

University	of	California	at	Berkeley	

		Introduction	to	Lingua	Franca,	a	Meta	
Language	for	Real-Time	Systems	

Edward	A.	Lee	
Professor	of	the	Graduate	School	

	

Université	Paris-Saclay	
Saclay,	France,	January	31,	2020	

Systèmes embarqués et traitement de l'information (SETI)

The	Slides	

2

http://ptolemy.org/~eal/presentations/Lee_PrecisionTimedMicroprocessors_Saclay.pdf		
http://ptolemy.org/~eal/presentations/Lee_LinguaFranca_Saclay.pdf		

Last	Week	(Updated):	 This	Week:	

Cyber	Physical	Systems	

3

The	major	challenge:	Integrating	complex	subsystems	with	
adequate	reliability,	repeatability,	and	testability.	

 Lee,	Berkeley	 4

PRET	Enables	Deterministic	
Interaction	Between	the	Cyber	
and	the	Physical	

 Lee,	Berkeley	 5

But	what	
about	the	
Network?	

We	have	also	developed	deterministic	models	for	
distributed	real-time	software,	using	a	technique	called	
PTIDES	and	a	language	called	Lingua	Franca.	

Outline	

•  Motivating	Problems	
•  Why	Existing	Methods	Fall	Short	
•  Ports,	Hierarchy,	Models	of	Computation	
•  The	Lingua	Franca	Language	
•  Distributed	Execution	
•  Clock	Synchronization	
•  Conclusion	

6

A	Simple	Challenge	Problem	

An	actor	or	service	
that	can	receive	
either	of	two	
messages:	
1.  “open”	
2.  “disarm”	
Assume	state	is	
closed	and	armed.	
What	should	it	do	
when	it	receives	a	
message	“open”?	

7

Image	by	Christopher	Doyle	from	
Horley,	United	Kingdom	-	A321	Exit	
Door,	CC	BY-SA	2.0	

A	Simple	Challenge	Problem	

An	actor	or	service	
that	can	receive	
either	of	two	
messages:	
1.  “open”	
2.  “disarm”	
Assume	state	is	
closed	and	armed.	
What	should	it	do	
when	it	receives	a	
message	“open”?	

8 Image	from	The	Telegraph,	Sept.	9,	2015	

			Possible	Architectures	

9

Embedded	
Vision	System	

Cockpit	
Control	

Fire	Detection	
System	

Door	Control	

N
et
w
or
k	

disarm	

disarm	disarm	

open	

open	

open	

The	question:	What	to	do	
upon	receiving	“open”?	

•  Pub/Sub	(e.g.	ROS,	MQTT,	Azure,	Google	Cloud)	
•  Message	passing	(e.g.	Akka,	Erlang)	
•  Service-oriented	architecture	(e.g.	gRPC)	
•  Shared	memory	(e.g.	Linda)	

Realized	with	an	NI	

Some	Solutions	(?)	

1.  Just	open	the	door.	
How	much	to	test?		How	much	formal	verification?	How	to	
constrain	the	design	of	other	components?	The	network?	

2.  Send	a	message	“ok_to_open?”	Wait	for	responses.	
How	many	responses?	How	long	to	wait?	What	if	a	
component	has	failed	and	never	responds?	

3.  Wait	a	while	and	then	open.	
How	long	to	wait?	

10

Better	go	read	all	of	
Lamport’s	papers.	

Fix	with	formal	verification?	

One	possibility	is	to	formally	analyze	the	system.	
Properties	to	verify:	

1.  If	Door	receives	“open,”	it	will	eventually	open	the	door,	
even	if	all	other	components	fail.	

2.  If	any	component	sends	“disarm”	before	any	other	
component	sends	“open,”	then	the	door	will	be	disarmed	
before	it	is	opened.	

Can	these	be	satisfied?	

11

Fix	with	formal	verification?	

One	possibility	is	to	formally	analyze	the	system.		
Properties	to	verify:	

1.  If	Door	receives	“open,”	it	will	eventually	open	the	door,	
even	if	all	other	components	fail.	

2.  If	any	component	sends	“disarm”	before	any	other	
component	sends	“open,”	then	the	door	will	be	disarmed	
before	it	is	opened.	

Can	these	be	satisfied?	

12

Makes	a	distributed-
consensus	solution	

challenging.	

Requires	comparing	times	of	events	on	distributed	
platforms	in	a	model	of	computation	that	lacks	time.	

Can	these	properties	be	satisfied?	

Properties	to	verify:	
1.  If	Door	receives	“open,”	it	will	eventually	open	the	door,	

even	if	all	other	components	fail.	
2.  If	any	component	sends	“disarm”	before	any	other	

component	sends	“open,”	then	the	door	will	be	disarmed	
before	it	is	opened.	

Conjecture:	These	two	cannot	be	satisfied	(for	a	sufficiently	
complex	program)	without	additional	assumptions	(e.g.	
bounds	on	network	latency	and/or	clock	synchronization).	

