Introduction to Lingua Franca, a Meta
Language for Real-Time Systems

Edward A. Lee

Professor of the Graduate School

Systemes embarqués et traitement de l'information (SETI)

Université Paris-Saclay
Saclay, France, January 31, 2020

@) University of California at Berkeley

Last Week (Updated): This Week:

OIE Sk ¥

,ﬁgﬂ%

IEI

http://ptolemy.org/~eal/presentations/Lee PrecisionTimedMicroprocessors Saclay.pdf
http://ptolemy.org/~eal/presentations/Lee LinguaFranca Saclay.pdf

Computational Network Computational
Platform Fabric Platform

Physical

plant

The major challenge: Integrating complex subsystems with
adequate reliability, repeatability, and testability.

PRET Enables

Between the Cyber

and the Physical

Computational
Platform

Network
Fabric

Physical
plant

Lee, Berkeley

void ini (oid) {

4
s)
¢ volat

Sy T kP odse t (SysCtlClockGet () / 1000);
SysTickEn bl O3
SysTickIntEnable () ;

ile uint timer_count = 0;

void ISR(void) {

10
n }
i

if (timer_count != 0) {
timer_count--;
}

n(void) {
Sy oTickIntRe egister (ISR);

Computational
Platform

But what
/ about the

Network?

Computational “ [Network} =~ Computational
Platform Fabric Platform

Physical

plant

We have also developed deterministic models for
distributed real-time software, using a technique called
PTIDES and a language called Lingua Franca.

Lee, Berkeley 5

* Motivating Problems
 Why Existing Methods Fall Short
* Ports, Hierarchy, Models of Computation

* The Lingua Franca Language
* Distributed Execution
* Clock Synchronization

* Conclusion

’@@ A Simple Challenge Problem

An actor or service
that can receive
either of two
messages:

1. “open”

2. “disarm”

Assume state is
closed and armed.

What should it do

Wh en It rece iveS a Image by Christopher Doyle from
Horley, United Kingdom - A321 Exit
message “open”? Door, CC BY-SA 2.0

@ A Simple Challenge Problem

An actor or service
that can receive
either of two
messages:

1. “open”
2. “disarm”

Assume state is
closed and armed.

What should it do
when it receives a
message “open”?

L g ———

Image from The Te/egraph Sept 9, 2015

’ !
i T Wiy on
;F (W Enntt sy
100

. N o,)
iy J . . a A a a

Realized with an NI
The question: What to do

disarm upon receiving “open”?
Embedded P g op

Vision System

disarm disarm
>

>

open Door Control
>

Cockpit open
Control S

Network

>

)) open
Fire Detection

System

Pub/Sub (e.g. ROS, MQTT, Azure, Google Cloud)
Message passing (e.g. Akka, Erlang)
Service-oriented architecture (e.g. gRPC)
Shared memory (e.g. Linda)

1.

Just open the door.

How much to test? How much formal verification? How to
constrain the design of other components? The network?

Send a message “ok_to open?” Wait for responses.

How many responses? How long to wait? What if a
component has failed and never responds?

Wait a while and then open.

How long to wait?

Better go read all of >
Lamport’s papers.

One possibility is to formally analyze the system.
Properties to verify:

1. If Door receives “open,” it will eventually open the door,
even if all other components fail.

2. If any component sends “disarm” before any other
component sends “open,” then the door will be disarmed
before it is opened.

Can these be satisfied?

One possibility is to formally analyze the
. f Makes a distributed-
Properties to verify: consensus solution

1. If Door receives “gpen,”jt will event challenging.
ven if all other components fail.
2. If any componentsends “disarm”|before hny other

component sends “open,” then t rwill be disarmed
before it is opened.

Can these be satisfied?

Requires comparing times of events on distributed
platforms in a model of computation that lacks time.

12

Properties to verify:

1. If Door receives “open,” it will eventually open the door,
even if all other components fail.

2. If any component sends “disarm” before any other
component sends “open,” then the door will be disarmed
before it is opened.

Conjecture: These two cannot be satisfied (for a sufficiently
complex program) without additional assumptions (e.g.
bounds on network latency and/or clock synchronization).

5? Possible Solutions

1. lgnore the problem
2. Model timing

3. Change the model of computation:
— Dataflow (DF)
— Kahn Process Networks (KPN)
— Synchronous/Reactive (SR)
— Discrete Events (DE)

[Lohstroh and Lee, “Deterministic Actors,” Forum on Design Languages (FDL), 2019]

/SensorA \
|

SensorB

ComputationB

/Computatio%& / ,
Computation
P | 4

ActuatorA

>

ActuatorB

>

gl

A

/ X

What combinations of
periodic, sporadic,
arrival curve behaviors
are manageable?

How do execution and
communication times
affect feasibility? How
can we know these
times?

How do we get
repeatable and
testable behavior
even when
communication is
across networks?

How do we specify,
ensure, and enforce

deadlines?

