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Cyber	Physical	Systems	

2 

Predictability	requires	determinacy	and	depends	on	timing,	
including	execution	times	and	network	delays.	



  

Motivation:		
Some	Questions	of	Interest	

3 

What	combinations	of	
periodic,	sporadic,	
arrival	curve	behaviors	
are	manageable?	

How	do	execution	
times	affect	
feasibility?	How	can	
we	know	execution	
times?	

How	do	we	get	
repeatable	and	
testable	behavior	
even	when	
communication	is	
across	networks?	

How	do	we	specify,	
ensure,	and	enforce	
deadlines?	



  

Actors,	Loosely	

	
	
Actors	are	concurrent	objects	that	communicate	
by	sending	each	other	messages.	

4 



  

Hewitt/Agha	Actors	

Data	+	Message	Handlers	
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Private	Data	

Message	
Queue	Messages	In	 Messages	Out	

Handler	B	

Handler	A	

X	

X.A(args)	

X.B(args)	

X.A(args)	

Y.C(args)	

Y.D(args)	

[Hewitt,	1977]	 [Agha,	1986,	1990,	1997]	



  

Some	Realizations	of		
Hewitt/Agha	Actors	

•  Erlang	[Armstrong,	et	al.	1996]	

•  Rebeca	[Sirjani	and	Jaghoori,	2011]	
•  Akka	[Roestenburg,	et	al.	2017]	
•  Ray	[Moritz,	et	al.	2017]	
•  …	

6 



  

Example	

7 

An	actor	with	simple	operations	on	its	state:	

Actor Foo { 
 int state = 1; 
 handler double(){ 
  state *= 2; 
 } 
 handler increment(arg){ 
  state += arg; 
  print state; 
 } 

} 



  

Example	

8 

An	actor	that	uses	actor	Foo:	
	
	
	
	
	
	
Semantics	is	“send	and	forget.”	

Actor Bar { 
 handler main(){ 
  Foo x = new Foo(); 
  x.double(); 
  x.increment(1); 
 } 

} 



  

Composition	

9 

What	is	printed?	

Actor Bar { 
 handler main(){ 
  Foo x = new Foo(); 
  x.double(); 
  x.increment(1); 
 } 

} 

Actor Foo { 
 int state = 1; 
 handler double(){ 
  state *= 2; 
 } 
 handler increment(arg){ 
  state += arg; 
  print state; 
 } 

} 



  

Aside:	Innovation	in	Ray		
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Messages	can	return	“futures”:	
	
	
	
	
	
	
Semantics	is	still	“send	and	forget,”	but	later	
remember.	

Actor Bar { 
 handler main(){ 
  Foo x = new Foo(); 
  Future a = x.double(); 
  Future b = x.increment(1); 
  print a.get() + b.get(); 
 } 

} 

[Moritz,	et	al.	2017]	



  

Pass-Through	Actor	
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Baz:	Given	an	actor	of	type	Foo,	send	it	“double”:	

Actor Baz { 
 handler pass(Foo x){ 
  x.double(); 
 } 

} 



  

New	Composition	
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What	is	printed?	Actor Bar { 
 handler main(){ 
  Foo x = new Foo(); 
  Baz z = new Baz(); 
  z.pass(x); 
  x.increment(1); 
 } 

} 

Actor Foo { 
 int state = 1; 
 handler double(){ 
  state *= 2; 
 } 
 handler increment(arg){ 
  state += arg; 
  print state; 
 } 

} 

Actor Baz { 
 handler pass(Foo x){ 
  x.double(); 
 } 

} 



  

Hewitt/Agha	Actors	are		
Not	Predictable	

Messages	are	handled	in	nondeterministic	order.	
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Private	Data	

Message	
Queue	Messages	In	 Messages	Out	

Handler	B	

Handler	A	

X	



  

One	Solution:	
Analyze	and	Use	Dependencies	

14 

But	how?	Where	is	the	
dependence	graph?	