13

Possible	Solutions	

1.  Ignore	the	problem	
2.  Model	timing		
3.  Change	the	model	of	computation:	

– Dataflow	(DF)	
– Kahn	Process	Networks	(KPN)	
– Synchronous/Reactive	(SR)	
– Discrete	Events	(DE)	

14
[Lohstroh	and	Lee,	“Deterministic	Actors,”	Forum	on	Design	Languages	(FDL),	2019]	

A	Broader	Set	of	Questions	

15

What	combinations	of	
periodic,	sporadic,	
arrival	curve	behaviors	
are	manageable?	

How	do	execution	and	
communication	times	
affect	feasibility?	How	
can	we	know	these	
times?	

How	do	we	get	
repeatable	and	
testable	behavior	
even	when	
communication	is	
across	networks?	

How	do	we	specify,	
ensure,	and	enforce	
deadlines?	

Outline	

•  Motivating	Problems	
•  Why	Existing	Methods	Fall	Short	
•  Ports,	Hierarchy,	Models	of	Computation	
•  The	Lingua	Franca	Language	
•  Distributed	Execution	
•  Clock	Synchronization	
•  Conclusion	

16

Popular	Techniques	

•  Publish	and	Subscribe	
– ROS,	MQTT,	DDS,	Azure,	Google	Cloud	

•  Actors	
– Akka,	Erlang,	Orleans,Rebeca,	Scala	…	

•  Service-oriented	architecture	
– gRPC,	Bond,	Thrift,	…	

•  Shared	memory	
– Linda,	pSpaces,	…	

17

Actors,	Loosely	

	
	
Actors	are	concurrent	objects	that	communicate	
by	sending	each	other	messages.	

18

Hewitt/Agha	Actors	

Data	+	Message	Handlers	

19

Private	Data	

Message	
Queue	Messages	In	 Messages	Out	

Handler	B	

Handler	A	

X	

X.A(args)	

X.B(args)	

X.A(args)	

Y.C(args)	

Y.D(args)	

[Hewitt,	1977]	 [Agha,	1986,	1990,	1997]	

Example	

20

An	actor	with	simple	operations	on	its	state:	

Actor Foo {
 int state = 1;
 handler double(){
 state *= 2;
 }
 handler increment(arg){
 state += arg;
 print state;
 }

}

Example	

21

An	actor	that	uses	actor	Foo:	
	
	
	
	
	
	
Semantics	is	“send	and	forget.”	

Actor Bar {
 handler main(){
 Foo x = new Foo();
 x.double();
 x.increment(1);
 }

}

Composition	

22

What	is	printed?	

Actor Bar {
 handler main(){
 Foo x = new Foo();
 x.double();
 x.increment(1);
 }

}

Actor Foo {
 int state = 1;
 handler double(){
 state *= 2;
 }
 handler increment(arg){
 state += arg;
 print state;
 }

}

Pass-Through	Actor	

23

Baz:	Given	an	actor	of	type	Foo,	send	it	“double”:	

Actor Baz {
 handler pass(Foo x){
 x.double();
 }

}

New	Composition	

24

What	is	printed?	Actor Bar {
 handler main(){
 Foo x = new Foo();
 Baz z = new Baz();
 z.pass(x);
 x.increment(1);
 }

}

Actor Foo {
 int state = 1;
 handler double(){
 state *= 2;
 }
 handler increment(arg){
 state += arg;
 print state;
 }

}

Actor Baz {
 handler pass(Foo x){
 x.double();
 }

}

Aircraft	Door	Using	Actors	

25

25

What	assumptions	are	
needed	for	it	to	be	safe	for	
the	handler	to	open	the	
door?	

Actor Source {
 handler main(){
 x = new Door();
 x.disarm_door();
 x.open_door();
 }

} Actor Door {
 handler open_door(){
 …
 }
 handler disarm_door(){
 …
 }

}

Aircraft	Door	Using	Actors	

26

26

Now	what	assumptions	are	
needed	for	it	to	be	safe	for	
the	handler	to	open	the	
door?	

Actor Source {
 handler main(){
 x = new Door();
 p = new PassDisarm();
 p.pass();
 x.open_door();
 }

}

Actor PassDisarm {
 handler pass(Door x){
 x.disarm_door();
 }

}

Actor Door {
 handler open_door(){
 …
 }
 handler disarm_door(){
 …
 }

}

Hewitt/Agha	Actors	are		
Not	Predictable	

Messages	are	handled	in	nondeterministic	order.	

27

Private	Data	

Message	
Queue	Messages	In	 Messages	Out	

Handler	B	

Handler	A	

X	

Aside:	Innovation	in	Ray		

28

Messages	can	return	“futures”:	
	
	
	
	
	
	
Semantics	is	still	“send	and	forget,”	but	later	
remember.	

Actor Bar {
 handler main(){
 Foo x = new Foo();
 Future a = x.double();
 Future b = x.increment(1);
 print a.get() + b.get();
 }

}

[Moritz,	et	al.	2017]	

Unexpected	Nondeterminism	
Example	from	Ray	

The	Relay	actor	is	the	actor	version	of	a	“no	op,”	
but	it	makes	the	program	nondeterministic.	