* Motivating Problems
 Why Existing Methods Fall Short
* Ports, Hierarchy, Models of Computation

* The Lingua Franca Language
* Distributed Execution
* Clock Synchronization

* Conclusion

@ Popular Techniques

 Publish and Subscribe
— ROS, MQTT, DDS, Azure, Google Cloud

 Actors

— Akka, Erlang, Orleans,Rebeca, Scala ...

e Service-oriented architecture
— gRPC, Bond, Thrift, ...

* Shared memory
— Linda, pSpaces, ...

@ Actors, Loosely

Actors are concurrent objects that communicate
by sending each other messages.

@ Hewitt/Agha Actors

Data + Message Handlers

X.A(args)

X.B(args)
Messages In

X.A(args)

X

Message
Queue

Private Data \T

| Handler A

| Handler B

[Hewitt, 1977] [Agha, 1986, 1990, 1997]

Y.C(args)
Messages Out

Y.D(args)

An actor wit

n simple operations on its state:

Actor Foo {

int state = 1;

handler double () {
state *= 2;

}

handler increment (arg) {
state += arg;
print state;

An actor that uses actor Foo:

Actor Bar {
handler main () {
Foo x = new Fool();
x.double () ;
X.lncrement (1) ;

}

Semantics is “send and forget.”

d? Composition

Actor Bar {
handler main () {
Foo x = new Foo()
X .double () ;
X.lncrement (1) ;

Actor Foo {
int state = 1;

} handler double () {
} state *= 2;
J
What is printed? handler increment (arg) {

state += arg;
print state;

i? Pass-Through Actor

Baz: Given an actor of type Foo, send it “double”:

Actor Baz {
handler pass (Foo x) {
x.double () ;

J

d? New Composition

Actor Bar { . :
o dier main () What is printed?
Foo x = new Foo();
Baz z = new Baz () ;
Z .pass (x) ; Actor Foo {
X.lncrement (1) ; int state = 1;
} handler double () {
} state *= 2;

}

handler increment (arg) {
state += arg;
print state;

Actor Baz {
handler pass (Foo Xx) {
x.double () ;

})

@ Aircraft Door Using Actors

Actor Source ({ What assumptions are
handler main () { needed for it to be safe for
X = men DO () 5 the handler to open the
x.dlsarm door(); door?
x.open _door();
} } Actor Door {

handler open door () {

}

handler disarm door () {

}

@ Aircraft Door Using Actors

Actor Source {
handler main () {

X = new Door();
= new PassDisarm() ;
.pass () ;
.open_door () ;

X O 'O

Now what assumptions are
needed for it to be safe for

the handler to open the
door?

Actor PassDisarm {
handler pass (Door x) {
x.disarm door();

}

Actor Door {
handler open door () {

}

handler disarm door () {

}

@ Hewitt/Agha Actors are
~ Not Predictable

Messages are handled in nondeterministic order.

X

Private Data 61

Handler A
Messages In = M(fj;zie < l Messages Out
Handler B

v

v

@ Aside: Innovation in Ray

Messages can return “futures”:

[Moritz, et al. 2017]

Actor Bar {
handler main () {

Foo X = new Fool();
Future a = x.double();
Future b = x.increment (1) ;

print a.get () + b.get();

}

Semantics is stil
remember.

Ill

send and forget,” but later

5? Unexpected Nondeterminism

Example from Ray

class Relay():

relay:Relay def relay(self, x):
return x.double.remote();
relay class X():
def __init__ (self):

self.count=0;
x = X.remote(); S ~ def double(self):
relay = Relay.remote();] future’, X self.count *=2;
first = relay.double.remote(incrementor); - Tk double return self.count;
second = x.increment.remote(); < remote def increment(self):
return ray.get(first) + ray.get(second); TR self.count +=1;
return self.count;

" future

increment

The Relay actor is the actor version of a “no op,”
but it makes the program nondeterministic.

[Moritz, et al., “Ray: A Distributed Framework for Emerging Al Applications” arXiv, 2018]

Lee, Berkeley

Publish-and-subscribe (Pub/Sub) frameworks and

Service-Oriented Architectures (SOA) have the same flaw:

ROS

MQTT

Microsoft Azure
Google Cloud Pub/Sub
XMPP

DDS

Amazon SNS

d? One Solution:
Analyze and Use Dependencies

Actor Bar { But how? Where is the

handler main () {

Foo x = new Foo();| dependence graph?

Baz z = new Baz () ;
Z .pass (x) ; Actor Foo {
X.lncrement (1) ; int state = 1;
} handler double () {
} state *= 2;

}

handler increment (arg) {
state += arg;
print state;

Actor Baz {
handler pass (Foo Xx) {
x.double () ;

} }

g? One Solution:
Analyze and Use Dependencies

Actor Bar ({ And what if the dependence

handler main () {

graph is data dependent?

