
Realtime Signal Processing

Dataflow, Visual, and Functional Programming

Hideki John Reekie

Submitted for the Degree of
Doctor of Philosophy at the

University of Technology at Sydney
in the

School of Electrical Engineering

September 1995

ii

Abstract

This thesis presents and justifies a framework for programming real-time sig-
nal processing systems. The framework extends the existing “block-diagram”
programming model; it has three components: a very high-level textual lan-
guage, a visual language, and the dataflow process network model of computa-
tion.

The dataflow process network model, although widely-used, lacks a formal
description, and I provide a semantics for it. The formal work leads into a
new form of actor. Having established the semantics of dataflow processes,
the functional language Haskell is layered above this model, providing powerful
features—notably polymorphism, higher-order functions, and algebraic program
transformation—absent in block-diagram systems. A visual equivalent notation
for Haskell, Visual Haskell, ensures that this power does not exclude the “in-
tuitive” appeal of visual interfaces; with some intelligent layout and suggestive
icons, a Visual Haskell program can be made to look very like a block diagram
program. Finally, the functional language is used to further extend dataflow
process networks, by simulating timed and dynamically-varying networks.

The thesis thus draws together a number of previously-separate ideas: a
reasonable expectation of efficient execution using established dataflow com-
pilation technology; a powerful and high-level programming notation; and a
block-diagram style interface.

ii

Contents

1 Introduction 1
1.1 Motivation . 2
1.2 Benefits . 4
1.3 Overview of the thesis . 5
1.4 Previously published work . 7

2 Background Material 9
2.1 Models of parallelism . 9

2.1.1 A “meta-model” of parallelism 9
2.1.2 Implicit parallelism . 11
2.1.3 Data parallelism . 12
2.1.4 Control parallelism . 13
2.1.5 The Linda model . 14
2.1.6 Pipeline parallelism . 15

2.2 Functional programming in five minutes 16
2.2.1 Objects and functions . 16
2.2.2 Bindings . 18
2.2.3 Patterns . 19
2.2.4 Currying and higher-order functions 19
2.2.5 let, lambda, and case . 20
2.2.6 Polymorphism and type classes 21

2.3 Evaluation mechanisms . 22
2.3.1 Graph reduction . 22
2.3.2 Strictness . 23
2.3.3 Parallel graph reduction 24
2.3.4 Parallel data structures 25
2.3.5 Functional operating systems 26
2.3.6 Functional process networks 27
2.3.7 Skeletons . 28

2.4 Real-time signal processing . 29
2.4.1 Discrete-time signals . 29
2.4.2 Streams and channels . 30
2.4.3 Functions and systems . 31
2.4.4 Digital signal processors 32

iii

2.5 Summary . 34

3 Dataflow Process Networks 35
3.1 Related work . 36

3.1.1 Computation graphs . 36
3.1.2 Synchronous dataflow (SDF) 38
3.1.3 Kahn’s process networks 40
3.1.4 Dataflow processes . 42
3.1.5 Firing rules . 44

3.2 Standard-form dataflow actors 45
3.2.1 Syntax . 45
3.2.2 Desugaring . 48
3.2.3 Semantics . 48
3.2.4 Consumption and production vectors 52
3.2.5 Canonical SDF actors . 54

3.3 Phased-form dataflow actors . 55
3.3.1 Syntax . 56
3.3.2 Phase graphs . 60
3.3.3 Semantics . 61
3.3.4 Cyclo-static and multi-phase integer dataflow 64
3.3.5 Execution mechanisms . 66
3.3.6 Hierarchy and strictness 67

3.4 Summary . 70

4 Visual Haskell 71
4.1 Related work . 72
4.2 An introduction to Visual Haskell 75
4.3 Visual syntax preliminaries . 79

4.3.1 Visual elements . 79
4.3.2 Specifying the visual syntax 80
4.3.3 A simple visual language 82
4.3.4 De-sugaring . 85

4.4 The core syntax . 85
4.4.1 Simple expressions . 85
4.4.2 Structured expressions . 88
4.4.3 Patterns . 91
4.4.4 Bindings . 93
4.4.5 Match phrases . 93

4.5 Improving the visual syntax . 96
4.5.1 Visual syntactic sugar . 96
4.5.2 Iteration boxes . 98
4.5.3 Unfolded higher-order functions 99
4.5.4 Wiring . 100

4.6 Summary . 100

iv

5 Static Process Networks 103
5.1 Related work . 104
5.2 Vectors . 105

5.2.1 The Vector datatype . 105
5.2.2 Iterators . 106
5.2.3 Combiners . 109
5.2.4 Selectors . 110
5.2.5 Example: the Fast Fourier Transform 113

5.3 Streams . 115
5.3.1 The Stream datatype . 115
5.3.2 Process primitives . 117
5.3.3 An example . 119
5.3.4 Process constructors . 120

5.4 Process network construction . 123
5.4.1 Simple combinators . 125
5.4.2 Simple linear networks . 126
5.4.3 Pipelines . 127
5.4.4 Meshes and systolic arrays 128
5.4.5 Network construction in dataflow systems 130

5.5 Process network transformation 131
5.5.1 Type annotations . 131
5.5.2 Fusion . 132
5.5.3 Parallelisation . 134
5.5.4 Pipelining . 135
5.5.5 Promotion . 137

5.6 Summary . 138

6 Dynamic Process Networks 139
6.1 Related work . 140
6.2 Timed signals and streams . 141
6.3 Functions on timed streams . 143

6.3.1 Basic functions . 143
6.3.2 Timed vectors . 145
6.3.3 Synchronous and timed streams 146

6.4 Dynamic process networks . 148
6.4.1 Finite synchronous streams 148
6.4.2 Dynamic process functions 151

6.5 A digital music synthesiser . 152
6.5.1 Notes . 152
6.5.2 Envelopes . 153
6.5.3 Note generation . 154
6.5.4 A formant-wave-function note generator 155

6.6 Summary . 158

v

7 Summary 159
7.1 Contributions . 159
7.2 Further work . 160
7.3 Concluding Remarks . 161

A Haskell Code 175

vi

List of Figures

1.1 A conceptual framework for DSP programming 2
1.2 The arguments, summarised . 5
1.3 An overview of thesis topics . 6

2.1 A hierarchy of parallelism . 10
2.2 Carriero and Gelernter’s models of parallelism 11
2.3 More models of parallelism . 13
2.4 A simple block diagram . 32
2.5 A simplified DSP chip architecture 33