29 Lee,	Berkeley	

future

future

remote

remote

remote

future
double

x = X.remote();
relay = Relay.remote();
first = relay.double.remote(incrementor);
second = x.increment.remote();
return ray.get(first) + ray.get(second);

increment

x:X

relay

relay:Relay

class Relay():
 def relay(self, x):
 return x.double.remote();

class X():
 def __init__(self):
 self.count = 0;
 def double(self):
 self.count *= 2;
 return self.count;
 def increment(self):
 self.count += 1;
 return self.count;

[Moritz,	et	al.,	“Ray:	A	Distributed	Framework	for	Emerging	AI	Applications”	arXiv,	2018]		

Safety	in	Numbers?	

Publish-and-subscribe	(Pub/Sub)	frameworks	and	
Service-Oriented	Architectures	(SOA)	have	the	same	flaw:	
•  ROS	
•  MQTT	
•  Microsoft	Azure	
•  Google	Cloud	Pub/Sub	
•  XMPP	
•  DDS	
•  Amazon	SNS	
•  …	

30

One	Solution:	
Analyze	and	Use	Dependencies	

31

But	how?	Where	is	the	
dependence	graph?	

Actor Bar {
 handler main(){
 Foo x = new Foo();
 Baz z = new Baz();
 z.pass(x);
 x.increment(1);
 }

}

Actor Foo {
 int state = 1;
 handler double(){
 state *= 2;
 }
 handler increment(arg){
 state += arg;
 print state;
 }

}

Actor Baz {
 handler pass(Foo x){
 x.double();
 }

}

One	Solution:	
Analyze	and	Use	Dependencies	

32

And	what	if	the	dependence	
graph	is	data	dependent?	

Actor Bar {
 handler main(){
 Foo x = new Foo();
 Baz z = new Baz();
 z.pass(x);
 x.increment(1);
 }

}

Actor Foo {
 int state = 1;
 handler double(){
 state *= 2;
 }
 handler increment(arg){
 state += arg;
 print state;
 }

}

Actor Baz {
 handler pass(Foo x){
 if (something) {
 x.double();
 }
 }

}

Outline	

•  Motivating	Problems	
•  Why	Existing	Methods	Fall	Short	
•  Ports,	Hierarchy,	Models	of	Computation	
•  The	Lingua	Franca	Language	
•  Distributed	Execution	
•  Clock	Synchronization	
•  Conclusion	

33

Part	1	of	our	Solution:	
Ports	

34

increment	

double	
reactor Bar {
 output double:bool;

 output increment:int;
 reaction(startup){
 set(double, true);
 set(increment, 1);
 }

}

reactor Baz {
 input in:bool;
 output out:bool;
 reaction(in)->out{
 set(out, in);
 }

}

out	in	

Instead	of	
referring	to	
other	actors,	an	
actor	refers	to	
its	own	ports.	

[Ptolemeus,	2014]	

Part	1	of	our	Solution:	
Ports	

35

Input	ports	do	not	
look	much	
different	from	
ordinary	message	
handlers.	

reactor Foo {
 input double:bool;
 input increment:int;
 state s:int(1);
 reaction(double){
 s *= 2;
 }
 reaction(increment){
 s += increment;
 print(s);
 }
}

increment	

double	

Part	2	of	our	Solution:	
Hierarchy	

36

main reactor Top {
 x = new Foo();
 y = new Bar();
 z = new Baz();
 y.double -> z.in;
 y.increment -> x.increment;
 z.out -> x.double;
}

Part	3	of	our	Solution:	
Scheduling	

37

main reactor Top {
 x = new Foo();
 y = new Bar();
 z = new Baz();
 y.double -> z.in;
 y.increment -> x.increment;
 z.out -> x.double;
}

Scheduling	becomes	especially	
interesting	when	production	or	
consumption	of	messages	is	data	
dependent.	

Ensure	that	Baz	
completes	before	Foo’s	
handlers	are	invoked.	

Deterministic	Concurrent		
Models	of	Computation	

•  Dataflow	(DF)	
•  Process	Networks	(PN)	
•  Synchronous/Reactive	(SR)	
•  Discrete	Events	(DE)	

38

Discrete	Events	(DE),	Traditionally		a	
Simulation	Technology	

Lee,	Berkeley	 39

Time-stamped	events	that	are	
processed	in	time-stamp	order.	

This	MoC	is	widely	used	in	
simulation	and	HDLs.	

Given	time-stamped	inputs,	it	is	a	
deterministic	concurrent	MoC.	

A	few	texts	that	use	the	DE	MoC	

Warning	

Any	discussion	of	Discrete-Event	systems	
involves	(at	least)	two	time	lines:	logical	and	
physical.	
	
Natural	languages	have	no	constructs	for	talking	
about	two	or	more	time	lines	at	the	same	time.	

40 [Lee	&	Zheng,	2007]	

Motivating	Example	

41

Sporadic	events	are	
assigned	a	time	stamp	
based	on	the	local	
physical-time	clock	

Computations	have	
logically	zero	delay.	

