

University	of	California	at	Berkeley	

	A	Personal	View	of	Real-Time	Computing	

Edward	A.	Lee	
Professor	of	the	Graduate	School	

	

ECE	Department,	George	Washington	University,	
Washington	DC,	April	22,	2019	

Distinguished Lecture Series

Cyber	Physical	Systems	

2

Predictability	requires	determinacy	and	depends	on	timing,	
including	execution	times	and	network	delays.	

What	is	Real	Time?	

•  fast	computation	
•  prioritized	scheduling	
•  computation	on	streaming	data	
•  bounded	execution	time	
•  temporal	semantics	in	programs	
•  temporal	semantics	in	networks	

3 Lee,	Berkeley	

The image cannot be displayed. Your computer may not have enough memory to open the image, or the image
may have been corrupted. Restart your computer, and then open the file again. If the red x still appears, you may
have to delete the image and then insert it again.

These	are	very	different	from	one	another.	
We	have	to	decide	which	to	focus	on.	

Achieving	Real	Time	

•  overengineering	
•  using	old	technology	
•  response-time	analysis	
•  real-time	operating	systems	(RTOSs)	
•  specialized	networks	
•  extensive	testing	and	validation	

4 Lee,	Berkeley	

 5

Achieving	Real	Time	in	Practice	

•  overengineering	
•  using	old	technology	
•  response-time	analysis	
•  real-time	operating	systems	(RTOSs)	
•  specialized	networks	
•  extensive	testing	and	validation	

6 Lee,	Berkeley	

Maybe	we	can	do	better?	

Correct execution of a program in all widely used
programming languages, and correct delivery of a network
message in all general-purpose networks has nothing to do
with how long it takes to do anything.

	
Programmers	have	to	step	outside	the	
programming	abstractions	to	specify	timing	
behavior.	
	

Lee,	Berkeley	 7

The Challenge: Timing is not part
of Software Semantics	

// Source code is a model:
for (int i=0; i<10; i++) {
 x[i] = a[i]*b[j-i];
 notify(x[i]);
}

Semantics	is	the		
Meaning	of	a	Model	

8 8

UML	

Ptolemy	 Simulink	

A	model	is	any	description	of	a	system	that	is	
not	the	thing-in-itself.	

(das	Ding	an	sich		in	Kantian	philosophy).	

Timing	of	programs	emerges	from	
the	implementation	

•  Pipeline	hazards	
•  Cache	effects	
•  Variable	DRAM	latencies	
•  Speculative	execution	
•  Interrupts	
•  Forwarding	
•  Dynamic	voltage/frequency	
•  …	

9 Lee,	Berkeley	

PC

Instruction
memory Mux

Add

4

fetch
decode

execute
m

em
ory

w
riteback

Register
bank

Mux

ALU

Decode

Zero?

branch
taken

control hazard (conditional branch)
data hazard (com

puted branch)

data
memory

Mux

data hazard (m
em

ory read or ALU
 result)

Image	from	Lee	&	Seshia,	
Introduction	to	Embedded	Systems	

MIT	Press,	2017	

An	Epiphany	

10

•  In	science,	the	value	of	a	model	lies	in	how	well	its	
behavior	matches	that	of	the	physical	system.	

•  In	engineering,	the	value	of	the	physical	system	lies	
in	how	well	its	behavior	matches	that	of	the	model.	

A	scientist	asks,	“Can	I	make	a	model	for	this	thing?”		
An	engineer	asks,	“Can	I	make	a	thing	for	this	model?”	

Lee,	Berkeley	 11

The	Value	of	Models	

Models	vs.	Reality	

In	this	example,	
the	modeling	
framework	is	
calculus	and	
Newton’s	laws.	
	
Fidelity	is	how	
well	the	model	
and	its	target	
match	

12 Lee,	Berkeley	

The	model	

The	target	
(the	thing	
being	
modeled).	