Actor Bar { 
 handler main(){ 
  Foo x = new Foo(); 
  Baz z = new Baz(); 
  z.pass(x); 
  x.increment(1); 
 } 

} 

Actor Foo { 
 int state = 1; 
 handler double(){ 
  state *= 2; 
 } 
 handler increment(arg){ 
  state += arg; 
  print state; 
 } 

} 

Actor Baz { 
 handler pass(Foo x){ 
  x.double(); 
 } 

} 



  

One	Solution:	
Analyze	and	Use	Dependencies	

15 

And	what	if	the	dependence	
graph	is	data	dependent?	

Actor Bar { 
 handler main(){ 
  Foo x = new Foo(); 
  Baz z = new Baz(); 
  z.pass(x); 
  x.increment(1); 
 } 

} 

Actor Foo { 
 int state = 1; 
 handler double(){ 
  state *= 2; 
 } 
 handler increment(arg){ 
  state += arg; 
  print state; 
 } 

} 

Actor Baz { 
 handler pass(Foo x){ 
  if (something) { 
   x.double(); 
  } 
 } 

} 



  

Part	1	of	our	Solution:	
Ports	
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increment	

double	
reactor Bar { 
 output double, increment; 
 reaction main(){ 
  double.send(); 
  increment.send(1); 
 } 

} 

reactor Baz { 
 input in; 
 output out; 
 reaction(in){ 
  send(out); 
 } 

} 

out	in	

Instead	of	
referring	to	
other	actors,	an	
actor	refers	to	
its	own	ports.	

[Ptolemeus,	2014]	



  

Part	1	of	our	Solution:	
Ports	

17 

Input	ports	do	not	
look	much	different	
from	ordinary	
message	handlers.	

reactor Foo { 
 input double, increment; 
 int state = 1; 
 reaction(double){ 
  state *= 2; 
 } 
 reaction(increment){ 
  state += increment; 
  print state; 
 } 

} 

increment	

double	



  

Part	2	of	our	Solution:	
Hierarchy	
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composite Top { 
 reaction main(){ 
  Foo x = new Foo(); 
  Bar y = new Bar(); 
  Baz z = new Baz(); 
  connect(y.double, z.in); 
  connect(y.increment, x.increment); 
  connect(z.out, x.double); 
 } 

} 



  

Part	3	of	our	Solution:	
Scheduling	

19 

composite Top { 
 reaction main(){ 
  Foo x = new Foo(); 
  Bar y = new Bar(); 
  Baz z = new Baz(); 
  connect(y.double, z.in); 
  connect(y.increment, x.increment); 
  connect(z.out, x.double); 
 } 

} 

Scheduling	becomes	especially	
interesting	when	production	
or	consumption	of	messages	is	
data	dependent.	

Ensure	that	Baz	
completes	before	Foo’s	
handlers	are	invoked.	



  

Some	Strategies	

•  Dataflow	(DF)	
•  Process	Networks	(PN)	
•  Synchronous/Reactive	(SR)	
•  Discrete	Events	(DE)	

20 



  

Dataflow	

•  Computation	Graphs	[Karp,	1966]	
•  Dataflow	[Dennis,	1974]	
•  Dynamic	dataflow	[Arvind,	1981]	
•  Structured	dataflow	[Matwin	&	Pietrzykowski	1985]	
•  K-bounded	loops	[Culler,	1986]	
•  Synchronous	dataflow	[Lee	&	Messerschmitt,	1986]	
•  Structured	dataflow	and	LabVIEW	[Kodosky,	1986]	
•  PGM:	Processing	Graph	Method	[Kaplan,	1987]	
•  Dataflow	synchronous	languages	[Lustre,	Signal,	1980’s]	
•  Well-behaved	dataflow	[Gao,	1992]	
•  Boolean	dataflow	[Buck	and	Lee,	1993]	
•  Multidimensional	SDF	[Lee,	1993]	
•  Cyclo-static	dataflow	[Lauwereins,	1994]	
•  Integer	dataflow	[Buck,	1994]	
•  Bounded	dynamic	dataflow	[Lee	and	Parks,	1995]	
•  Heterochronous	dataflow	[Girault,	Lee,	&	Lee,	1997]	
•  …	

21 

Jack	Dennis	



  

Dataflow	Solution	for	Scheduling:	
Firing	Rules	
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An	actor	with	no	inputs	
can	fire	at	any	time.	