Every	reactor	
handles	events	in	
time-stamp	order.	
If	time-stamps	are	
equal,	events	are	
“simultaneous”	

Actuators	can	have	a	
deadline	D.	An	input	
with	time	stamp	t	is	
required	to	be	
delivered	to	the	
actuator	before	the	
local	clock	hits	t	+	D.	

Deadline	
D	

Deadline	
D	

Simple,	Single-Machine	
Realization	

42

•  Sort	reactions	topologically	based	on	precedences.	
•  Global	notion	of	“current	time”	t.	
•  Event	queue	containing	future	events.	
•  Choose	earliest	time	stamp	t’	on	the	queue.	
•  Wait	for	the	real-time	clock	to	match	t’.	
•  Execute	reactions	in	topological	sort	order.	

When	a	sporadic	sensor	
triggers	(or	an	asynchronous	
event	like	a	network	message	
arrives),	assign	a	time	stamp	
based	on	the	local	physical-
time	clock.	

Temporal	Operators	
(Logical	Time)	

43

This	example	has	a	pre-defined	latency	from	physical	
sensing	to	physical	actuation,	thereby	delivering	a	
closed-loop	deterministic	cyber-physical	model.	

D	=	0.1	

D	=	0.2	

Real-Time	Systems	

44

Classical	real-time	systems	scheduling	and	execution-
time	analysis	determines	whether	the	specification	can	
be	met.	

[Buttazzo,	2005]	 [Wilhelm	et	al.,	2008]	

D	=	0.1	

D	=	0.2	

Iron-Clad	Guarantees	with	
PRET	Machines	

45

Precision-timed	(PRET)	machines	deliver	deterministic	
clock-cycle-level	repeatable	timing	with	no	loss	of	
performance	on	sporadic	workloads.	

[Edwards	&	Lee,	2007]	 [Lee	et	al.,	2017]	

D	=	0.1	

D	=	0.2	

Opportunity	for	Optimization	

46

If	the	PeriodicSource	does	not	depend	on	physical	
inputs,	then	pre-computing	(logical	time	ahead	of	
physical	time)	becomes	possible,	based	on	dependence	
analysis.	

D	=	0.1	

D	=	0.2	

Outline	

•  Motivating	Problems	
•  Why	Existing	Methods	Fall	Short	
•  Ports,	Hierarchy,	Models	of	Computation	
•  The	Lingua	Franca	Language	
•  Distributed	Execution	
•  Clock	Synchronization	
•  Conclusion	

47

A	Solution:	Lingua	Franca	

48

A	polyglot	meta-
language	with	DE	
semantics	for	
implementation	
(not	simulation)	
of	deterministic,	
concurrent,	
time-sensitive	
systems.	

https://github.com/icyphy/lingua-franca/wiki	

Hello	World	in	Lingua	Franca	

49

Target	language	(currently	C,	C++,	and	
JavaScript.	Plans	for	Python,	Rust,	Java)	

Arbitrary	code	in	the	
target	language.	

target C; !
main reactor HelloWorld { !

reaction(startup) {= !
 printf("Hello World.\n"); !
 =} !
}	

Events	of	various	kinds	
trigger	reactions	

Determinism	

50

Whether	the	two	triggers	are	present	
simultaneously	depends	only	on	their	
timestamps,	not	on	on	when	they	are	received	
nor	on	where	in	the	network	they	are	sent	from.	

Application	programmer	is	forced	to	explicitly	
arbitrate	possibly	conflicting	commands.	

Reactor Arbitration { !
 input in1; !
 input in2; !
 output out:bool; !
 reaction(in1, in2) -> out {= !

set(out, true); !
 =} !
}	

Determinism	

51

reactor Door { !
 input disarm:bool; !
 input open:bool; !

reaction(disarm) -> out {= !
… actuate disarm …!

 =} !
reaction(open) -> out {= !

… actuate open…!
 =} !
}	

Reaction	order	is	
deterministic.	

Hierarchical	Composition	

52

reactor A { !
 output y; !
 ... !
} !
reactor B { !
 input x; !
 ... !
} !
main reactor C { !
 a = new A(); !
 b = new B(); !
 a.y -> b.x; !
}	

Application	Sketch	

53

Reactors	

54

reactor ComputationA { !
 input x:type; !
 output y:type; !
 state s:type(initialValue); !
 reaction(x) -> y {= !
 Target-language code !
 referencing x, y, and s. !
 =} !
}	

Timestamped	inputs	

Logically	instantaneous	outputs	

Local	state	

Reaction	signature	gives	
trigger(s)	and	production	

Determinism	

55

reactor Add { !
 input in1:int; !
 input in2:int; !
 output out:int; !
 reaction(in1, in2) -> out {= !
 int result = 0; !
 if (in1_is_present) { !
 result += in1; !
 } !
 if (in2_is_present) { !
 result += in2; !
 } !
 set(out, result); !
 =} !
}	

Whether	the	two	triggers	are	
present	simultaneously	depends	
only	on	their	timestamps,	not	on	
on	when	they	are	received	nor	
on	where	in	the	network	they	
are	sent	from.	