3.1 A simple dataflow network . 35
3.2 A computation graph . 37
3.3 A synchronous dataflow graph . 38
3.4 A Kahn process network . 41
3.5 Sugared syntax of a standard-form actor 46
3.6 Desugaring a standard-form actor 48
3.7 Instantiating an actor . 50
3.8 The canonical SDF actors . 55
3.9 Sugared syntax of a phased-form actor 57
3.10 The non-deterministic sumsqrs actor 58
3.11 The phased-form delay actor . 59
3.12 Desugaring a phased-form actor 59
3.13 Phase graphs . 60
3.14 Phase graph of iota . 65
3.15 Deadlock of a hierarchical actor 67
3.16 A phased network example . 68
3.17 The example phased network as a phased-form actor 69

4.1 The factorial function in Cardelli’s language 73
4.2 The factorial function in ESTL 74
4.3 The factorial function in Visual Haskell 76
4.4 Patterns . 77
4.5 The map function . 77
4.6 Icons for some standard prelude data constructors 78
4.7 Icons for some standard prelude functions 79

vii

4.8 Function composition . 79
4.9 Simple visual elements . 80
4.10 Haskell’s abstract syntax . 81
4.11 The visual syntax of a simple language 83
4.12 Sugaring the simple language . 84
4.13 De-sugaring rules . 85
4.14 Visual syntax: simple expressions 86
4.15 An example translation . 88
4.16 Visual syntax: structured expressions 90
4.17 Examples of structured expressions 91
4.18 Visual syntax: patterns . 92
4.19 Visual syntax: bindings . 94
4.20 Visual syntax: match clauses . 95
4.21 Sugaring rules . 97
4.22 Illustrating type annotations . 98
4.23 Illustrating iteration . 99
4.24 Unfolded higher-order functions 100
4.25 Wiring . 101
4.26 Mixing text and pictures . 101

5.1 Unfolded vector iterators . 108
5.2 Iterator type signatures . 109
5.3 Combiner type signatures . 110
5.4 Selector type signatures . 111
5.5 Additional selector functions . 111
5.6 Selectors as “wiring” . 113
5.7 The 16-point FFT butterfly diagram 114
5.8 The FFT function . 115
5.9 Parts of the 16-point FFT in Visual Haskell 116
5.10 Types of stream functions . 118
5.11 A first-order recursive filter . 120
5.12 Process constructor definitions 121
5.13 Process constructors . 122
5.14 The FIR filter function . 123
5.15 The n-th order recursive filter . 124
5.16 Simple network-forming functions 125
5.17 Linear process networks . 126
5.18 A pipeline process network . 128
5.19 Mesh process networks . 129
5.20 Illustrating network types . 131
5.21 Process fusion . 133
5.22 The transformed FIR filter . 134
5.23 Horizontal parallelisation . 135
5.24 Pipelining . 136
5.25 Promotion . 138

viii

6.1 A simple digital gain control . 139
6.2 Types of timed stream functions 143
6.3 Types of finite stream functions 149
6.4 More functions for making finite streams 150
6.5 Types of dynamic process functions 151
6.6 Note events and associated code 153
6.7 Ramp and envelope generators 154
6.8 Note generators . 155
6.9 The top-level synthesiser . 155
6.10 Sine-wave synthesiser output . 156
6.11 Formant-wave-function tone generation 157
6.12 Formant-wave-function output 158

ix

x

Acknowledgements

I would like to thank my academic supervisors, Professor Warren Yates, of the
School of Electrical Engineering, University of Technology at Sydney, and Dr.
John Potter, of the Microsoft Institute (formerly of the School of Computing
Sciences, University of Technology at Sydney), for their advice, support, and
patience. I am indebted to the three thesis assessors, Dr Chris Drane (University
of Technology at Sydney), Dr Greg Michaelson (Heriot-Watt University), and Dr
Andrew Wendelborn (University of Adelaide), for their time and effort reading
and commenting on the submitted version of the thesis; I hope this final version
adequately addresses the issues they raised. This work was supported by an
Australian Post-graduate Research Award. Fudeko and Colin Reekie made the
whole thing possible. Jon Hill read and offered useful comments on an early draft
of this thesis. Matthias Meyer wrote the TMS320C40 prototype of SPOOK.
Ken Dawson wrote the prototype Visual Haskell editor. Mike Colefax wrote
the polyphonic version of the formant-wave-function music synthesiser. John
Leaney offered enthusiasm and encouragement. Rick Jelliffe told at least one
funny story. Morris the psycho-cat took no interest in any of this.

xi

xii

The two virtues of architecture which we can justly weigh,
are, we said, its strength or good construction, and its beauty
or good decoration. Consider first, therefore, what you mean
when you say a building is well constructed or well built; you

do not merely mean that it answers its purpose,—this is
much, and many modern buildings fail of this much; but if it

be verily well built; it must answer this purpose in the
simplest way, and with no over-expenditure of means.

John Ruskin, The Stones of Venice.

Writers of books and articles should not use we in circumstances where
the collective anonymity of the editorial of a newspaper is out of place.
An author may, taking the reader with him, say we have seen how thus

and thus . . . , but ought not, meaning I , to say we believe thus and
thus; nor is there any sound reason why, even though anonymous, he

should say the present writer or your reviewer , expressions which
betray his individuality no less and no more than the use of the

singular pronoun. Modern writers are showing a disposition to be
bolder than was formerly fashionable in the uses of I and me, and the

practice deserves encouragement. It might well be imitated by the
many scientific writers who, perhaps out of misplaced modesty, are

given to describing their experiments in a perpetually passive voice,
(such-and-such a thing was done), a trick that becomes wearisome by

repetition, and makes the reader long for the author to break the
monotony by saying boldly I did such-and-such a thing .

H. W. Fowler, A Dictionary of Modern English Usage

Chapter 1

Introduction

Real-time signal processing computation is a unique field. It has its own spe-
cial class of applications—applications that demand extremely high computa-
tional performance and very fast real-time response. It uses specialised micro-
processors—often several—with their own unique set of hardware design and
programming tricks. It pursues performance at the expense of generality, main-
tainability, portability, and other generally-accepted measures of good software
practice. And a running real-time signal processing program is the most ex-
citing kind of computer program there is, because you can hear it, see it, and
interact with it in ways not possible with other kinds of computer program.