Fire!	

Tokens	produced	

[Lee	&	Matsikoudis,	2009]	



  

Dataflow	Solution	for	Scheduling:	
Firing	Rules	
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An	actor	with	inputs	has	to	
specify	at	all	times	how	
many	tokens	it	needs	on	
each	input	in	order	to	fire.	

Fire!	
Produce	1	

1	

1	

Consume	

[Lee	&	Matsikoudis,	2009]	



  

Dataflow	Solution	for	Scheduling:	
Firing	Rules	
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An	actor	inputs	has	to	
specify	at	all	times	how	
many	tokens	it	needs	on	
each	input	in	order	to	fire.	

Fire!	1	
1	

1	Consume	

When	it	fires,	each	reaction	
is	invoked	in	a	
deterministic	order.	

[Lee	&	Matsikoudis,	2009]	



  

Synchronous	Dataflow	Scheduling	

When	the	firing	rules	and	production	
patterns	are	static	integer	constants,	
then	a	lot	of	analysis	and	
optimization	is	possible.	
	
[Lee	&	Messerschmitt,	1986]	

25 

1	
1	

1	

1	

1	

1	 1996	



  

Synchronous	Dataflow	Scheduling	
with	Timing	

If	execution	times	are	also	known,	then	throughput	
and	latency	bounds	are	derivable	and	optimal	
scheduling	is	possible	(albeit	intractable).	
	
[Lee	&	Messerschmitt,	1986]	

26 

1	
1	

1	

1	

1	

1	



  

Dataflow	Scheduling	with	
Dynamic	Firing	Rules	
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What	should	
be	the	firing	
rule	for	Foo?	

1	
?	

1	Consume	

?	

1	

1	

reactor Baz { 
 input in; 
 output out; 
 reaction(in){ 
  if (something) { 
   send(out); 
  } 
 } 

} 



  

Boolean	Dataflow	

28 

Associate	a	symbolic	variable	
with	production	and	
consumption	parameters.	Solve	
the	scheduling	problem	
symbolically.	
[Buck	and	Lee,	1993]	

1	
b	

1	Consume	

b	

1	

1	

Buck	[1993]	showed	that	
scheduling	problems	in	
general	are	undecidable	in	
this	framework.	



  

Various	Dataflow	Variants	that	
Remain	Decidable	
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•  Cyclostatic	dataflow	[Lauwereins	1994]	
•  Heterochronous	dataflow	[Girault,	Lee	&	Lee,	1997]	
•  Parameterized	dataflow	[Bhattacharya	&	Bhattacharyya,	2001]	
•  Structured	dataflow	[Thies,	2002]	
•  Scenario-aware	dataflow	[Theelen,	Geilen,	Basten,	et	al.	2006]	
•  Reconfigurable	dataflow	[Fradet,	Girault,	et	al.,	2019]	

1	
b	

1	Consume	

b	

1	

1	



  

Scenario-Aware	Dataflow	

30 

A	state	machine	governs	the	
switching	between	production/
consumption	patterns	and	also	
execution	times.	
	
[Theelen,	Geilen,	Basten,	et	al.	2006]	

1	
b	

1	Consume	

b	

1	

1	



  

Some	Strategies	

•  Dataflow	(DF)	
•  Process	Networks	(PN)	
•  Synchronous/Reactive	(SR)	
•  Discrete	Events	(DE)	

31 



  

A	Different	Solution:		
Blocking	Reads	

[Kahn,	1974]	[Kahn	and	MacQueen,	1977]	

In	Kahn	Process	
Networks	(KPN),	
every	actor	is	a	
process	that	blocks	
on	reading	inputs	
until	data	is	available.	