A	Model	

13 Lee,	Berkeley	
Image	by	Dominique	Toussaint,	GNU	Free	Documentation	License,	Version	1.2	or	later.	
	

A	Physical	Realization	

14 Lee,	Berkeley	

Model	Fidelity	

•  To	a	scientist,	the	model	is	flawed.	
•  To	an	engineer,	the	realization	is	flawed.	

I’m	an	engineer…	

15 Lee,	Berkeley	

Useful	Models	and	Useful	Things	

“Essentially,	all	models	are	wrong,		
but	some	are	useful.”	

	
Box,	G.	E.	P.	and	N.	R.	Draper,	1987:	Empirical	Model-Building	and	Response	
Surfaces.	Wiley	Series	in	Probability	and	Statistics,	Wiley.		

	
“Essentially,	all	system	implementations		

are	wrong,	but	some	are	useful.”	
	
Lee	and	Sirjani,	“What	good	are	models,”	FACS	2018.	

Lee,	Berkeley	 16

The	Value	of	Simulation	

	
“Simulation	is	doomed	to	succeed.”	

[anonymous]	
	

Could	this	statement	be	confusing	engineering	
models	for	scientific	ones?	

17 Lee,	Berkeley	

Lee	and	Sirjani,	“What	good	are	models,”	FACS	2018.	

Changing	the	Question	

Is	the	question	whether	we	can	build	models	
describing	the	behavior	of	real-time	systems?	
	
Or	
	
Is	the	question	whether	we	can	build	real-time	
systems	with	behavior	matching	our	models?	

18 Lee,	Berkeley	

Consider	Chip	Design	

19

A	piece	of	silicon	that	
doesn’t	behave	like	the	
model	is	just	beach	
sand.	
	

Intel	Haswell,	each	with	1.4	billion	transistors	

The hardware out of which we build
computers is capable of delivering “correct”
computations and precise timing…

Synchronous digital logic delivers
precise, repeatable timing.

… but the overlaying software
abstractions discard timing.

// Perform the convolution.
for (int i=0; i<10; i++) {
 x[i] = a[i]*b[j-i];
 // Notify listeners.
 notify(x[i]);
}

Lee,	Berkeley	 20

PRET Machines – Giving Software the
Capabilities its Hardware Already Has.

•  PREcision-Timed processors = PRET
•  Predictable, REpeatable Timing = PRET
•  Performance with REpeatable Timing = PRET

= PRET +
Computing

With time

// Perform the convolution.
for (int i=0; i<10; i++) {
 x[i] = a[i]*b[j-i];
 // Notify listeners.
 notify(x[i]);
}

http://chess.eecs.berkeley.edu/pret	

Lee,	Berkeley	 21

Major	Challenges	
and	existence	proofs	that	they	can	be	met	

•  Pipelines	
–  fine-grain	multithreading	

•  Memory	hierarchy	
– memory	controllers	with	controllable	latency	

•  I/O	
–  threaded	interrupts	with	zero	effect	on	timing	

Lee,	Berkeley	 22

Three	Generations	of	PRET	
Machines	at	Berkeley	

•  PRET1,	Sparc-based	(simulation	only)	
–  [Lickly	et	al.,	CASES,	2008]	

•  PTARM,	ARM-based	(FPGA	implementation)	
–  [Liu	et	al.,	ICCD,	2012]	

•  FlexPRET,	RISC-V-based	(FPGA	+	simulation)	
–  [Zimmer	et	al.,	RTAS,	2014,	PhD	Thesis	2015]	

Lee,	Berkeley	 23

Hardware	
thread	Hardware	
thread	Hardware	
thread	

Our Second Generation PRET
PTArm, a soft core on a
Xilinx Virtex 5 FPGA (2012)

Hardware	
thread	

registers	

scratch	
pad	

memory	

I/O	devices	

Interleaved
pipeline with one
set of registers

per thread

SRAM
scratchpad

shared among
threads

DRAM main
memory,

separate banks
per thread

memory	
memory	

memory	

Isaac	Liu,	PhD	Thesis,	2012	

Our	Third-Generation	PRET:	
Open-Source	FlexPRET	(Zimmer	2014/15)	

•  32-bit,	5-stage	thread	interleaved	pipeline,	RISC-V	ISA	
–  Hard	real-time	HW	threads:	
scheduled	at	constant	rate	for	isolation	and	repeatability.	