Periodic	Behavior	

56

reactor SensorA { !
 output y:int; !
 timer t(1 msec, 100 usec); !
 reaction(t) -> y {= !
 Poll the sensor in !
 the target language !
 and write value to y. !
 =} !
}	

Time	as	a	first-class	
data	type.	

In	our	C	target,	timestamps	are	64-bit	integers	
representing	the	number	of	nanoseconds	since	Jan.	1,	
1970	(if	the	platform	has	a	clock)	or	the	number	of	
nanoseconds	since	starting	(if	not).	

Event-Triggered	Behavior	

57

reactor SensorB { !
 output y:int; !
 physical action a:int; !
 timer start; !
 reaction(start) -> a {= !
 Set up an interrupt service !
 routine that will call: !
 schedule(a, 0, value); !
 =} !
 reaction(a) -> y {= !
 set(y, *(*int)(a->payload)); !
 =} !
}	

Timestamp	will	be	
derived	from	the	
local	physical	clock.	

ISR	executes	
asynchronously,	and	
schedule()	function	is	
thread	safe.	

Deadlines	

58

reactor ActuatorA { !
 input in:int; !
 reaction(in) {= !
 perform actuation. !
 =} deadline 10 msec {= !
 handle deadline violation. !
 =} !
}	

Deadline	is	violated	if	the	input	d.x	triggers	more	than	10	
msec	(in	physical	time)	after	the	timestamp	of	the	input.	

Status	

Still	early.	
•  Eclipse/Xtext-based	IDE	
•  C,	C++,	and	TypeScript	targets	
•  C	code	runs	on	Mac,	Linux,	Windows,	and		
bare	iron	(Patmos)	

•  Command-line	compiler	
•  Regression	test	suite	
•  Wiki	documentation	

59

https://github.com/icyphy/lingua-franca	

Performance	

	
Behaviors	of	the	C	target	in	the	regression	tests	
running	on	a	2.6	GHz	Intel	Core	i7	running	MacOS:	
•  Up	to	23	million	reactions	per	second	(43	ns	per).	
•  Linear	speedup	on	multiple	cores.	
•  Code	size	is	tens	of	kilobytes.	

60

https://github.com/icyphy/lingua-franca/wiki	

Work	in	Progress	

•  EDF	scheduling	on	multicore.	
•  Distributed	execution	based	on	Ptides.	
•  Targeting	PRET	machines	for	real	time.	
•  Leverage	Google’s	Protobufs	and	gRPC.	

– Complex	datatypes	
– Polyglot	systems	

61

Outline	

•  Motivating	Problems	
•  Why	Existing	Methods	Fall	Short	
•  Ports,	Hierarchy,	Models	of	Computation	
•  The	Lingua	Franca	Language	
•  Distributed	Execution	
•  Clock	Synchronization	
•  Conclusion	

62

Simple,	but	Nondeterministic	
Strategy	

	
Lingua	Franca	can	assign	a	timestamp	to	every	
incoming	message	using	the	local	clock,	but	the	
overall	resulting	behavior	will	be	
nondeterministic.	
	
This	is	OK	for	some	applications,	but	not	all.	

63

Networked	Scheduling:	PTides	

64

When	is	this	“safe	to	process”?		 [Zhao	et	al.,	2007]	

T	

WCET	
W1	

[Edison	et	al.,	2012]	
[Corbett	et	al.,	2012]	When	τ	≥	T	+	W1	+	E	+	N,		where	

•  τ	is	the	local	physical	clock	time	
•  W1	is	worst-case	execution	time	
•  E	is	the	bound	on	the	clock	synchronization	error	
•  N	the	bound	on	the	network	delay	

D	=	0.1	

D	=	0.2	

Roots	of	the	Idea	

ACM	Transactions	on	Programming	Languages	and	Systems,	1984.	

Lee,	Berkeley	 65

Abstract:	Discrete-event	(DE)	models	are	formal	system	specifications	that	
have	analyzable	deterministic	behaviors.	Using	a	global,	consistent	notion	of	
time,	DE	components	communicate	via	time-stamped	events.	DE	models	
have	primarily	been	used	in	performance	modeling	and	simulation,	where	
time	stamps	are	a	modeling	property	bearing	no	relationship	to	real	time	
during	execution	of	the	model.	In	this	paper,	we	extend	DE	models	with	the	
capability	of	relating	certain	events	to	physical	time…	

66 Lee,	Berkeley	

Ptides – A Robust Distributed DE
MoC for IoIT Applications

Google	Spanner	–	A	Reinvention	

Google	
independently	
developed	a	
very	similar	
technique	and	
applied	it	to	
distributed	
databases.	

Lee,	Berkeley	 67

	Proceedings	of	OSDI	2012	

Google	Spanner	–	A	Reinvention	
of	PTIDES	

Lee,	Berkeley	 68

Distributed	database	with	redundant	
storage	and	query	handling	across	data	
centers.	