Fortunately, the eagerness to sacrifice good practice in pursuit of maximum
performance is tempered by a programming approach that promises both. This
approach, going under the guise of “block-diagram development systems,” is
based on a simple metaphor: software modules can be interconnected by soft-
ware channels in the same manner in which hardware units can be connected
by cables carrying analog or digital signals. The concept dates back at least to
the work by Kelly et al in 1961 [73]. In modern systems, visual interfaces add
to the appeal of the metaphor: complete systems can be constructed by making
connections on a computer screen.

The computational model on which these systems are based is called pipeline
dataflow . The combination of a visual interface with pipeline dataflow is well-
established in several fields, including signal processing [87, 12, 84], image pro-
cessing and visualisation [111, 82], instrumentation [81], and general-purpose
visual programming languages [98, 59]. Signal processing systems are based on
a special class of pipeline dataflow, dataflow process networks (see chapter 3).
Block-diagram systems, although well-established, are a practical compromise
of usability and implementation technology, and lack some of the features of
modern programming languages.

The aim of this thesis is to extend the visual-interface-dataflow-network
style of computation. It does so by adding a third dimension as illustrated
in figure 1.1. The underlying model of computation is still dataflow process
networks; a programmer creates dataflow-network programs using either a visual

1

2 CHAPTER 1. INTRODUCTION

Dataflow process network

let
 u = copyV k 0
in
 scanS (<<) u

High-level language
Visual language

Programming technology

Computational model

Figure 1.1: A conceptual framework for DSP programming

language or a high-level language. There is more than appears on this diagram,
though: the high-level language offers new flexibility and power to both the
visual interface and the dataflow process network model. In this thesis, I will use
Haskell as the high-level language; Haskell is a modern functional language that
provides a common ground for research into functional languages and functional
programming [44]. The visual language is Visual Haskell, a visual equivalent for
Haskell of my own design.

In the next two sections I summarise the arguments in favour of adding this
third dimension. A further two sections provide an outline of following chapters,
and review previously-published papers and reports and their relation to this
thesis.

1.1 Motivation

There were two main motivations behind the work in this thesis. Firstly, I
wanted a way of expressing dataflow network programs that is more powerful
and expressive than current block-diagram systems. And secondly, I wanted to
show that a more powerful notation need not sacrifice the “intuitive” appeal of
a visual interface.

In a block-diagram system, a programmer or engineer places icons repre-
senting processing modules, or blocks, onto the computer screen. Connections
between input and output ports represent a flow of data from one block into
another. The data flowing over these channels is called a stream. Input-output
is handled in a uniform way: special blocks with no input ports represent input
channels; blocks with no output ports represent output channels. Most systems

1.1. MOTIVATION 3

support hierarchical construction of networks: a network with unconnected in-
put or output ports can be named and then placed into another network. This
is the dataflow network equivalent of procedural abstraction.

Block diagrams are conceptually familiar to engineers, and the visual inter-
face is semantically simple and therefore provides little barrier to take-up, as
learning a new textual language might. The computational model is, however,
limited to pipeline dataflow. As a result, block diagram languages cannot ex-
press other kinds of computation. For example, although it is easy to express
point-wise summation of two streams of numbers, it is not possible to express
the addition of two numbers. For this reason, block-diagram systems supply
a library of “primitive” blocks—waveform generators, filters, modulators, de-
tectors, and transforms—with which more complex blocks and systems can be
constructed. Any algorithm not supplied with the library can be coded as a
primitive block by the user, in a conventional language such as C or Fortran.

This approach has two drawbacks. Firstly, algorithms coded in C or Fortran
cannot be divided into smaller parts for simultaneous execution on multiple
processors. Large primitive blocks—such as the Fast Fourier Transform—may
limit throughput or reduce the effectiveness of load-balancing. The second ob-
jection is essentially one of elegance: the programmer is forced to program in
two completely different languages, with two completely different semantics.

Functional programming languages seem a natural choice for coding dataflow
network programs. Because pure functional languages have no assignment, we
can think of functional programs as dataflow programs: in dataflow, the result
of each block flows into the input of the next; in functional programs, the result
of each function application is the argument to another function application. If
this data is atomic—numbers and so on, or tokens in dataflow terminology—
then this is like atomic dataflow .

In addition, pure functional languages are “lazy,” so that evaluation is not
performed until needed to produce the result of the program. Laziness is a nice
property for a number of reasons. Firstly, it is necessary to guarantee referen-
tial transparency: an expression can always be substituted with an equivalent
expression without changing program meaning. Secondly, it allows the use of
some programming techniques that cannot be used in non-lazy languages—see
[19, 66, 146] for examples of programs that can only be constructed in a lazy lan-
guage. For our purposes, laziness makes it easy to build infinite data structures
and therefore to simulate pipeline dataflow systems. Thus, the same language
codes the internal computation of blocks as well as networks of blocks—there is
no barrier between primitive and constructed blocks as in conventional block-
diagram systems.

Functional languages are not, however, visual. Although there has been
some work on visual functional languages, none have been widely adopted or
implemented. Because the functional language approach to dataflow program-
ming fits the dataflow model so well, I developed a visual notation for Haskell,
called Visual Haskell. The aim of Visual Haskell is to provide an unambiguous
visual equivalent of textual Haskell, so that programs can be translated back
and forth between the two notations—this is represented by the double-ended

4 CHAPTER 1. INTRODUCTION

arrow at the top of figure 1.1.
Thus, all blocks—both constructed and primitive—can be created and ma-

nipulated in both visual and textual languages. Although typically the visual
language would be used at higher levels of the system and the textual language
for lower-level algorithms, there is no compulsion to do so; the transition be-
tween the two styles of programming is seamless, and the programmer is free to
choose whichever is the most appropriate. This “two-view” idea is not new: a
multiple-view program development environment has been proposed for proce-
dural languages [123]; and two-view document formatting systems seem a nat-
ural synthesis of the compiled and WYSIWYG styles of document production
[23].