Foo x = new Foo();
Baz z = new Baz () ;
Z .pass (x) ; Actor Foo {
X.lncrement (1) ; int state = 1;
} handler double () {
} state *= 2;

}

handler increment (arg) {
state += arg;
print state;

Actor Baz {
handler pass (Foo Xx) {
if (something) {)
X .double () ;

}

* Motivating Problems
 Why Existing Methods Fall Short
e Ports, Hierarchy, Models of Computation

* The Lingua Franca Language
* Distributed Execution
* Clock Synchronization

* Conclusion

’/ Part 1 of our Solution:

Ports

reactor Bar {

Instead of output double:bool; p double

r f . t output increment:int;

e errlng O reaction (startup) { _

other actors, an set(double, true); ~ Mincrement
set (increment, 1);

actor refers to |
Its own ports.

reactor Baz {

input in:bool;
_ output out:bool;
N» reaction (in)->out{ Mout
set (out, 1in);

}

[Ptolemeus, 2014]

’/ Part 1 of our Solution:

Ports

Input ports do not
look much
different from
ordinary message
handlers.

increment

double >

>

reactor Foo {

input double:bool;
input 1increment:int;
state s:int (1) ;
reaction (double) {
s *= 2;
}
reaction (increment) {
s += 1lncrement;
print (s);

Part 2 of our Solution:

Hierarchy

main reactor Top {

= new Foo();

= new Bar () ;

= new Baz () ;

.double -> z.in;
.lncrement -> X.increment;
.out -> x.double;

SN

Baz

Bar ' Foo

nt incr

Part 3 of our Solution:

@ Scheduling

main

SN

reactor Top {
= new Foo /() ;
= new Bar () ;
= new Baz () ;

.double -> z.in;
.lncrement -> xX.lncrement;
.out -> x.double;

Baz

Scheduling becomes especially
interesting when production or
consumption of messages is data
dependent.

Ensure that Baz

completes before Foo’s
z/// handlers are invoked.

Bar

|

Foo

@ Deterministic Concurrent
~ Models of Computation

e Dataflow (DF)

* Process Networks (PN)

* Synchronous/Reactive (SR)
* Discrete Events (DE)

Discrete Events (DE), Traditionally a

Simulation Technology

Time-stamped events that are

processed in time-stamp order. A few texts that use the DE MoC

This MoC is widely used in
simulation and HDLs. o

. Language

" The Verilog

Given time-stamped inputs, it is a
deterministic concurrent MoC.

% Introduction to l Introduction to
. Discrete Event Discrete Event
Networking o Systems
Nemc:lglﬁigm;ﬁ:;c: Chiistin 0. wmc w._ Second Edition

|~ s -

-
Sy Y

- sl 8
" AT : Networks

Christos G. Cassandras O Pty s 1.1 s dre s M
Stéphane Lafortune i -

reasson

Lee, Berkeley

Any discussion of Discrete-Event systems

involves (at least) two time lines: logical and
physical.

Natural languages have no constructs for talking
about two or more time lines at the same time.

[Lee & Zheng, 2007]

40

@ Motivating Example

SensorA

ComputationA

> >

SensorB

Computation

"

/ComputationC

ActuatorA

Deadline
D

ActuatorB

Deadline

\r >

M b

Sporadic events are
assigned a time stamp
based on the local
physical-time clock

Every reactor
handles events in
time-stamp order.
If time-stamps are
equal, events are
“simultaneous”

Computations have
logically zero delay.

Actuators can have a
deadline D. An input
with time stamp tis
required to be
delivered to the
actuator before the
local clock hits t + D.

5? Simple, Single-Machine
w Realization

SensorA ComputationA _
ComputationC ActuatorA
p P P
p—>
SensorB ComputationB ActuatorB
\ p > p < >
N\
\
When a sporadic sensor e Sort reactions topologically based on precedences.
triggers (or an asynchronous * Global notion of “current time” t.
event like a network message * Event queue containing future events.
arrives), assign a time stamp * Choose earliest time stamp t’ on the queue.
based on the local physical- * Wait for the real-time clock to match t’.
time clock. e Execute reactions in topological sort order.

@ Temporal Operators
w (Logical Time)

iodi ComputationA

PeriodicSource P ComputationC _ Delay ActuatorA
p > p o d, | | Deadline

D=0.1
SporadicSource ComputationB Delay ActuatorB
Deadline

p p d, p
> | » d, > D=0.2

This example has a pre-defined latency from physical
sensing to physical actuation, thereby delivering a
closed-loop deterministic cyber-physical model.

PeriodicSource

ComputationA

P

SporadicSource

P

ComputationB

> > r—j

1 —e

ComputationC Delay ActuatorA
—{ @ pr

Delay ActuatorB

> d, b p eacine

Classical real-time systems scheduling and execution-
time analysis determines whether the specification can

be met.

[Buttazzo, 2005]

[Wilhelm et al., 2008]

’/ Iron-Clad Guarantees with

PRET Machines

iodi ComputationA

PeriodicSource P ComputationC _ Delay ActuatorA
p Pt P o d, | | Deadline

D=0.1
SporadicSource ComputationB Delay ActuatorB
Deadline

p > p » d, p
¢ 2 gl D=0.2

Precision-timed (PRET) machines deliver deterministic
clock-cycle-level repeatable timing with no loss of
performance on sporadic workloads.

[Edwards & Lee, 2007] [Lee et al., 2017]

@ Opportunity for Optimization

ComputationA

PeriodicSource

SporadicSource

o

ComputationB

p

P

analysis.