KPNActor Foo { 
 input double, increment; 
 int state = 1; 
 while(true) { 
  read(double); 
  state *= 2; 
  x = read(increment); 
  state += x; 
  print state; 
 } 

} 

increment	

double	

Gilles	
Kahn	



  

Blocking	reads	have	trouble	with	
data-dependent	flow	patterns	

33 

KPNActor Baz { 
 input in; 
 output out; 
 while(true) { 
  read(in); 
  if (something) { 
   send(out); 
  } 
 } 

} 

KPNActor Foo { 
 input double, increment; 
 int state = 1; 
 while(true) { 
  read(double); 
  state *= 2; 
  x = read(increment); 
  state += x; 
  print state; 
 } 

} 



  

Blocking	reads	have	trouble	with	
data-dependent	flow	patterns	
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KPNActor Baz { 
 input in; 
 output out; 
 while(true) { 
  read(in); 
  if (something) { 
   send(out); 
  } 
 } 

} 

KPNActor Foo { 
 input double, increment; 
 int state = 1; 
 while(true) { 
  if (something) { 
   read(double); 
   state *= 2; 
  } 
  x = read(increment); 
  state += x; 
  print state; 
 } 

} 



  

Solution:	Coordinated	Control	

35 

1	Consume	

Actor Baz { 
 input in; 
 output out; 
 handler in(){ 
  if (something) { 
   out.send(); 
  } 
 } 

} 

Actor Foo { 
 input double, increment; 
 int state = 1; 
 while(true) { 
  if (something) { 
   read(double); 
   state *= 2; 
  } 
  x = read(increment); 
  state += x; 
  print state; 
 } 

} 



  

Some	Strategies	

•  Dataflow	(DF)	
•  Process	Networks	(PN)	
•  Synchronous/Reactive	(SR)	
•  Discrete	Events	(DE)	

36 



  

An	Alternative	Approach	to	
Coordination	

	
	
Make	the	notion	of	the	“absence”	of	a	message	
as	meaningful	as	its	presence.	

37 



  

A	Different	Approach:	
Synchronous	Languages	

38 

In	the	synchronous/reactive	approach,	there	is	a	conceptual	
global	“clock,”	and	on	each	“tick”	of	this	clock,	a	connection	
either	has	a	well-defined	value	or	is	“absent.”	
Each	actor	realizes	a	time-varying	function	mapping	inputs	to	
outputs.	

[Benveniste	&	Berry,	1991]	



  

Fixed	Point	Semantics	
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s ∈ S N 

At	each	tick	of	the	
clock,	the	job	of	the	
execution	engine	is	to	
find	a	valuation	s	for	
all	signals	such	that	
F(s)	=	s.	
	
This	is	called	a	fixed	
point	of	the	function	
F.	A	theory	of	partial	
orders	guarantees	
existence	and	
uniqueness.	

[Edwards	and	Lee,	2003]	



  

Distributed	and	Parallel	Execution	

Physically	asynchronous,		
logically	synchronous	(PALS)	

40 [Sha	et	al.,	2009]	



  

Some	Strategies	

•  Dataflow	(DF)	
•  Process	Networks	(PN)	
•  Synchronous/Reactive	(SR)	
•  Discrete	Events	(DE)	

41 



  

Discrete-Event	Languages	

DE	is	a	generalization	of	SR,	where	there	is	a	
notion	of	“time	between	ticks.”	
	
WARNING:	immediately	have	(at	least)	two	time	
lines:	logical	time	and	physical	time(s).	

42 [Lee	&	Zheng,	2007]	



  

Finally!	We	can	talk	about	the	
motivating	example.	