The choice of a lazy language is not without its drawbacks: there is an
inevitable overhead associated with building a run-time representation of un-
evaluated expressions. This presents serious difficulties with computation within
blocks, as real-time signal processing simply cannot afford to support any over-
heads other than those essential to producing the result of a computation.

1.2 Benefits

Having decided on the framework of figure 1.1, other interesting benefits be-
come apparent. Because the visual language is general—that is, it is a visual
notation for Haskell and it not particularly oriented towards signal processing—
it promises to be a powerful tool for functional programming in general. The
presentation in chapter 4 and in an earlier paper [116] are written assuming
that Visual Haskell will be used as a visual functional language, not as a visual
dataflow language.

The connection between functional languages and pipeline dataflow (more
specifically, dataflow process networks—see chapter 3) provides a new imple-
mentation model for a particular class of functional programs. Although similar
to some other approaches to evaluating functional programs (section 2.3.6), it
promises efficient execution through the use of well-established dataflow schedul-
ing and compilation techniques.

The high-level language provides the visual language and pipeline dataflow
models with some powerful features. Existing block-diagram languages—and
even general-purpose visual programming languages—do not support all of the
features promised by Visual Haskell. (This is one of the reasons I developed Vi-
sual Haskell instead of using an existing visual language and combining it with
dataflow networks.) Polymorphism, for example, allows functions (or networks)
to be written that will accept different datatypes. In Ptolemy and SPW, for
example, the programmer must choose an appropriate addition block: integer,
floating, or complex. In Visual Haskell, the (+) operator is overloaded on all
these types. Typing is still static, so this feature does not require the over-
heads of run-time type-checking, as would be the case were a Lisp-like language
adopted. Higher-order functions provide a very powerful mechanism for con-
structing and parameterising process networks. (A higher-order function takes

1.3. OVERVIEW OF THE THESIS 5

functional
language

 visual
language

dataflow
networks

expressiveness

in
tu

iti
onefficiency

expressiveness

intuition

ef
fic

ie
nc

y

Figure 1.2: The arguments, summarised

a function argument, or delivers a function result.) This allows the expression
of visual programs with “large thoughts” [138]. I explore this idea in section 5.4.
A simple form of higher-order function mechanism has recently been added to
Ptolemy [86], inspired by one of my earlier papers [113, 85].

An interesting possibility opened up by incorporating a functional language
into the programming framework is that of program transformation. Program
transformation is advocated in functional programming texts as a means of
obtaining “efficient” realisation of programs from “inefficient” (but still exe-
cutable) specifications [18]. In the context of dataflow networks, it offers a
means of performing provably-correct alterations to the structure of a network
(section 5.5). Since individual modules within the network are often interpreted
as units of parallelism (section 2.1.6), the effect is to alter and control the degree
and type of parallelism exhibited by a network.

Figure 1.2 summarises the preceding arguments in terms of the three dimen-
sions of the new programming framework: the dataflow network model provides
visual and functional programming with an efficient execution mechanism; the
visual language adds “intuition” to functional and dataflow programming; and
the functional language adds expressiveness to visual and dataflow program-
ming. The result is a powerful framework within which to program and reason
about dataflow network programs.

1.3 Overview of the thesis

This thesis covers a broad range of topics. To help explain the material cov-
ered and its inter-relationships, figure 1.3 shows dependencies between the main
topics. The following outline proceeds chapter-by-chapter.

Chapter 2, Background Material , provides background material and surveys
relevant to following chapters. Topics covered are models of parallel computa-
tion, functional programming, evaluation mechanisms for functional languages,
and real-time programs. These sections include much of the basic background

6 CHAPTER 1. INTRODUCTION

Functional programming

Visual Haskell

Static networks Dynamic networks

Process networks Strict dataflow Non-strict dataflow

Evaluation mechanisms

2.2

4

3.2

5 6

3.3

2.3

3.1

Figure 1.3: An overview of thesis topics

material needed for the remaining chapters, although further reviews are given
in each chapter.

Chapter 3, Dataflow Process Networks, presents a formalisation of dataflow
actors and processes. This work builds on seminal work by Kahn on process
networks [74], and on more recent work by Lee [86], to whom the term “dataflow
process network” is due. The emphasis is on modelling and describing dataflow
actors, rather than on the practical issues associated with implementation of
dataflow programming environments. The formalisation leads to some new in-
sights into the nature of dataflow actors. These dataflow actors are “strict,”
because they consume all needed input tokens before producing output tokens.
The final section of this chapter introduces non-strict actors, which I call phased
actors. This idea is quite novel and is still under development.

Chapter 4, Visual Haskell , formally describes Visual Haskell. Its syntax is
given by a translation from Haskell’s abstract syntax directly into a concrete
visual syntax. The visual grammar uses some novel techniques to handle differ-
ences in the “style” of textual and visual syntaxes. A visual syntax for most of
Haskell’s expression and definition syntax is given; a notable omission is syntax
for type and type class declarations. The final section of this chapter shows that
the way I have specified visual syntax is far from perfect: much greater flexibility
is needed to support more complex and varied forms of visual representation.

Chapter 5, Static Process Networks, builds on the previous two: dataflow
processes are programmed in Haskell, and these programs illustrated in Visual
Haskell. Firstly the relationship between Haskell functions and dataflow actors
is made explicit. The remainder of the chapter demonstrates how Haskell’s
features increase the expressiveness of dataflow network programs: how higher-
order functions can be used as a concise and powerful means of constructing and
combining dataflow networks; and how program transformation techniques can
be adapted to improve efficiency, or to tailor a program to a particular physical
network.

Chapter 6, Dynamic Process Networks, takes a different approach: instead
of writing functional programs to fit into the dataflow mold, I use this chapter
to write Haskell programs in ways that may give insight into extending and
improving the dataflow actor/process model. The key issue tackled here is that

1.4. PREVIOUSLY PUBLISHED WORK 7

of representing time in dataflow networks. A secondary issue is that of dynamic
networks: networks that change with time. In Haskell, we can represent evolving
networks, but substantially more work is needed to find a way of translating
this type of program into dataflow networks—not least because there has been
very little work done on formal characterisations of evolving dataflow networks.
There are two dependencies to this chapter shown as dotted lines in figure 1.3;
these are areas for future work.

Finally, chapter 7, Summary , summarises the work of this thesis, and lists
key contributions. As I have already indicated, there is enormous scope for
further work, and I outline those areas I consider most promising for future
research.

