{m} \int_0^t F(\tau) d\tau,
\end{align*}

Deterministic model

Deterministic system?
Determinism as a Property of Models

A **model** is *deterministic* if, given the initial *state* and the *inputs*, the model defines exactly one *behavior*.

Our most valuable models are *deterministic*.
Software as a Model

The physical system has many properties not represented in the model (e.g. timing, temperature, ...).

This program defines exactly one behavior, given the input x.

The modeling framework defines state, input, and behavior.
Instruction Set Architectures (ISAs) are deterministic models.

Digital Circuits as Models

Physical System

Model

Synchronous digital logic is a deterministic model

Lee, Berkeley
Physical Dynamics as a Model

Physical System

Model

Differential Equations are deterministic models

\[
\dot{x}(t) = \dot{x}(0) + \frac{1}{M} \int_{0}^{t} F(\tau) \, d\tau
\]
CPS combinations of deterministic models are nondeterministic

```c
void initTimer(void) {
    SysTickPeriodSet(SysCtlClockGet() / 1000);
    SysTickEnable();
    SysTickIntEnable();
}

volatile uint timer_count = 0;
void ISR(void) {
    if(timer_count != 0) {
        timer_count--;        
    }
}

int main(void) {
    SysTickIntRegister(&ISR);
    .. // other init
    timer_count = 2000;
    initTimer();
    while(timer_count != 0) {
        .. code to run for 2 seconds
    }
    .. // other code
}
```

\[\dot{x}(t) = \dot{x}(0) + \frac{1}{M} \int_{0}^{t} F(\tau) d\tau \]
In this example, the *modeling framework* is calculus and Newton’s laws.

Fidelity is how well the model and its target match.
Image by Dominique Toussaint, GNU Free Documentation License, Version 1.2 or later.

Lee, Berkeley
A Physical Realization
“Simulation is doomed to succeed.”

Could this statement be confusing engineering and scientific models?

Figure 1: Three scenes generated from a single ~20-line SCENIC scenario representing bumper-to-bumper traffic.

Engineers often confuse the model with the thing being modeled

You will never strike oil by drilling through the map!

But this does not in any way diminish the value of a map!

Solomon Wolf Golomb

Lee, Berkeley
Recall Avionics

In “fly by wire” aircraft, computers control the plane, mediating pilot commands.
Abstraction Layers
All of which are models except the bottom

The purpose of an abstraction is to hide details of the implementation below and provide a platform for design from above.
Abstraction Layers
All of which are models except the bottom

Every abstraction layer has failed for the aircraft designer.

The design is the implementation.
Frozen Designs

Everything about the design, down to wire lengths and microprocessor chips, must be frozen at the time of design.
We can safely assert that line 8 does not execute, regardless of the choice of microprocessor!

```c
void foo(int32_t x) {
    if (x > 1000) {
        x = 1000;
    }
    if (x > 0) {
        x = x + 1000;
        if (x < 0) {
            panic();
        }
    }
}
```

We can develop absolute confidence in the software, in that only a hardware failure is an excuse.

But not with regards to timing!!
Hardware is Good at Timing

Synchronous digital logic delivers precise, repeatable timing.

…but the overlaying software abstractions discard timing.

```c
// Perform the convolution.
for (int i=0; i<10; i++) {
  x[i] = a[i]*b[j-i];
  // Notify listeners.
  notify(x[i]);
}
```
Per Boehm:
• Am I building the right product? (validation)
• Am I building the product right? (verification)

Formal methods can only address the Verification question.
Determinism

Author: Edward A. Lee

ACM Transactions on Embedded Computing Systems, Volume 20, Issue 5 • July 2021 • Article No.: 38, pp 1–34 • https://doi.org/10.1145/3453652

http://ptolemy.org/~eal
eal@berkeley.edu

http://repo.lf-lang.org
Lingua Franca