43 

Sporadic	events	are	
assigned	a	time	stamp	
based	on	the	local	
physical-time	clock	

Computations	have	
logically	zero	delay.	

Every	reactor	
handles	events	in	
time-stamp	order.	
If	time-stamps	are	
equal,	events	are	
“simultaneous”	

Actuators	can	have	a	
deadline	D.	An	input	
with	time	stamp	t	is	
required	to	be	
delivered	to	the	
actuator	before	the	
local	clock	hits	t	+	D.	

Deadline	
D	

Deadline	
D	



  

Simple,	Single-Machine	
Realization	

44 

•  Sort	reactors	topologically	based	on	precedences.	
•  Global	notion	of	“current	time”	t.	
•  Event	queue	containing	future	events.	
•  Choose	earliest	time	stamp	t’	on	the	queue.	
•  Wait	for	the	real-time	clock	to	match	t’.	
•  Execute	reactors	in	topological	sort	order.	

When	a	sporadic	sensor	
triggers	(or	an	asynchronous	
event	like	a	network	message	
arrives),	assign	a	time	stamp	
based	on	the	local	physical-
time	clock.	



  

Temporal	Operators	
(Logical	Time)	

45 

This	example	has	a	pre-defined	latency	from	physical	
sensing	to	physical	actuation,	thereby	delivering	a	
closed-loop	deterministic	cyber-physical	model.	

D	=	0.1	

D	=	0.2	



  

Real-Time	Systems	

46 

Classical	real-time	systems	scheduling	and	execution-
time	analysis	determines	whether	the	specification	can	
be	met.	

[Buttazzo,	2005]	 [Wilhelm	et	al.,	2008]	

D	=	0.1	

D	=	0.2	



  

Iron-Clad	Guarantees	with	
PRET	Machines	

47 

Precision-timed	(PRET)	machines	deliver	deterministic	
clock-cycle-level	repeatable	timing	with	no	loss	of	
performance	on	sporadic	workloads.	

[Edwards	&	Lee,	2007]	 [Lee	et	al.,	2017]	

D	=	0.1	

D	=	0.2	



  

Opportunity	for	Optimization	

48 

If	the	PeriodicSource	does	not	depend	on	physical	
inputs,	then	pre-computing	(logical	time	ahead	of	
physical	time)	becomes	possible,	based	on	dependence	
analysis.	

D	=	0.1	

D	=	0.2	
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Models of Time:  
Superdense Time 

At each tag, the signal has exactly one value.  
At each time point, the signal has a sequence of values. 

v : (R⇥N)! R3

v(ti,0) = 0Initial value: 
 
Intermediate value: 
 
Final value: 

v(ti,1) = K

v(ti,n) = 0, n � 2

[Lee,	“CPS	Foundations,”	DAC,	2010]	
[Maler,	Manna,	Pnuelli,	92]		