1.4 Previously published work

Some of the material in this thesis has previously been published in technical
reports or conference papers. I have not included all of this material in this
thesis; the reader interested in particular portions of elided work is directed to
the electronic copies referenced in the bibliography, or to the list of papers at
the address

http://www.ee.uts.edu.au/~johnr/papers

Towards Effective Programming for Parallel Digital Signal Processing [113]
contains many of the key ingredients of this thesis. This report proposed that
a functional programming language would be a good choice for programming
block-diagram systems, and illustrated programs written using vectors and
streams with an early version of the visual language of this thesis. It iden-
tified the usefulness of program transformation for parallel programming, and
pipelined the FFT (Fast Fourier Transform) to illustrate.

Integrating Block-Diagram and Textual Programming for Parallel DSP [120]
is essentially a brief summary of the above report, although it focuses more on
the notion of the “two-view” development system.

Transforming Process Networks [121] continues the program transformation
theme by pipelining an FIR (finite-impulse-response) filter. The transformation
proceeds by fusing vector iterators (section 5.2.2) to form a single process, and
then by using pipelining and promotion (sections 5.5.4 and 5.5.5) to produce a
pipeline with controllable grain size. I suggested in the paper that less difficult
means of finding program transformations will be required if program transfor-
mation is to become useful to programmers. I have not yet found this means,
so have decided against reproducing the paper’s key example here.

Process Network Transformation [122] is a condensed version of the above
paper, but using a visual notation much closer to the current Visual Haskell. It
identifies three classes of process network transformation—this has since become
four (section 5.5).

Real-time DSP in C and Assembler [114] is a set of course notes on the
TMS320C30 DSP, which may be of interest to the reader seeking an accessible

8 CHAPTER 1. INTRODUCTION

introduction to the features of modern DSP devices.
Generating Efficient Loop Code for Programmable DSPs [118] is somewhat

of a leap from the earlier papers, as it describes work aimed at compiling vector
functions into efficient code for DSPs. It proposes an abstract DSP machine
as a vehicle for DSP compilation, and describes the essential part of a code
generation algorithm designed to exploit the high degree of instruction-level
parallelism of DSPs. None of this work is included in this thesis.

The Host-Engine Software Architecture for Parallel Digital Signal Process-
ing [117] is, again, totally unrelated to earlier papers: it describes a software
architecture called SPOOK (Signal Processing Object-Oriented Kernel) that
could best be described as an API-level (Application Programmer Interface)
implementation of a dataflow engine for parallel DSP machines. The paper
is a combination of architecture description and experience based on two im-
plementations of the architecture: the first written by me for the TMS320C30
processor; the second largely by Matthias Meyer for the TMS320C40. The
TMS320C40 implementation was in progress when the paper was written; for a
detailed description of the final implementation see Meyer’s report [95]. Again, I
have decided against including this material in the thesis, as I feel it is tangential
to its main theme.

Modelling Asynchronous Streams in Haskell [115] develops Haskell code for
modelling timed streams. Two approaches are used: hiatons, which mark
“empty” slots, and time-stamps, which mark the times of occurrence of to-
kens. Chapter 6 of this thesis is a complete revision of this paper; in particular,
a new form of timed stream is developed, and the music synthesiser example is
extended.

Visual Haskell: A First Attempt [116] is the only paper I have written de-
voted to explaining Visual Haskell, the final form of the visual language devel-
oped and refined over the last few years. Chapter 4 is a revised version of the
core of this paper. The visual language is slightly improved, but the way in
which the visual syntax is specified is very different, and I think simpler and
more elegant. The original paper also contains motivating examples of possible
uses of Visual Haskell, and a screen dump of the prototype Visual Haskell editor
written by Ken Dawson [41].

Chapter 2

Background Material

Because this thesis covers quite a broad range of topics, I have collected into this
chapter some useful background material. Firstly, I give a broad overview of
models of parallel computation in terms of a simple “meta-model” of computa-
tion. Although parallel programming plays only a minor role in this thesis, one
of the motivations for the pipeline dataflow model has always been to harness
parallelism, and I think it important to place this model into context with other
approaches to parallelism.

The next section is an introduction to functional programming with Haskell.
Following that is a section on evaluation mechanisms for functional languages.
Again, this serves to place work presented in later chapters into context; in
particular, translating a functional program into a dataflow process network is
similar to existing approaches to parallel evaluation of functional programs.

The context for this whole thesis is real-time signal processing, so section 2.4
explains some key concepts of real-time programming and of programmable
DSP devices. This section is based largely on my own experience with real-time
programs.

2.1 Models of parallelism

The pipeline dataflow model is inherently suited for parallel execution. It is,
however, only one of several key models of parallelism, and it is important to
place it into context. This section reviews key models of parallelism; they are
shown as a hierarchy in figure 2.1.

2.1.1 A “meta-model” of parallelism

Carriero and Gelernter suggest three “paradigms” of parallelism [32]:

Result parallelism Result parallelism focuses on the structure of the solution.
Parallelism arises by simultaneous production of components of the result.

9

10 CHAPTER 2. BACKGROUND MATERIAL

Language-level parallelism

Implicit parallelism Explicit parallelism

Data parallelism Functional parallelism

Control parallelism Linda Pipeline parallelism

Figure 2.1: A hierarchy of parallelism

Specialist parallelism Specialist parallelism focuses on the kind of knowledge
needed to produce a solution. Parallelism arises because many “special-
ists,” each encapsulating a particular kind of knowledge, work simultane-
ously.

Agenda parallelism Agenda parallelism focuses on the steps to be taken to
arrive at a solution. Parallelism arises by taking many (non-sequential)
steps simultaneously.

To translate problems exhibiting these three types of parallelism into operat-
ing computer programs in Linda (see section 2.1.5), Carriero and Gelernter offer
three corresponding program structures: live data structures, message passing,
and distributed data structures respectively. These structures are distinguished
by the relationship between processes and data. In a live data structure pro-
gram, parallelism is structured around the data: an implicitly-defined process
within each datum computes its value. A message-passing program, in contrast,
consists of a collection of separate processes, each containing its own private
data, and communicating via messages. A distributed data structure program
does not have such a tight binding between a process and corresponding data;
instead, many processes can share data.