—e

ComputationC Delay ActuatorA
—{ @ pr
Delay ActuatorB
> d, b p eacine

If the PeriodicSource does not depend on physical
inputs, then pre-computing (logical time ahead of
physical time) becomes possible, based on dependence

* Motivating Problems
 Why Existing Methods Fall Short
* Ports, Hierarchy, Models of Computation

* The Lingua Franca Language
* Distributed Execution
* Clock Synchronization

* Conclusion

@ A Solution: Lingua Franca

A polyglot meta- | . .
language with DE | Lingua Franca Wiki Paes B
§ema ntics for_ - ——— ,
implementation P
(not simulation) - Overview
of deterministic, ¢ Language Specification * Reactors
concurrent, o Writing Reactors in C * Time
. . . ¢ Real-Time Systems
time-sensitive ¢ Accessors Target T
syst ems ¢ Downloading and Building
' Language Specification
Papers https://github.com/icyphy/lingua-franca/wiki
¢ Import Statement
o FDL 2019 paper on Deterministic Actors. S a— Y
o EMSOFT 2019 work-in-progress paper. o Parameter Declaration
o DAC 2019 paper on Reactors. o State Declaration
o Input Declaration

@ Hello World in Lingua Franca

Target language (currently C, C++, and
JavaScript. Plans for Python, Rust, Java)

target C;
main reactor HelloWorld { Arbitrary code in the

reaction(startup) {= target language.
AP ("Hello World.\n");

V

Events of various kinds
trigger reactions

i? Determinism

VisionSystem

p-sa
Arbitration

Cockpit :j:

Arbitration2

Application programmer is forced to explicitly
arbitrate possibly conflicting commands.

Reactor Arbitration {
input inl;
input in2;
output out:bool;
reaction(inl, in2) -> out {=
Open set(out, true);

S =}

Whether the two triggers are present
simultaneously depends only on their

timestamps, not on on when they are received
nor on where in the network they are sent from.

i? Determinism

VisionSystem

iy

Cockpit

open

FireDetection

open

Arbitration

=

Arbitration2

-

open

Reaction order is
deterministic.

oor

reactor Door {

input disarm:bool;

input open:bool;

reaction(disarm) —> out {=
. actuate disarm ..

=}

reaction(open) -> out {=
. actuate open..

=}

@ Hierarchical Composition

reactor A {
output y;

}--- C

reactor B {
input x; A B

} 'Y x’
main reactor C {

a = new A();
b = new B():
a.y —> b.x;

}

i? Application Sketch

SensorA

ComputationA

SensorB

ComputationB

>

ComputationC

LS

ActuatorA

4

ActuatorB

—

>

4

SensorA ComputationA

ComputationC

Timestamped inputs

ActuatorA

<

reactor Computatiogg/éffﬁjj;//

input x:type;

I Logically instantaneous outputs)rB

output y:type;
state s:type(initialValue);

Local state

reaction(x) —> y {=

>

Target-language C
referencing x, y, and s.

=}

Reaction signature gives
trigger(s) and production

i? Determinism

reactor Add {
input inl:int;

input in2:int; ComputationC ActuatorA

output out:int;

reaction(inl, in2) —> out {= >
int result =

if (inl_is_prese
result += 1inl;
}

if (in2_is_present) {
result += in2;

Whether the two triggers are

1 . present simultaneously depends
set(out, result); | | only on their timestamps, not on
=} on when they are received nor
} on where in the network they

are sent from.

i? Periodic Behavior

reactor SensorA {
output y:int;
SensorA timer t(1 msec, 100 usec);

'tuatorA

4

the target language
and write value to vy.

'tuatorB

— ;)

Time as a first-class In our C target, timestamps are 64-bit integers

data type. representing the number of nanoseconds since Jan. 1,
1970 (if the platform has a clock) or the number of
nanoseconds since starting (if not).

SensorB

5? Event-Triggered Behavior

SensorA

Y

Timestamp will be
derived from the
local physical clock.

I

ISR executes

AY

reactor SensorB {
output y:int;

;§7//physica1 action a:int;

timer start;
reaction(start) —> a {=
Set up an interrupt service
routine that will call:
schedule(a, 0, value);
=}
reaction(a) —> y {=
set(y, *(xint)(a->payload));
=}

asynchronously, and
schedule() function is
thread safe.

reactor ActuatorA {
input in:int;
reaction(in) {=

perform actuation.
=} deadline 10 msec {= |
handle deadline violation.

=}

nC

SENSors

1]
- .

Actu
»
ActuatorB
2

\

Deadline is violated if the input d.x triggers more than 10
msec (in physical time) after the timestamp of the input.

’J/ Status https://github.com/icyphy/lingua-franca

Still early.
* Eclipse/Xtext-based IDE
 C, C++, and TypeScript targets

 Ccode runs on Mac, Linux, Windows, and
bare iron (Patmos)

e Command-line compiler
* Regression test suite
* Wiki documentation

Behaviors of the C target in the regression tests
running on a 2.6 GHz Intel Core i7 running MacQOS:

* Up to 23 million reactions per second (43 ns per).
* Linear speedup on multiple cores.
* Code size is tens of kilobytes.

https://github.com/icyphy/lingua-franca/wiki

* EDF scheduling on multicore.