v : R ! R3
<latexit sha1_base64="DAkU8ClunhDKXH5S+qOyoFUOJrA=">AAACFnicbVC7TsMwFHXKq5RXgJHFokJioUoACcYKFsaC6ENqSuW4TmvVcSL7pqKK+hUs/AoLAwixIjb+BqftUFqOZOn43Hvte44fC67BcX6s3NLyyupafr2wsbm1vWPv7tV0lCjKqjQSkWr4RDPBJasCB8EasWIk9AWr+/3rrF4fMKV5JO9hGLNWSLqSB5wSMFLbPvGAPYIfpIORl70msRcS6Pl+ejfCHkQz14ezQtsuOiVnDLxI3Ckpoikqbfvb60Q0CZkEKojWTdeJoZUSBZwKNip4iWYxoX3SZU1DJQmZbqVjWyN8ZJQODiJljgQ8VmcnUhJqPQx905ktqedrmfhfrZlAcNlKuYwTYJJOPgoSgY3dLCPc4YpREENDCFXc7IppjyhCwSSZheDOW14ktdOSa/jtebF8NY0jjw7QITpGLrpAZXSDKqiKKHpCL+gNvVvP1qv1YX1OWnPWdGYf/YH19QulnJ+d</latexit><latexit sha1_base64="DAkU8ClunhDKXH5S+qOyoFUOJrA=">AAACFnicbVC7TsMwFHXKq5RXgJHFokJioUoACcYKFsaC6ENqSuW4TmvVcSL7pqKK+hUs/AoLAwixIjb+BqftUFqOZOn43Hvte44fC67BcX6s3NLyyupafr2wsbm1vWPv7tV0lCjKqjQSkWr4RDPBJasCB8EasWIk9AWr+/3rrF4fMKV5JO9hGLNWSLqSB5wSMFLbPvGAPYIfpIORl70msRcS6Pl+ejfCHkQz14ezQtsuOiVnDLxI3Ckpoikqbfvb60Q0CZkEKojWTdeJoZUSBZwKNip4iWYxoX3SZU1DJQmZbqVjWyN8ZJQODiJljgQ8VmcnUhJqPQx905ktqedrmfhfrZlAcNlKuYwTYJJOPgoSgY3dLCPc4YpREENDCFXc7IppjyhCwSSZheDOW14ktdOSa/jtebF8NY0jjw7QITpGLrpAZXSDKqiKKHpCL+gNvVvP1qv1YX1OWnPWdGYf/YH19QulnJ+d</latexit><latexit sha1_base64="DAkU8ClunhDKXH5S+qOyoFUOJrA=">AAACFnicbVC7TsMwFHXKq5RXgJHFokJioUoACcYKFsaC6ENqSuW4TmvVcSL7pqKK+hUs/AoLAwixIjb+BqftUFqOZOn43Hvte44fC67BcX6s3NLyyupafr2wsbm1vWPv7tV0lCjKqjQSkWr4RDPBJasCB8EasWIk9AWr+/3rrF4fMKV5JO9hGLNWSLqSB5wSMFLbPvGAPYIfpIORl70msRcS6Pl+ejfCHkQz14ezQtsuOiVnDLxI3Ckpoikqbfvb60Q0CZkEKojWTdeJoZUSBZwKNip4iWYxoX3SZU1DJQmZbqVjWyN8ZJQODiJljgQ8VmcnUhJqPQx905ktqedrmfhfrZlAcNlKuYwTYJJOPgoSgY3dLCPc4YpREENDCFXc7IppjyhCwSSZheDOW14ktdOSa/jtebF8NY0jjw7QITpGLrpAZXSDKqiKKHpCL+gNvVvP1qv1YX1OWnPWdGYf/YH19QulnJ+d</latexit>

[Lee	&	Zheng,	2005]	
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Superdense Time 

The red arrows indicate value changes between tags, which correspond 
to discontinuities. Signals are continuous from the left and continuous 
from the right at points of discontinuity. 



  

Networked	Scheduling:	PTides	

51 

When	is	this	“safe	to	process”?		 [Zhao	et	al.,	2007]	

T	

WCET	
W1	

[Edison	et	al.,	2012]	
[Corbett	et	al.,	2012]	When	τ	≥	T	+	W1	+	E	+	N,		where	

•  τ	is	the	local	physical	clock	time	
•  W1	is	worst-case	execution	time	
•  E	is	the	bound	on	the	clock	synchronization	error	
•  N	the	bound	on	the	network	delay	

D	=	0.1	

D	=	0.2	



  

Networked	Scheduling:	PTides	

52 

Will	the	deadline	at	ActuatorA	be	met?		 [Zhao	et	al.,	2007]	

T	

WCET	
W1	

[Edison	et	al.,	2012]	
[Corbett	et	al.,	2012]	Yes	if	D	+	d1	≥	T	+	W1	+	E	+	N	+	W2	

WCET	
W2	 D	=	0.1	

D	=	0.2	



  