–  Soft	real-time	HW	threads:		
share	all	available	cycles	for	efficiency.	

•  Deployed	on	Xilinx	FPGA	

Lee,	Berkeley	 25	

Every	3	cycles	
(unless	done)	

W	
M	
X	
D	

W	
M	
X	

W	
M	W	

F	 D	
F	

X	
D	
F	

M	
X	
D	
F	

W	
M	
X	
D	
F	

HRTT	0	

SRTT	1	

SRTT	2	

Clock	cycles	

In
st
ru
ct
io
ns
	

Whenever	cycle	available	
(arbitrary	interleaving)	 Digilent	Atlys	(Spartan	6)	and		

NI	myRIO	(Zync)	

SRT thread

Hardware	
thread	Hardware	
thread	Hardware	
thread	Hardware	
thread	

FlexPRET
Hard-Real-Time (HRT) Threads
Interleaved with Soft-Real-Time (SRT) Threads

Hardware	
thread	

registers	

scratch	
pad	

HRT threads have
deterministic timing.
SRT threads share
remaining cycles

SRAM
scratchpad

shared among
threads

DRAM main
memory provides

deterministic latency
for HRT threads.

Conventional
behavior for the rest.

memory	
memory	

memory	

HRT thread

Michael	Zimmer	

Fact	

The	real-time	performance	of	a	FlexPRET	
machine	is	never	worse	than	that	of	a	
conventional	machine.	
	
Proof:	A	FlexPRET	machine	is	a	conventional	
machine	if	the	memory-mapped	registers	
controlling	HRT	and	SRT	threads	is	set	to	have	
only	one	thread,	a	SRT	thread.	

27 Lee,	Berkeley	

The	Cost	(Worst	Case)	

A	baseline	RISC-V	without	any	complex	
instructions	(floating	point,	integer	division,	
packed	instructions)	can	be	realized	on	an	FPGA	
with	580	flip	flops	and	2,788	LUTs.	
A	4-thread	FlexPRET	can	be	realized	with	908	
flip	flops	and	3,943	LUTs,	an	increase	of	56%	and	
41%	respectively.	
	
Percentage	is	much	lower	with	floating	point,	division,	etc.	
[Zimmer,	Broman,	Shaver,	Lee,	RTAS	2014]	

28 Lee,	Berkeley	

About	Interrupts	

“[M]any	a	systems	programmer’s	
grey	hair	bears	witness	to	the	
fact	that	we	should	not	talk	
lightly	about	the	logical	problems	
created	by	that	feature”	
	
	 	 	-	Edsger	Dijkstra	(1972)	

29 Lee,	Berkeley	

Interrupts	

•  Nondeterministically	interleaved	with	program	
•  Make	response	time	>	execution	time	
•  Disrupt	cache	and	branch	predictors	
•  Overhead	of	context	switching	

•  For	WCET	analysis,	have	to	disable	interrupts	
•  Disabling	interrupts	increases	variability	in	
response	time	

30 Lee,	Berkeley	

Interrupts	

Scientific	solution:	
•  Model	all	these	effects	

Engineering	solution:	
•  Eliminate	all	these	effects	

The	latter	is	what	PRET	machines	do.	

31 Lee,	Berkeley	

Interrupt Handler Thread

Hardware	
thread	Hardware	
thread	Hardware	
thread	

FlexPRET I/O
Interrupt Handler Thread Option

Hardware	
thread	

registers	

scratch	
pad	

Such interrupts have
no effect on HRT threads, and

bounded effect on SRT threads!

memory	
memory	

memory	

Michael	Zimmer	

A	similar	strategy	is	
also	used	by	XMOS,	
but	with	less	isolation.	