* Distributed execution based on Ptides.
 Targeting PRET machines for real time.

* Leverage Google’s Protobufs and gRPC.
— Complex datatypes
— Polyglot systems

* Motivating Problems
 Why Existing Methods Fall Short
* Ports, Hierarchy, Models of Computation

* The Lingua Franca Language
* Distributed Execution
* Clock Synchronization

* Conclusion

QP Simple, but Nondeterministic
~ Strategy

Lingua Franca can assign a timestamp to every
incoming message using the local clock, but the
overall resulting behavior will be
nondeterministic.

This is OK for some applications, but not all.

@ Networked Scheduling: PTides

PeriodicSource ComputationA

7 ComputationC

I g ’—;‘j

Delay ActuatorA

d1 Deadline

D=0.1

When is this “safe to process”?
Whent2>T+ W, +E+ N, where
 Ttisthe local physical clock time
* W, is worst-case execution time

e N the bound on the network delay

SporadicSource ComputationB Delay ActuatorB
WCET Deadline
P p—- d, »
gl A " ™ p-02

[Zhao et al., 2007]
[Edison et al., 2012]

[Corbett et al., 2012]

E is the bound on the clock synchronization error

Roots of the Idea

Using Time Instead of Timeout
for Fault-Tolerant Distributed Systems

LESLIE LAMPORT
SR International

A general method is described for implementing a distributed system with any desired degree of fault-
tolerance. Instead of relying upon explicit timeouts, processes execute a simple clock-driven algorithm.
Reliable clock synchronization and a solution to the Byzantine Generals Problem are assumed.

Categories and Subject Descriptors: C.2.4 [Computer-Communications Networks]: Distributed
Systems—network operating systems; D.1.3 [Programming Techniques]: Concurrent Program-
ming; D.4.1 [Operating Systems]: Process Management—synchronization; D.4.3 [Operating Sys-
tems]: File Systems Management—distributed file systems; D.4.5 [Operating Systems): Reliabil-
ity—fault-tolerance; D.4.7 [Operating Systems]: Organization and Design—distributed systems;
real-time systems

General Terms: Design, Reliability

Additional Key Words and Phrases: Clocks, transaction commit, timestamps, interactive consistency,
Byzantine Generals Problem

ACM Transactions on Programming Languages and Systems, 1984.

Lee, Berkeley

’/ Ptides — A Robust Distributed DE
w MoC for lolT Applications

in Proceedings of the 13th IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS 07) ,
Bellevue, WA, United States.

A Programming Model for Time-Synchronized Distributed Real-Time Systems

Yang Zhao Jie Liu Edward A. Lee
EECS Department Microsoft Research EECS Department
UC Berkeley One Microsoft Way UC Berkeley

Abstract: Discrete-event (DE) models are formal system specifications that
have analyzable deterministic behaviors. Using a global, consistent notion of
time, DE components communicate via time-stamped events. DE models
have primarily been used in performance modeling and simulation, where
time stamps are a modeling property bearing no relationship to real time
during execution of the model. In this paper, we extend DE models with the
capability of relating certain events to physical time...

Lee, Berkeley

@ Google Spanner — A Reinvention

Google
independently
developed a
very similar
technique and
applied it to
distributed
databases.

Lee, Berkeley

Spanner: Google’s Globally-Distributed Database

James C. Corbett, Jeffrey Dean, Michael Epstein, Andrew Fikes, Christopher Frost, JJ Furman,
Sanjay Ghemawat, Andrey Gubarev, Christopher Heiser, Peter Hochschild, Wilson Hsieh,
Sebastian Kanthak, Eugene Kogan, Hongyi Li, Alexander Lloyd, Sergey Melnik, David Mwaura,
David Nagle, Sean Quinlan, Rajesh Rao, Lindsay Rolig, Yasushi Saito, Michal Szymaniak,
Christopher Taylor, Ruth Wang, Dale Woodford

Google, Inc.

Abstract

Spanner is Google’s scalable, multi-version, globally-
distributed, and synchronously-replicated database. It is
the first system to distribute data at global scale and sup-
port externally-consistent distributed transactions. This
paper describes how Spanner is structured, its feature set,
the rationale underlying various design decisions, and a
novel time API that exposes clock uncertainty. This API
and its implementation are critical to supporting exter-
nal consistency and a variety of powerful features: non-
blocking reads in the past, lock-free read-only transac-
tions, and atomic schema changes, across all of Spanner.

tency over higher availability, as long as they can survive
1 or 2 datacenter failures.

Spanner’s main focus is managing cross-datacenter
replicated data, but we have also spent a great deal of
time in designing and implementing important database
features on top of our distributed-systems infrastructure.
Even though many projects happily use Bigtable [9], we
have also consistently received complaints from users
that Bigtable can be difficult to use for some kinds of ap-
plications: those that have complex, evolving schemas,
or those that want strong consistency in the presence of
wide-area replication. (Similar claims have been made
by _other authors [37].) Manv_applications at Google

Proceedings of OSDI 2012

Google Spanner — A Reinvention

of PTIDES

Update to a record
comes in. Time stamp t,.