Decoupling	Real-Time	Analysis	
with	Networked	Scheduling	

53 

Imposing	deadlines	on	network	interfaces	decouples	
the	real-time	analysis	problem.	Each	execution	platform	
can	be	individually	verified	for	meeting	deadlines.	
E.g.,	I2	≥	W2	,	D2	≥	W2	,	D3	≥	D2	+	W3	,	…	

[Zhao	et	al.,	2007]	

WCET	
W2	

WCET	
W1	

WCET	
W3	

Interval	
I2	



  

Other	Issues:	Feedback	

•  Fixed-point	semantics	
•  Causality	loops	
•  Superdense	time	
•  …	

54 



  

Conclusion	

•  Hewitt/Agha	actors	are	nondeterministic	
•  Some	solutions:	

– Dataflow	
– Process	networks	
– Synchronous/Reactive	models	
– Discrete-Event	

•  Reactors	are	actors	revisited	with	DE	semantics	
	
Pseudo	code	shown	is	based	on	Lingua-Franca.	

55 



  

Citation	

56 



  

References	

Many	dataflow	papers:	https://ptolemy.berkeley.edu/publications/dataflow.htm	
•  Agha,	G.	A.	(1997).	Abstracting	Interaction	Patterns:	A	Programming	Paradigm	for	

Open	Distributed	Systems.	Formal	Methods	for	Open	Object-based	Distributed	
Systems,	IFIP	Transactions,	Chapman	and	Hall.	

•  Agha,	G.	(1990).	"Concurrent	object-oriented	programming."	Communications	of	
the	ACM	33(9):	125-140.	

•  Agha,	G.	(1986).	ACTORS:	A	Model	of	Concurrent	Computation	in	Distributed	
Systems.	Cambridge,	MA,	MIT	Press.	

•  Armstrong,	J.,	et	al.	(1996).	Concurrent	programming	in	Erlang,	Prentice	Hall.	
•  Benveniste,	A.	and	G.	Berry	(1991).	"The	Synchronous	Approach	to	Reactive	and	

Real-Time	Systems."	Proceedings	of	the	IEEE	79(9):	1270-1282.	
•  Bhattacharya,	B.	and	S.	S.	Bhattacharyya	(2000).	Parameterized	Dataflow	Modeling	

of	DSP	Systems.	International	Conference	on	Acoustics,	Speech,	and	Signal	
Processing	(ICASSP),	Istanbul,	Turkey.	

•  Buck,	J.	T.	and	E.	A.	Lee	(1993).	Scheduling	Dynamic	Dataflow	Graphs	with	
Bounded	Memory	Using	the	Token	Flow	Model.	IEEE	Int.	Conf.	on	Acoustics,	
Speech,	and	Signal	Processing	(ICASSP).	

•  Buttazzo,	G.	C.	(2005).	Hard	Real-Time	Computing	Systems:	Predictable	Scheduling	
Algorithms	and	Applications,	Springer.	

57 



  

References	

•  Edwards,	S.	A.	and	E.	A.	Lee	(2007).	The	Case	for	the	Precision	Timed	
(PRET)	Machine.	Design	Automation	Conference	(DAC),	San	Diego,	CA.	

•  Edwards,	S.	A.	and	E.	A.	Lee	(2003).	"The	Semantics	and	Execution	of	a	
Synchronous	Block-Diagram	Language."	Science	of	Computer	
Programming	48(1):	21-42.	

•  Fradet,	P.,	et	al.	(2019).	RDF:	Reconfigurable	Dataflow.	Design	Automation	
in	Europe	(DATE),	Florence,	Italy.	

•  Girault,	A.,	et	al.	(1999).	"Hierarchical	Finite	State	Machines	with	Multiple	
Concurrency	Models."	IEEE	Transactions	on	Computer-Aided	Design	of	
Integrated	Circuits	and	Systems	18(6):	742-760.	