Abstract	PRET	Machines	(APM)	

RTSS,	2017,	Paris.	
This	paper	shows	that	achieving	deterministic	response	
times	that	meet	deadlines,	when	that	is	feasible,	
comes	at	no	cost	in	worst-case	response	times.	
	

This	is	shown	for	a	task	model	of	N	sporadic	
independent	tasks	with	deadlines.	
	

33 Lee,	Berkeley	

Intuition	

•  N	sporadic	real-time	tasks	with	minimum	
interarrival	time	Ti,	deadlines	Di,	and	WCET	Ci.	

Theorem:	When	Ti	=	Di,	PRET	yields	deterministic	
response	times	no	worse	than	the	worst	case	
response	time	of	a	conventional	architecture.	
	

When	Ti	>	Di,	if	any	processor	can	deliver	
deterministic	response	times,	PRET	will,	with	worst	
case	response	time	no	worse	than	a	conventional	
architecture.	

34 Lee,	Berkeley	

Benefits	of	PRET	
(Even	if	you	don’t	care	about	determinism)	

•  Very	low	context	switch	overhead	
–  Up	to	the	number	of	hardware	threads.	
–  Conventional	overhead	above	that.	

•  Improved	performance	
–  Can	eliminate	pipeline	bubbles.	

•  High-precision	timing	instructions	
–  Nanoseconds	of	precision	are	possible.	

•  Tighter	execution-time	analysis	
–  Especially	with	more	concurrency.	

35 Lee,	Berkeley	

Benefits	of	PRET	
(If	you	take	advantage	of	determinism)	

•  Modularity	
–  Non-interference	between	tasks	(even	with	interrupts).	

•  Exactness	
–  Get	not	just	WCET,	but	actual	response	time.	

•  Repeatability	
–  Works	in	the	field	like	on	the	bench.	

•  Complexity	
–  More	hard-real-time	tasks	is	better	than	fewer.	

•  Certifiability	
–  Every	correct	execution	of	the	software	gives	the	same	behavior.	

•  Energy	
–  Reduce	voltage	and	frequency	to	the	minimum	to	meet	deadlines.	

36 Lee,	Berkeley	

Achieving	Real	Time	in	Practice	

•  overengineering	
•  using	old	technology	
•  response-time	analysis	
•  real-time	operating	systems	(RTOSs)	
•  specialized	networks	
•  extensive	testing	and	validation	

37 Lee,	Berkeley	

What	about	the	programming	model?	

✔	
✔	
✔	

✔	

Engineering	Models	for	Real-Time	
Cyber-Physical	Systems	

	

	
•  PRET:	time-deterministic	architectures	

–  http://chess.eecs.berkeley.edu/pret		

•  PTIDES:	distributed	real-time	software	
–  http://chess.eecs.berkeley.edu/ptides	

Lee,	Berkeley	 38

These	enable	models	
with	tightly	controlled	
timing	and	
deterministic	
behaviors.	
	
We	have	shown	that	
that	these	models	are	
practically	realizable	at	
reasonable	cost.	

Roots	of	the	Idea	

ACM	Transactions	on	Programming	Languages	and	Systems,	1984.	

Lee,	Berkeley	 39

Abstract:	Discrete-event	(DE)	models	are	formal	system	specifications	that	
have	analyzable	deterministic	behaviors.	Using	a	global,	consistent	notion	of	
time,	DE	components	communicate	via	time-stamped	events.	DE	models	
have	primarily	been	used	in	performance	modeling	and	simulation,	where	
time	stamps	are	a	modeling	property	bearing	no	relationship	to	real	time	
during	execution	of	the	model.	In	this	paper,	we	extend	DE	models	with	the	
capability	of	relating	certain	events	to	physical	time…	

40 Lee,	Berkeley	

Ptides – A Robust Distributed DE
MoC for IoIT Applications

Google	Spanner	–	A	Reinvention	

Google	
independently	
developed	a	
very	similar	
technique	and	
applied	it	to	
distributed	
databases.	