ON Qc

ND L N @ NB

"N | el -
SD @ v. T ME Y NS
e PR ‘

"B NH

North Pacific
Ocean

cuitor | Query for the same record
Mexi . .
“*°° | comesin. Time stamp t,.

México

Distributed database with redundant
storage and query handling across data
centers.

g P/4
Lee, Berkel

(£
e

Google Spanner — A Reinvention

of PTIDES

Update to a record
comes in. Time stamp t,.

ON Qc

ND L N @ NB

"N | el -
SD @ v. T ME Y NS
e PR ‘

"B NH

North Pacific
Ocean

culfof | Query for the same record

o Mexi] .
México ~“° | comesin. Time stamp t,.

If t, < t,, the query response should be the
pre-update value. Otherwise, it should be
the post-update value.

': ' '/ ;' Ty -‘.V
|t J . " =l“‘/

o

ee, Brkele

5? Google Spanner: When to
~ Respond?

Update to a record
comes in. Time stamp t,.

Synchronize clocks
with error bound e.

QcC

NB .
——DE
VT ME 2" NS HE

Y FTSNH

(6)

Communication
latency bound b.

North

cuitor | Query for the same record
Mexi . .
“*°° | comesin. Time stamp t,.

When the local clock time exceeds
t, + e+ b, issue the current record
value as a response.

Lee, Berkeley

Be

@ Google Spanner:

Update to a record
comes in. Time stamp t,.

Synchronize clocks 0
with error bound e.

QcC

NB .
——DE
VT ME 2" NS HE

Y FTSNH

(6)

Communication
latency bound b. ' DY oe

North

cuitor | Query for the same record
Mexi . .
“*°° | comesin. Time stamp t,.

If after sending a response, we receive a
record update with time stamp t, <t,
declare a fault. Spanner handles this with a
transaction schema.

Lee, Berkeley

Be

’ / Google Spanner as a
w Lingua Franca Program

Spanner’s assumptions: [
- Web Network Platform B
 Bounded clock > Server .Interface update
synchronization = x Database
error. & reply
update
* Bounded network queryI
latency.
e Bounded execution o
times. Database

[Corbet, et al., “Spanner: Google's Globally-Distributed Database,” OSDI 2011]

’ What can be verified with the
w PTIDES/Spanner approach?
1. If Door receives “open,” it will evertuatly open the door
, even if all other components fail.

2. If any component sends “disarm” befere

then the door will be disarmed before it is opened.

The first is stronger, the second weaker.
And these properties are satisfied for any program complexity.

[Zhao et al., “A Programming Model for Time-Synchronized
Distributed Real-Time Systems,” RTAS 2007]

’ / The Essential Change in the MoC
w (compared to Actors, Pub/Sub, SoA, ...

 Messages are timestamped.
 Messages are processed in timestamp order.
e Simultaneity is well defined.

@ Deterministic Distributed
* Real-Time

Assume bounds on:

* clock synchronization error
* network latency

then events are processed in time-stamp order
at every component. If in addition we assume

e bounds on execution time
then events are delivered to actuators on time.

See http://chess.eecs.berkeley.edu/ptides

Lee, Berkeley

’/ Recall:

Networked Scheduling: PTides

PeriodicSource ComputationA

7 ComputationC Delay ActuatorA

> > — .
il =Y o PR

SporadicSource ComputationB

Delay ActuatorB
WCET Deadline
d
P g W, — " o P gl D=0.2
When is this “safe to process”? [zhao et al., 2007]
[Edison et al., 2012]
Whent2>T+ W, +E+ N, where

i] _ [Corbett et al., 2012]
 Ttisthe local physical clock time

* W, is worst-case execution time

E is the bound on the clock synchronization error
e N the bound on the network delay

@ Networked Scheduling: PTides

ComputationA

PeriodicSource

P

p

SporadicSource

P

WCET
Wl

ComputationB

p

WCET
W2

Can the deadline at ActuatorA be met?
Yesif D+d; > max(W, W,)+E+ N+ W,

7 ComputationC Delay ActuatorA
gl e B o P
Delay ActuatorB

—o- ¥ d, b p eacie

[Zhao et al., 2007]
[Edison et al., 2012]

@ Decoupling Real-Time Analysis
* with Networked Scheduling

PeriodicSource ComputationA NetworklInterface
WCET Deadline
p—> p—> p—
W, D, ComputationC Actuator
— .
Deadline
j W‘;ET | | D3|
SporadicSource ComputationB Networkinterface 8 2
Interval WCET Deadline
L T — DZ' —
2 2

Imposing deadlines on network interfaces decouples
the real-time analysis problem. Each execution platform
can be individually verified for meeting deadlines.
Eg.,L2W,,D,>2W,, D;2max(D,,D,)+ W;+ N+E, ...

[Zhao et al., 2007]

Use a MoC where:

1. Designing software that satisfies the properties of
Interest is easy.

2. The implementation of the MoC (the framework) is
verifiably correct under reasonable, clearly stated

assumptions.