•  Hewitt,	C.	(1977).	"Viewing	control	structures	as	patterns	of	passing	
messages."	Journal	of	Artificial	Intelligence	8(3):	323-363. 		

•  Kahn,	G.	(1974).	The	Semantics	of	a	Simple	Language	for	Parallel	
Programming.	Proc.	of	the	IFIP	Congress	74,	North-Holland	Publishing	Co.	

•  Kahn,	G.	and	D.	B.	MacQueen	(1977).	Coroutines	and	Networks	of	Parallel	
Processes.	Information	Processing,	North-Holland	Publishing	Co.	

58 



  

References	

•  Lee,	E.	A.,	et	al.	(2017).	Abstract	{PRET}	Machines.	IEEE	Real-Time	Systems	
Symposium	(RTSS),	Paris,	France.	

•  Lee,	E.	A.	and	E.	Matsikoudis	(2009).	The	Semantics	of	Dataflow	with	Firing.	From	
Semantics	to	Computer	Science:	Essays	in	memory	of	Gilles	Kahn.	G.	Huet,	G.	
Plotkin,	J.-J.	Levy	and	Y.	Bertot,	Cambridge	University	Press.	

•  Lee,	E.	A.	and	D.	G.	Messerschmitt	(1987).	"Synchronous	Data	Flow."	Proceedings	
of	the	IEEE	75(9):	1235-1245.	

•  Lee,	E.	A.	and	H.	Zheng	(2007).	Leveraging	Synchronous	Language	Principles	for	
Heterogeneous	Modeling	and	Design	of	Embedded	Systems.	EMSOFT,	Salzburg,	
Austria,	ACM.	

•  Lee,	E.	A.	and	H.	Zheng	(2005).	Operational	Semantics	of	Hybrid	Systems.	Hybrid		
Systems:	Computation	and	Control	(HSCC),	Zurich,	Switzerland,	Springer-Verlag.	

•  Bilsen,	G.,	et	al.	(1996).	"Cyclo-static	dataflow."	IEEE	Transactions	on	Signal	
Processing	44(2):	397-408.	

•  Moritz,	P.,	et	al.	(2018).	"Ray:	A	Distributed	Framework	for	Emerging	AI	
Applications.”	Xiv:1712.05889v2	[cs.DC]	30	Sep	2018.	

•  Ptolemaeus,	C.,	Ed.	(2012).	System	Design,	Modeling,	and	Simulation	Using	
Ptolemy	II.	Berkeley,	CA,	USA,	Ptolemy.org.	

59 



  

References	

•  Sha,	L.,	et	al.	(2009).	PALS:	Physically	Asynchronous	Logically	Synchronous	
Systems,	Univ.	of	Illinois	at	Urbana	Champaign	(UIUC).	

•  Sirjani,	M.	and	M.	M.	Jaghoor	(2011).	Ten	Years	of	Analyzing	Actors:	
Rebeca	Experience.	Formal	Modeling:	Actors,	Open	Systems,	Biological	
Systems.	Agha	G.,	Danvy	O.	and	M.	J.	Berlin,	Heidelberg,	Springer.	Lecture	
Notes	in	Computer	Science,	vol	7000.	

•  Theelen,	B.	D.,	et	al.	(2006).	A	Scenario-Aware	Data	Flow	Model	for	
CombinedLong-Run	Average	and	Worst-Case	Performance	Analysis.	
Formal	Methods	and	Models	for	Co-Design.	

•  Thies,	W.,	et	al.	(2002).	{StreamIt}:	A	Language	for	Streaming	Applications.	
11th	International	Conference	on	Compiler	Construction,	Grenoble,	
France,	Springer-Verlag.	

•  Wilhelm,	R.,	et	al.	(2008).	"The	worst-case	execution-time	problem	-	
overview	of	methods	and	survey	of	tools."	ACM	Transactions	on	
Embedded	Computing	Systems	(TECS)	7(3):	1-53.	

		
	

60 