Lee,	Berkeley	 41

	Proceedings	of	OSDI	2012	

Google	Spanner	–		
A	Reinvention	of	Ptides	

Lee,	Berkeley	 42

Distributed	database	with	redundant	
storage	and	query	handling	across	data	
centers.	

Update	to	a	record	
comes	in.	Time	stamp	t1.	

Query	for	the	same	record	
comes	in.	Time	stamp	t2.	

Google	Spanner	–		
A	Reinvention	of	Ptides	

Lee,	Berkeley	 43

Query	for	the	same	record	
comes	in.	Time	stamp	t2.	

If	t2	<	t1,	the	query	response	should	be	the	
pre-update	value.	Otherwise,	it	should	be	
the	post-update	value.	

Update	to	a	record	
comes	in.	Time	stamp	t1.	

Google	Spanner:		
When	to	Respond?	

Lee,	Berkeley	 44

Query	for	the	same	record	
comes	in.	Time	stamp	t2.	

When	the	local	clock	time	exceeds		
t2	+	e	+	b,	issue	the	current	record	
value	as	a	response.	

Synchronize	clocks	
with	error	bound	e.	

Communication	
latency	bound	b.	

Update	to	a	record	
comes	in.	Time	stamp	t1.	

Google	Spanner:	Fault!	

Lee,	Berkeley	 45

Query	for	the	same	record	
comes	in.	Time	stamp	t2.	

If	after	sending	a	response,	we	receive	a	
record	update	with	time	stamp	t1	<	t2	
declare	a	fault.	Spanner	handles	this	with	a	
transaction	schema.	

Synchronize	clocks	
with	error	bound	e.	

Communication	
latency	bound	b.	

Update	to	a	record	
comes	in.	Time	stamp	t1.	

Ptides	Applies	this	Idea	to	
Distributed	Real-Time	Systems	

46

Time	stamp	value	is	a	
deadline	

Time	stamp	value	is	
time	of	measurement	

Actors	wrap	
sensors	

Actors	wrap	
actuators	

Ptides:	Deterministic		
Distributed	Real-Time	

Assume	bounds	on:	
•  clock	synchronization	error	
•  network	latency	
then	events	are	processed	in	time-stamp	order	
at	every	component.		If	in	addition	we	assume	
•  bounds	on	execution	time	
then	events	are	delivered	to	actuators	on	time.	

Lee,	Berkeley	 47

See	http://chess.eecs.berkeley.edu/ptides	

PTIDES	Requires	Synchronized	
Clocks	with	Bounded	Error	

Every	engineered	design	
makes	assumptions	about	
its	execution	platform.	
	
	

Ubiquitous	clock	
synchronization	gives	us	a	
new	and	powerful	tool.		

Lee,	Berkeley	 48

Lingua	Franca	

A	meta-language	for	PRET,	Ptides,	and	
predictable	concurrent	systems	in	general.	

49

To	Appear,	Design	Automation	Conference	(DAC),	June,	2019.	

Lingua	Franca	

A	meta-language	for	PRET,	Ptides,	and	
predictable	concurrent	systems	in	general.	

50

To	Appear,	Design	Automation	Conference	(DAC),	June,	2019.	

Conclusion	

•  In	science,	the	value	of	a	model	lies	in	
how	well	its	behavior	matches	that	of	
the	physical	system.	

•  In	engineering,	the	value	of	the	physical	
system	lies	in	how	well	its	behavior	
matches	that	of	the	model.	

My	message:		
Do	less	science	and	more	engineering.	
	
http://ptolemy.berkeley.edu/pret	
http://ptolemy.berkeley.edu/ptides			

http://platoandthenerd.org		