Suppose now that we separate the knowledge of how to perform a compu-
tation, from the thing that performs the computation. These entities I call a
script and an agent respectively—note that process = script + agent . This
agent-script-data model serves as a meta-model for describing different mod-
els of parallelism. Figure 2.2 shows Carriero and Gelernter’s three program
structures, modified to show agents, scripts, and data—agents are grey ellipses
or rounded rectangles; scripts are the curly glyphs that resemble curled sheets
of paper; data are white squares. Figure 2.2a is the live data structure pro-
gram: each agent has its own script, which it uses to produce the data enclosing
it. Figure 2.2b is the message-passing program: again, each agent has its own
script; agents contain their own private data and send data to other processes
in messages, shown as white ellipses. Figure 2.2c is the distributed data struc-
ture program: unlike the other two, this program has only a single script (the

2.1. MODELS OF PARALLELISM 11

(b)

(a)

(c)

Figure 2.2: Carriero and Gelernter’s models of parallelism: a) result parallelism;
b) specialist parallelism; c) agenda parallelism

“agenda”): all agents read the same script, each performing any available task
and operating on shared data.

2.1.2 Implicit parallelism

Implicit parallelism is associated with program expressions with no data- or
time-dependence between them. For example, in the expression

x = a * b + a * c

the two multiplications can be performed in parallel. Greater parallelism is
available in loops, if different iterations of the loop can be performed in parallel.
For example, in

for i = 1 to N do
x[i] = y[i] * k;

all iterations can be performed in parallel. Parallelising compilers for conven-
tional sequential languages analyse programs to find this kind of opportunity for
parallel execution. The advantage of implicit parallelism is that (in theory, at
least) the programmer need not be concerned with programming for a parallel
machine, because the compiler will find and exploit available parallelism.

Implicit parallelism is less a characteristic of a programming language as it
is of the compiler and run-time architecture. Still, side-effect-free languages are

12 CHAPTER 2. BACKGROUND MATERIAL

likely to contain more implicit parallelism than imperative languages because
they lack artificial time-dependencies. Two examples of languages and architec-
tures that support implicit parallelism are dataflow languages and architectures
[1, 7] and multi-processor graph reduction of pure functional programs [104]. In
both cases, the languages are side-effect free. However, Gajski et al point out
that parallelising compilers can in fact perform better than single-assignment
languages [49].

Implicit parallelism is also a key ingredient of modern single-processor com-
pilers. Modern processors (including DSP micro-processors) exhibit significant
instruction-level parallelism, which compilers must attempt to exploit.

2.1.3 Data parallelism

Data parallelism is parallelism at the level of elements of a data set. Most of the
work on parallel computing for “scientific” applications uses data parallelism.
Sipelstein and Blelloch call data-parallel languages “collection-oriented.” In
[128], they survey this class of languages and the ways in which they support
data-parallel computation.

In a data-parallel language, an operation over all elements of a data set is
invoked by a single function call or language construct. In the DataParallel C
language [55], for example, one would calculate the inner product of two vectors
by:

domain vpair { float x; float y; float t; } v[N];
float ip;
...
[domain vpair].{

t = x * y;
ip += t;

}

v contains N triples, each located on a different processor. x, y, and t thus
have instances on each processor. ip refers to a single variable located on the
system host processor. Execution of the code body first causes each instance
of t to be updated with the product of the corresponding instances of x and y.
Then all instances of t are summed and the result placed into ip.

Figure 2.3a illustrates data-parallelism using the agent-script-data meta-
model. All agents read from the same script, and read each others’ data when
they need it. The greatest advantage of data-parallelism is its descriptive sim-
plicity [131]: the programmer can easily control many thousands of processes
because there is only one “thread of control” to manipulate.

Data parallelism is often associated with SIMD machines, while functional
parallelism is often associated with MIMD machines. Although this is often
the case, it is important not to associate a language model with the physi-
cal hardware on which a program might run, since the connection between a
language-level model of parallelism and its supposed “obvious” implementation
platform is rather tenuous. For example, Hatcher and Quinn [55] describe a

2.1. MODELS OF PARALLELISM 13

(d)

(a)

(b)

(c)

Figure 2.3: More models of parallelism: a) data parallelism; b) shared-memory
control parallelism; c) Linda; d) pipeline parallelism

data-parallel language compiler for MIMD machines, while Sabot [126] describes
how an SIMD computer could be used to simulate an MIMD computer.

2.1.4 Control parallelism

Control parallelism is a form of functional parallelism characterised mainly by
explicit communication (“message-passing”) and synchronisation between pro-
cesses. In effect, the programmer writes many separate programs; embedded
within each program are commands for communication and synchronisation
with other programs.

An example of a control-parallel language implementation for distributed-
memory DSP machines is Parallel C [39], based very loosely on Hoare’s CSP
(Communicating Sequential Processes) formalism [60]. The programmer writes
a number of tasks—that is, independent C programs. A configuration file spec-
ifies the processor topology and the communications links between them, and
assigns tasks to processors. Messages are exchanged by calling a message-passing
library. For example, a sending task would contain code like this:

sometype message;
chan_out_message(sizeof(sometype), &message, outs[0]);

A receiving task would contain code like this:

14 CHAPTER 2. BACKGROUND MATERIAL

chan_in_message(sizeof(sometype), &message, ins[2]);

Control parallelism is low-level—that is, the programmer interface is essen-
tially that of the operations that can be performed directly by a target machine:
transmission of messages between processors (distributed-memory machines), or
synchronisation of memory accesses (shared-memory machines). It is criticised
as being low-level and error-prone because the programmer must explicitly man-
age communication and synchronisation, and keep track of the internal states
of many processors [55]. Although control-parallel programs are often machine-
specific, there are some projects, such as PVM [135], which use a virtual machine
abstraction to achieve architecture-independence.

There is no single agent-script-data model for control-parallel programs.
On machines that support message-passing, the message-passing model of fig-
ure 2.2b is appropriate. On machines with shared memory, the model of fig-
ure 2.3b is more suitable; in this model, each agent has its own script, but all
processes can access shared data.

It is important to distinguish between control parallelism (as I have char-
acterised it here) and higher-level forms of functional parallelism. Proponents
of the implicit or data-parallel language styles sometimes forget that there are
other approaches to functional parallelism that provide better support for man-
aging parallelism.