The hard part is 2, where it should be, since that is done
once for many applications.

@ Testability

System responds in a
known way to specified Possible victim of
Inputs. unintended acceleration.

NASA's Toyota Study
released by Dept. of
Transportation in 2011
found that Toyota
software was
“untestable.”

* Synchronized clocks
— These are becoming ubiquitous

* Bounded network latency

— Violations are faults. They are detectable.

e Bounded execution times

— Only needed in particular places.
— Solvable with FlexPRET HRT threads.

@ PTIDES Requires Synchronized
~ Clocks with Bounded Error
Every engineered design ‘

makes assumptions about
its execution platform.

Ubiquitous clock
synchronization gives us a
new and powerful tool.

Lee, Berkeley e =

* Motivating Problems
 Why Existing Methods Fall Short
* Ports, Hierarchy, Models of Computation

* The Lingua Franca Language
* Distributed Execution
* Clock Synchronization

* Conclusion

@ Clock Synchronization

* NTP is widely available but not precise enough.

 |EEE 1588 PTP is widely supported in networking
nardware but not yet by the OSs.

* Lingua Franca can work without clock
synchronization by reassigning timestamps to
network messages.

— Determinism is preserved within each multicore
platform, but not across platforms.

clearly stated assumptions becomes possible.

* With synchronized clocks, global determinism under

84

* In science, the value of a model
lies in how well its behavior
matches that of the physical
system.

* |In engineering, the value of the
physical system lies in how well
its behavior matches that of the
model.

Maybe we should do less science
and more engineering.

The Creative
Partnership
of Humans and
Technology

PLAT(

AND THE

NERD

EDWARD ASHFORD LEE

http://platoandthenerd.org

Despite using TCP/IP
on Ethernet, this
network achieves highly
reliable bounded
latency.

TSN (time-sensitive
networks) is starting to
become pervasive...

Lee, Berkeley

This Bosch Rexroth printing press is a cyber-
physical factory using Ethernet and TCP/IP with
high-precision clock synchronization (IEEE 1588)

on an isolated LAN.

@ Predicting the Future

Clock synchronization is going to

aaaa3iaaaany
Sceptember

Gregorian Calendar (BBC—PEtory)

1500s
days

Lee, Berkeley

change the world
(again)

Lackawanna Railroad Station, 1907, Hoboken. 2005: first IEEE 1588 plugfest
Photograph by Alicia Dudek
1800s 2000s
seconds nanoseconds

i? Glo '
bal Positioning Syste
m

7 " s
/////////// e /i
7/ /////////////////////
////////////////
//////////////

i i

Provides ~100ns

aCC

Witrl:racy to devices
outdoor

access.

Lee, Berkeley

W

Press Release October 1, 2007

IEEE 1588 on Ethernet

National
Semiconductor

The Sight & Sound of Information

For More Information Contact

Media Contact

Naomi Mitchell

National Semiconductor
(408) 721-2142
naomi.mitchell@nsc.com

Reader Information
Design Support Group
(800) 272-9959
www.national.com

o |EEE1588 12 v2 compliant
© Sub 10 nS accuracy
o412 GP10s for event trigger or capture

Industry’s First Ethernet
Transceiver with IEEE 1588 PTP
Hardware Support from National Semiconductor Delivers
Outstanding Clock Accuracy

Using DP83640, Designers May Choose Any Microcontroller, FPGA or ASIC to
Achieve 8- Nanosecond Precision with Maximum System Flexibility

Lee, Berkeley

Precision Time Protocols (PTP)

It is routine for physical
network interfaces
(PHY) to provide
hardware support for
PTPs.

With this first generation
PHY, clocks on a LAN
agree on the current time
of day to within ns, far
more precise than GPS
older techniques like
NTP.

@ An Extreme Example:
~ The Large Hadron Collider
The WhiteRabbit project at CERN is synchronizing the clocks of computers

10 km apart to within 10s of psec using a combination of GPS, IEEE 1588
PTP and synchronous ethernet.

LARGE HADRON COLLIDER

Four detectors around the 27-km-long accelerator will hunt for new particles, including the
Higgs boson or “God particle”

O Particle detectors

FRANCE

’
Ferney
Voltaife /f
) p

ALICE Q

@ How PTP Synchronization works

Precision Time Protocols o p
Round-trip delay: ! -

r=(ta—%1)—((ts+e)— (t2 +¢))

where e is the clock error in the slave. Estimate

of the clock error is

é:(t2+€)—t1—r/2.