Update	to	a	record	
comes	in.	Time	stamp	t1.	

Query	for	the	same	record	
comes	in.	Time	stamp	t2.	

Google	Spanner	–	A	Reinvention	
of	PTIDES	

Lee,	Berkeley	 69

Query	for	the	same	record	
comes	in.	Time	stamp	t2.	

If	t2	<	t1,	the	query	response	should	be	the	
pre-update	value.	Otherwise,	it	should	be	
the	post-update	value.	

Update	to	a	record	
comes	in.	Time	stamp	t1.	

Google	Spanner:	When	to	
Respond?	

Lee,	Berkeley	 70

Query	for	the	same	record	
comes	in.	Time	stamp	t2.	

When	the	local	clock	time	exceeds		
t2	+	e	+	b,	issue	the	current	record	
value	as	a	response.	

Synchronize	clocks	
with	error	bound	e.	

Communication	
latency	bound	b.	

Update	to	a	record	
comes	in.	Time	stamp	t1.	

Google	Spanner:	Fault!	

Lee,	Berkeley	 71

Query	for	the	same	record	
comes	in.	Time	stamp	t2.	

If	after	sending	a	response,	we	receive	a	
record	update	with	time	stamp	t1	<	t2	
declare	a	fault.	Spanner	handles	this	with	a	
transaction	schema.	

Synchronize	clocks	
with	error	bound	e.	

Communication	
latency	bound	b.	

Update	to	a	record	
comes	in.	Time	stamp	t1.	

Google	Spanner	as	a		
Lingua	Franca	Program	

Spanner’s	assumptions:	
•  Bounded	clock	

synchronization	
error.	

•  Bounded	network	
latency.	

•  Bounded	execution	
times.	

72

query

update

Web
Server

Network
Interface

Database

reply

query
reply

update
Platform B

update
query

Web
Server

Database

P
la

tf
o

rm
 A

[Corbet,	et	al.,	“Spanner:	Google's	Globally-Distributed	Database,”	OSDI	2011]	

What	can	be	verified	with	the		
PTIDES/Spanner	approach?	

1.  If	Door	receives	“open,”	it	will	eventually	open	the	door	
in	bounded	time,	even	if	all	other	components	fail.	

2.  If	any	component	sends	“disarm”	before	with	a	
timestamp	earlier	than	any	other	component’s	“open”	
message	and	the	message	is	received	in	bounded	time,	
then	the	door	will	be	disarmed	before	it	is	opened.	

	
The	first	is	stronger,	the	second	weaker.		
And	these	properties	are	satisfied	for	any	program	complexity.	

73

[Zhao	et	al.,	“A	Programming	Model	for	Time-Synchronized		
Distributed	Real-Time	Systems,”	RTAS	2007]	

The	Essential	Change	in	the	MoC	
(compared	to	Actors,	Pub/Sub,	SoA,	…)	

•  Messages	are	timestamped.	
•  Messages	are	processed	in	timestamp	order.	
•  Simultaneity	is	well	defined.	

74

Deterministic	Distributed		
Real-Time	

Assume	bounds	on:	
•  clock	synchronization	error	
•  network	latency	
then	events	are	processed	in	time-stamp	order	
at	every	component.		If	in	addition	we	assume	
•  bounds	on	execution	time	
then	events	are	delivered	to	actuators	on	time.	

Lee,	Berkeley	 75

See	http://chess.eecs.berkeley.edu/ptides	

Recall:		
Networked	Scheduling:	PTides	

76

When	is	this	“safe	to	process”?		 [Zhao	et	al.,	2007]	

T	

WCET	
W1	

[Edison	et	al.,	2012]	
[Corbett	et	al.,	2012]	When	τ	≥	T	+	W1	+	E	+	N,		where	

•  τ	is	the	local	physical	clock	time	
•  W1	is	worst-case	execution	time	
•  E	is	the	bound	on	the	clock	synchronization	error	
•  N	the	bound	on	the	network	delay	

D	=	0.1	

D	=	0.2	

Networked	Scheduling:	PTides	

77

Can	the	deadline	at	ActuatorA	be	met?		 [Zhao	et	al.,	2007]	

T	

WCET	
W2	

[Edison	et	al.,	2012]	
Yes	if	D	+	d1	≥	max(W1,	W2)	+	E	+	N	+	W3	

WCET	
W3	 D	=	0.1	

D	=	0.2	

WCET	
W1	

Decoupling	Real-Time	Analysis	
with	Networked	Scheduling	

78

Imposing	deadlines	on	network	interfaces	decouples	
the	real-time	analysis	problem.	Each	execution	platform	
can	be	individually	verified	for	meeting	deadlines.	
E.g.,	I2	≥	W2	,	D2	≥	W2	,	D3	≥	max(D1,D2)	+	W3	+	N	+	E	,	…	

[Zhao	et	al.,	2007]	

WCET	
W2	

WCET	
W1	

WCET	
W3	

Interval	
I2	

Principle	

Use	a	MoC	where:	
1.  Designing	software	that	satisfies	the	properties	of	

interest	is	easy.	
2.  The	implementation	of	the	MoC	(the	framework)	is	

verifiably	correct	under	reasonable,	clearly	stated	
assumptions.	