2.1.5 The Linda model

Linda [3] is a simple, elegant, architecture-independent model for MIMD com-
putation. The basis of the Linda model is a global associative memory, or “tuple
space.” A task adds a tuple to tuple space by executing an out instruction:

out("something", 14, 3.1415);

A task can remove a tuple from tuple space by executing an in instruction:

in("something", t, ?x);

The arguments to in, called an “anti-tuple,” are a template for matching
against tuples in tuple space. In this case, if the value of t is 14, then the tuple
(“something”, 14, 3.1415) is removed from tuple space, and the variable x in
the reading task has the value 3.1415 assigned to it. If the anti-tuple matches
no existing tuple, the reading task is suspended until a matching tuple becomes
available.

A task can create new tasks with the exec instruction. For example, the
statement

exec("task", 3, ping());

creates a “live tuple,” which actively evaluates all of its fields. In this case, only
the third field requires evaluation, so a new task is created to evaluate ping().
When the task terminates, the tuple turns back into a “data tuple,” replacing
the third element of the tuple with the value returned by ping.

2.1. MODELS OF PARALLELISM 15

Linda also has a rd instruction, which matches and reads a tuple but does
not remove it from tuple space, and predicate versions of in and rd, called inp
and rdp. inp and rdp behave as in and rd if they find a matching tuple, and
return the value 1. If they fail to find a match immediately, they do not suspend
the reading task, but return with the value 0.

Figure 2.3c is an approximate agent-script-data model of Linda. Each agent
has an “slot” for a script: the agent takes a script out of tuple space and
performs it; this corresponds to an eval operation. Once an agent has a script,
it can read, remove, or add tuples. Note that, unlike the shared-memory model
of figure 2.3b, an agent cannot modify a tuple in tuple space, other than by
removing it and putting a new tuple into tuple space. (This is not shown in the
diagram.) Linda thus avoids many of the synchronisation problems associated
with conventional shared-memory models.

2.1.6 Pipeline parallelism

The functional programs in this thesis are based on the pipeline-parallel model,
in which processes communicate only through FIFO-buffered channels. Pro-
grams written in this model do not contain explicit communication instructions,
but implicitly specify communication by their construction. For example, the
Haskell expression

mapS abs . scanS (+) 0

constructs a pipeline of two processes. The first computes the running sum of
its input stream; the second calculates the absolute value of each element in its
input stream. Communication between the processes is implicit in the fact that
the result of the first is the argument to the second.

Pipeline parallelism is arguably just a special kind of message-passing control
parallelism. I think the differences to general control-parallel programs are suf-
ficient to make it a model of its own: processes can only send messages through
channels, thus de-coupling senders from receivers; processes are not separate
programs, but are just expressions in the program text; and communication be-
tween processes is buffered, providing further de-coupling between sender and
receiver processes. This kind of parallelism is therefore the functionally-parallel
counterpart to data parallelism—it focuses on the essential aspects of parallelism
without excessive concern for low-level detail.

Figure 2.3d shows the pipeline-parallel model; this figure is the same as the
message-passing program of figure 2.2b, but explicitly shows the FIFO-buffered
channels.

Pipeline parallelism also includes certain “dataflow” programming languages.
Lucid [143] is a (first-order) pipeline-parallel language. In Lucid, the two-process
pipeline above could be written

absolutes(runner(x))
where

runner(x) = runner where

16 CHAPTER 2. BACKGROUND MATERIAL

runner = 0 fby (x + runner)
end;

absolutes(x) = abs(x);
end;

In Lucid, all primitive operations are extended point-wise over streams; thus,
the + operator sums corresponding elements of two streams. The fby operator
produces a stream containing the first element of its left argument, followed by
its right argument. So, if x = [1, 2, 3, 4], then runner produces zero followed by
itself summed with x—that is, [0, 1, 3, 6, 10].

The dataflow process network model [86] is lower-level, since communication
is explicit. A process is formed by repeatedly firing an “actor”; a complete pro-
gram consists of a network of actors. Dataflow process networks are examined
in chapter 3.

2.2 Functional programming in five minutes

Functional programming languages are “higher-level” than more conventional
imperative languages. There have been many persuasive arguments advanced
for functional programming languages in general [8], and lazy functional lan-
guages in particular [64, 138, 62].

A recent study indicates that at least some of the claimed advantages of func-
tional languages—brevity, rapidity of development, and ease of understanding—
can be confirmed [63]. The study compares several languages, including C++
and Ada, in a substantial rapid prototyping exercise. Several metrics were used
to compare the solutions given; the Haskell solution was one of the highest-rated.

This section introduces functional programming using Haskell. Haskell is
quite a large language, and so I have omitted several of its more complex fea-
tures: separate modules and data-hiding, array syntax, list comprehensions, and
user-defined operators.

Haskell has a library of types and functions contained in its “standard pre-
lude.” The standard prelude is a library of code modules that Haskell imple-
mentations are expected to support; because of their importance, a compiler
is allowed to “understand” the contents of these modules in order to generate
more efficient code. I give a cursory overview of standard prelude functions and
types.

In later chapters, I will sometimes use a “typeset” version of Haskell for
improved readability. The differences to standard Haskell are: the use of Greek
characters as type variables; λx . e instead of \x -> e; → and ⇒ instead of
-> and => in type declarations; and a slanted Roman typeface instead of a
constant-width typeface.

2.2.1 Objects and functions

Haskell’s standard prelude defines a number of types, operators, and functions.
Here are some simple constants with their types, where the notation “::” means

2.2. FUNCTIONAL PROGRAMMING IN FIVE MINUTES 17

“has type”:

7 :: Int
3.1415 :: Float
True :: Bool
’z’ :: Char

More complex types are also defined in the prelude; these include rational
and complex numbers, arbitrary-precision integers, lists, and tuples. Complex
and rational numbers are built with the :+ and :/ data constructors respectively.
For example:

1.0 :+ 2.7 :: Complex Float
4 :/ 7 :: Rational Int

Operators defined in the standard prelude include the arithmetic operators +,
*, -, and negate (unary negation), the relational operators >, >=, <, <=, ==,, and
/=, and the logical connectives && and ||. All of these operators are overloaded
on appropriate types. Division (/) is defined for rational and floating-point
numbers; integer types have integer division (div) and modulus (mod) functions.
Other functions on numeric types include transcendental operations such as sin
and exp, and operations specific to complex numbers, such as magnitude and
phase.