If communication latency is exactly symmetric, V V
then € = e, the exact clock error. B calculates |EEg 1588
€ and adjusts its local clock. IEEE 802 .1AS

Lee, Berkeley

@ Clock Synchronization Enables:

* Energy efficiency

e Coordination
* Security
 Resource management

e Determinism

Lee, Berkeley

Energy

° ° 2 N casn— '_':
Efficienc
(e.g., asset monagement) ., L PR '
..‘._ .'°'.. irebets

Wireless HART uses Time
Synchronized Mesh

Protocol (TSMP) in a

Mote-on-Chip (MoC), Process outamotin

controller

from Dust Networks Inc. “«.,_4

Lee, Berkeley

93

@ Clock Synchronization Enables:

* Energy efficiency

e Coordination
* Security
 Resource management

e Determinism

Lee, Berkeley

’ AVB — Audio Video Bridge
IEEE 802.1AS: Precise Synchronization

Meyer Sound CAL

(Column Array Loudspeaker),
based on research at CNMAT
(UC Berkeley)

Lee, Berkeley a4 A &\ g

’/ Electric Power
~ Generation and Distribution

Distributed power http://developer.cisco.com/web/tad/sample-solutions-2
P P P P
generation (WiNnd,
| Enterpri d Servi ‘ :

solar, geothermal, | Pprovider Connectivity L Sf“"’e‘ [Si°“’°e. ety IRIGE GG

. P i b A= = A ---- Coaxial ;
etc.) requires <> Porimery N Secocaay Z” Ethomot NN

. f © WAN WAN =) —— Proc. Bus 1588 Client
synchronized _(Ethernet) (TIE)

access to the grid ---------------- B /

' !5 GPS Clock P 15886M | =
E ’{—9 r’ Hl “ l Rem:m&we
: B!": @&j Station Bus / S

| — gy

NAN 2 ’ Ethernet 2
E’- W Aggregation [“"HNGENY . ..c Ring IHGEN

Process Bus to Switchyard = ’ z
Devices Physical Security
E Substation

Lee, Berkeley

@ Clock Synchronization Enables:

* Energy efficiency

e Coordination
* Security
 Resource management

e Determinism

Lee, Berkeley

* [ncreased vulnerability

— Denial of service attacks (DoS)
— Spoofing PTP
— Spoofing and jamming GPS
* Decreased vulnerability
— Coordination without communication
— Detection of DoS

— Detection of spoofing

Lee, Berkeley 98

QP Security: GPS Jammers

courtesy of
Kyle D. Wesson, UT Austin
Lee, Berkeley

@ Security: GPS Spoofer

Todd Humphreys’ GPS spoofing UAV
(UT Austin)

Lee, Berkeley

100

@ Security: Stable Clocks

For a price, local clocks can be made arbitrarily stable.

NIST-F1 may drift one second in 20 million years

Lee, Berkeley

@ Coordination without
~ Communication

With stable local clocks you can:

* Prevent packet losses.

* Detect hardware failures.

e Detect denial of service.

* Detect GPS and PTP spoofing.

* Coordinate w/out communicating.

Lee, Berkeley

@ Clock Synchronization Enables:

* Energy efficiency

e Coordination
* Security
 Resource management

e Determinism

Lee, Berkeley

@? Resource Management

Suppose that we did
not all agree on the
time of day (no
watches or clocks).

How would you
manage use of these
tennis courts?

ALOHA?

Lee, Berkeley

104

The last big time
synchronization push (1800s)
was driven by resource
allocation problems

“On August 12, 1853, two trains on the Providence & Worcester Railroad were
headed toward each other on a single track. The conductor of one train thought
there was time to reach the switch to a track to Boston before the approaching train
was scheduled to pass through. But the conductor's watch was slow. As his speeding
train rounded a blind curve, it collided head-on with the other train—fourteen
people were killed. The public was outraged. All over New England, railroads
ordered more reliable watches for their conductors and issued stricter rules for
running on time.”

Lee, Berkeley Source: National Museum of American History 105

’@@ Today’s Networks

Today’s general-purpose networks manage
resources without coordinated time.

e i
-\- "= ,—_\.‘ e e— —.u.ax_

'
- E 3 PR R ._Q._* ,
— N Nk ™ . <‘" St —e—e
. e : . A " . e - -
. Lol ,."'--v.'.‘.:'-.,-' -
.) . —— .'-.. N

...,—._.

Lee, Berkeley

106

@ Clock Synchronization Enables:

* Energy efficiency

e Coordination

* Security

* Resource management
* Determinism

Lee, Berkeley

@ Other Possible Topics

* Physical actions

e Superdense time
e Memory management (reference counting)

* Motivating Problems
 Why Existing Methods Fall Short
* Ports, Hierarchy, Models of Computation

* The Lingua Franca Language
* Distributed Execution

* Clock Synchronization

e Conclusion

Lingua Franca programs are testable
(timestamped inputs -> timestamped outputs)

LF programs are deterministic under
clearly stated assumptions.

Violations of assumptions are detectable
at run time.

Actors, Pub/Sub, SoA, and shared memory
have none of these properties.

https://github.com/icyphy/lingua-franca/wiki

’ / Engineering Models for Real-Time
w Cyber-Physical Systems

These enable models

. N . ith ti ntroll
* PRET: time-deterministic architectures MBIy esgelse

timing and
— http://chess.eecs.berkeley.edu/pret .
deterministic
behaviors.
* PTIDES: distributed real-time software
— http://chess.eecs.berkeley.edu/ptides We have shown that
that these models are
* Lingua Franca: a programming model practically realizable at
— https://github.com/icyphy/lingua-franca reasonable cost.

Lee, Berkeley