The	hard	part	is	2,	where	it	should	be,	since	that	is	done	
once	for	many	applications.	
"Keep	the	hard	stuff	out	of	the	application	logic”	

79

Testability	

80

System	responds	in	a	
known	way	to	specified	
inputs.	

Possible	victim	of	
unintended	acceleration.	

NASA's	Toyota	Study		
released	by	Dept.	of	
Transportation	in	2011		
found	that	Toyota	
software	was	
“untestable.”	
	

At	What	Cost	Determinism?	

•  Synchronized	clocks	
– These	are	becoming	ubiquitous	

•  Bounded	network	latency	
– Violations	are	faults.	They	are	detectable.	

•  Bounded	execution	times	
– Only	needed	in	particular	places.	
– Solvable	with	FlexPRET	HRT	threads.	

81

PTIDES	Requires	Synchronized	
Clocks	with	Bounded	Error	

Every	engineered	design	
makes	assumptions	about	
its	execution	platform.	
	
	

Ubiquitous	clock	
synchronization	gives	us	a	
new	and	powerful	tool.		

Lee,	Berkeley	 82

Outline	

•  Motivating	Problems	
•  Why	Existing	Methods	Fall	Short	
•  Ports,	Hierarchy,	Models	of	Computation	
•  The	Lingua	Franca	Language	
•  Distributed	Execution	
•  Clock	Synchronization	
•  Conclusion	

83

Clock	Synchronization	

•  NTP	is	widely	available	but	not	precise	enough.	
•  IEEE	1588	PTP	is	widely	supported	in	networking	
hardware	but	not	yet	by	the	OSs.	

•  Lingua	Franca	can	work	without	clock	
synchronization	by	reassigning	timestamps	to	
network	messages.	
– Determinism	is	preserved	within	each	multicore	
platform,	but	not	across	platforms.	

•  With	synchronized	clocks,	global	determinism	under	
clearly	stated	assumptions	becomes	possible.	

84

Recall	

•  In	science,	the	value	of	a	model	
lies	in	how	well	its	behavior	
matches	that	of	the	physical	
system.	

•  In	engineering,	the	value	of	the	
physical	system	lies	in	how	well	
its	behavior	matches	that	of	the	
model.	

Maybe	we	should	do	less	science	
and	more	engineering.	
	

http://platoandthenerd.org		

Using	Synchronized	Clocks	in	Practice	

Despite using TCP/IP
on Ethernet, this
network achieves highly
reliable bounded
latency.

TSN (time-sensitive
networks) is starting to
become pervasive…

Lee,	Berkeley	 86

This	Bosch	Rexroth	printing	press	is	a	cyber-
physical	factory	using	Ethernet	and	TCP/IP	with	
high-precision	clock	synchronization	(IEEE	1588)	
on	an	isolated	LAN.	

Predicting	the	Future	

Clock	synchronization	is	going	to		
change	the	world		

(again)	

1500s	
days	

Gregorian	Calendar	(BBC	history)	
Lackawanna	Railroad	Station,	1907,	Hoboken.		
Photograph	by	Alicia	Dudek	

1800s	
seconds	

2000s	
nanoseconds	

2005:	first	IEEE	1588	plugfest	

Lee,	Berkeley	 87

Global	Positioning	System	

Provides	~100ns	
accuracy	to	devices	
with	outdoor	
access.	

Lee,	Berkeley	 88

Precision Time Protocols (PTP)
IEEE 1588 on Ethernet

It is routine for physical
network interfaces
(PHY) to provide
hardware support for
PTPs.

With this first generation
PHY, clocks on a LAN
agree on the current time
of day to within ns, far
more precise than GPS
older techniques like
NTP.

Press Release October 1, 2007

Lee,	Berkeley	 89

An Extreme Example:
The Large Hadron Collider

The WhiteRabbit project at CERN is synchronizing the clocks of computers
10 km apart to within 10s of psec using a combination of GPS, IEEE 1588
PTP and synchronous ethernet.

Lee,	Berkeley	 90

How PTP Synchronization works

Lee,	Berkeley	 91

Clock	Synchronization	Enables:		

•  Energy	efficiency	
•  Coordination	
•  Security	
•  Resource	management	
•  Determinism	

Lee,	Berkeley	 92

Energy	
Efficiency	

Wireless	HART	uses	Time	
Synchronized	Mesh	
Protocol	(TSMP)	in	a	
Mote-on-Chip	(MoC),	
from	Dust	Networks	Inc.	

Lee,	Berkeley	 93

Clock	Synchronization	Enables:		

•  Energy	efficiency	
•  Coordination	
•  Security	
•  Resource	management	
•  Determinism	

Lee,	Berkeley	 94

AVB	–	Audio	Video	Bridge	
IEEE	802.1AS:	Precise	Synchronization	

Meyer	Sound	CAL		
(Column	Array	Loudspeaker),	
based	on		research	at	CNMAT	
(UC	Berkeley)	

Lee,	Berkeley	 95

Electric	Power		
Generation	and	Distribution	

Lee,	Berkeley	 96

Distributed	power	
generation	(wind,	
solar,	geothermal,	
etc.)	requires	
synchronized	
access	to	the	grid	
	
	
Substation	Timing	
Synchronization	
Using	IEEE-1588	
Power	Profile	
(Cisco)	

http://developer.cisco.com/web/tad/sample-solutions-2	

Clock	Synchronization	Enables:		

•  Energy	efficiency	
•  Coordination	
•  Security	
•  Resource	management	
•  Determinism	

Lee,	Berkeley	 97

Security	

•  Increased	vulnerability	
– Denial	of	service	attacks	(DoS)	
– Spoofing	PTP	
– Spoofing	and	jamming	GPS	

•  Decreased	vulnerability	
– Coordination	without	communication	
– Detection	of	DoS	
– Detection	of	spoofing	

Lee,	Berkeley	 98

Security:	GPS	Jammers	

courtesy	of	
Kyle	D.	Wesson,	UT	Austin	

Lee,	Berkeley	 99

Security:	GPS	Spoofer	

Todd	Humphreys’	GPS	spoofing	UAV	
(UT	Austin)	

Lee,	Berkeley	 100

Security:	Stable	Clocks	

For	a	price,	local	clocks	can	be	made	arbitrarily	stable.		

Lee,	Berkeley	 101

NIST-F1	may	drift	one	second	in	20	million	years	

Coordination	without	
Communication	

With	stable	local	clocks	you	can:	
•  Prevent	packet	losses.	
•  Detect	hardware	failures.	
•  Detect	denial	of	service.	
•  Detect	GPS	and	PTP	spoofing.	
•  Coordinate	w/out	communicating.	

Lee,	Berkeley	 102

Clock	Synchronization	Enables:		

•  Energy	efficiency	
•  Coordination	
•  Security	
•  Resource	management	
•  Determinism	

Lee,	Berkeley	 103

Resource	Management	

Suppose	that	we	did	
not	all	agree	on	the	
time	of	day	(no	
watches	or	clocks).		
	
How	would	you	
manage	use	of	these	
tennis	courts?	
	
ALOHA?	

Lee,	Berkeley	 104

The	last	big	time	
synchronization	push	(1800s)	
was	driven	by	resource	
allocation	problems	

“On	August	12,	1853,	two	trains	on	the	Providence	&	Worcester	Railroad	were	
headed	toward	each	other	on	a	single	track.	The	conductor	of	one	train	thought	
there	was	time	to	reach	the	switch	to	a	track	to	Boston	before	the	approaching	train	
was	scheduled	to	pass	through.	But	the	conductor's	watch	was	slow.	As	his	speeding	
train	rounded	a	blind	curve,	it	collided	head-on	with	the	other	train—fourteen	
people	were	killed.	The	public	was	outraged.	All	over	New	England,	railroads	
ordered	more	reliable	watches	for	their	conductors	and	issued	stricter	rules	for	
running	on	time.”	

Source:	National	Museum	of	American	History	Lee,	Berkeley	 105

Today’s	Networks	

Today’s	general-purpose	networks	manage	
resources	without	coordinated	time.	

Lee,	Berkeley	 106

Clock	Synchronization	Enables:		

•  Energy	efficiency	
•  Coordination	
•  Security	
•  Resource	management	
•  Determinism	

Lee,	Berkeley	 107

Other	Possible	Topics	

•  Physical	actions	
•  Superdense	time	
•  Memory	management	(reference	counting)	

108

Outline	

•  Motivating	Problems	
•  Why	Existing	Methods	Fall	Short	
•  Ports,	Hierarchy,	Models	of	Computation	
•  The	Lingua	Franca	Language	
•  Distributed	Execution	
•  Clock	Synchronization	
•  Conclusion	

109

Summary	

•  Lingua	Franca	programs	are	testable		
(timestamped	inputs	->	timestamped	outputs)	

•  LF	programs	are	deterministic	under		
clearly	stated	assumptions.	

•  Violations	of	assumptions	are	detectable		
at	run	time.	

•  Actors,	Pub/Sub,	SoA,	and	shared	memory		
have	none	of	these	properties.	

110
https://github.com/icyphy/lingua-franca/wiki	

Engineering	Models	for	Real-Time	
Cyber-Physical	Systems	

	

	
•  PRET:	time-deterministic	architectures	

–  http://chess.eecs.berkeley.edu/pret		

•  PTIDES:	distributed	real-time	software	
–  http://chess.eecs.berkeley.edu/ptides	
	

•  Lingua	Franca:	a	programming	model	
–  https://github.com/icyphy/lingua-franca		
	

Lee,	Berkeley	 111

These	enable	models	
with	tightly	controlled	
timing	and	
deterministic	
behaviors.	
	
We	have	shown	that	
that	these	models	are	
practically	realizable	at	
reasonable	cost.	