Tuples contain a fixed number of fields of possibly different types; fields are
separated by commas. For example:

(1,’a’,6.666) :: (Int, Char, Float)

Two useful functions on tuples are fst, which selects the first element of a
pair, and snd, which selects the second.

Lists contain zero or more elements of the same type. The empty list is
denoted “[]”; the list constructor “:” joins an element onto the front of a list;
the syntax [a,b,c] is short-hand for (a:b:c:[]). Here are some examples of
lists:

4:7:xs :: [Int]
[’a’,’b’,’c’] :: [Char]
"thang" :: [Char]

The standard prelude contains many functions on lists. Two simple ones
are head, which returns the first element of a list, and tail, which returns all
elements of a list but the first. Others include: reverse, which reverses a list;
length, which returns the number of elements in a list; take, which returns a
given number of elements from the front of a list; last, which returns the last
element of a list; concat, which joins a list of lists into a single list; (++), which
appends two lists together; and repeat, which repeats its argument forever:
repeat x → [x, x, x, . . .].

Operators are usually written in infix position, as in x + y. An operator can
be written in prefix position by enclosing it in parentheses, as in (+) x y. A

18 CHAPTER 2. BACKGROUND MATERIAL

binary function can be written in infix position by enclosing it in back-quotes,
as in x d̀iv̀ y.

Function application is denoted by juxtaposition, as in sin x, instead of the
more usual sin(x). Parentheses are used to disambiguate when necessary; for
example, we could take the second element of a list xs with the expression

head (tail x)

Function application binds tighter than any other operator, so sin x + 1 is the
same as (sin x) + 1.

2.2.2 Bindings

A “binding” is the association of an identifier with a value. Consider simple
pattern bindings first, in which a variable name is bound to an expression. Here
are some examples:

pi :: Double
pi = 3.14159265358979

twopi :: Double
twopi = 2 * pi

A function binding associates an identifier with a function. For example,
here is the definition of the factorial function:

fact :: Int -> Int
fact n = if n == 0 then 1 else n * fact (n-1)

The first line says that fact is a function, which has one integer argument
and produces an integer result. The if-then-else construct is an expression, not
a control-flow construct as in imperative languages—that is, it returns a value.

Function and pattern bindings can have guards, which select from a number
of alternative expressions. For example, fact could also be defined like this:

fact :: Int -> Int
fact n | n == 0 = 1

| otherwise = n * fact (n - 1)

Here, the “|” indicates the start of an alternative; it is followed by a predi-
cate, then =, then the selected expression. The otherwise guard is always true.
Guards are tested from top to bottom.

Bindings can contain local bindings, introduced by the where keyword. For
example, the butterfly function used in section 5.2.5 has a local binding for t:

butterfly :: Num a => Complex a -> (Complex a, Complex a)
-> (Complex a, Complex a)

butterfly w (x0,x1) = (x0 + t, x0 - t)
where
t = w * x1

2.2. FUNCTIONAL PROGRAMMING IN FIVE MINUTES 19

2.2.3 Patterns

A pattern is formed when a data constructor appears on the left-hand side
of a binding. The result of evaluating the right-hand side is bound to the
corresponding identifiers in the pattern. For example, the binding

(x:xs) = [1,2,3,4]

will cause the integer 1 to be bound to x, and the list [2, 3, 4] to be bound to
xs. Patterns can be nested arbitrarily, as in

((x,y) : z : zs) = ...

Arguments to function bindings are often patterns; in this case, they also
serve to select one of possibly multiple clauses of a function definition. Pat-
terns in this position can also be constants. To illustrate, consider the Haskell
definition of map, which applies a given function to each element of a list:

map :: (a -> b) -> [a] -> [b]
map f [] = []
map f (x:xs) = f x : map f xs

Here, the first clause will match its list argument only if it is a null list;
otherwise, the second clause will match, with the head of the list bound to x
and the tail (possibly null) bound to xs.

Patterns can also be a wild-card, written “ ”, which matches anything. map,
for example, would more usually be defined using wild-cards:

map :: (a -> b) -> [a] -> [b]
map f (x:xs) = f x : map f xs
map _ _ = []

2.2.4 Currying and higher-order functions

map is an example of a higher-order function, or HOF. A higher-order func-
tion takes a function argument or produces a function result. In the case of
map, the first argument is a function, as indicated by its type, a -> b. Higher-
order functions are one of the more powerful features of functional programming
languages, as they can be used to capture patterns of computation. map, for
example, captures “for-all” style iteration across a list. Other functions cap-
ture various the “do-across” styles of iteration. foldl, for example, applies its
function argument to a list element and the result of the previous applica-
tion: foldl (+) 0 [1,2,3] produces 6. scanl is similar, but produces a list
containing all partial results. For example, scanl (+) 0 [1,2,3] produces
[0,1,3,6]. These functions are defined as follows:

foldl :: (a -> b -> a) -> a -> [b] -> a
foldl f z [] = z
foldl f z (x:xs) = foldl f (f z x) xs

20 CHAPTER 2. BACKGROUND MATERIAL

scanl :: (a -> b -> a) -> a -> [b] -> [a]
scanl f z [] = [z]
scanl f z (x:xs) = z : scanl f (f z x) xs

One of the most useful higher-order functions is function composition, writ-
ten as the infix operator “.” and defined by (f . g) x = f (g x). A particularly
common use is to construct a “pipeline” of functions, as in f . g . h.

Because Haskell is based on the lambda-calculus, higher-order functions arise
naturally when we define functions of more than one argument. For example,
consider a function that adds two numbers:

add :: Int -> Int -> Int
add x y = x + y

Because “->” associates from right to left, the type of add is really Int -> (Int
-> Int); add thus takes a single integer argument and produces a function from
integers to integers. For example, the expression (add 3) is a function that adds
three to its argument.

Functions of this type are called curried , after the mathematician Haskell
Curry. In practice, we refer to a function such as add as a function of two
arguments, and to application to less than its full number of arguments as partial
application. For comparison, an uncurried version of add could be written:

add′ :: (Int, Int) -> Int
add′ (x,y) = x + y

2.2.5 let, lambda, and case

A let-expression delimits a new scope within which local bindings can be de-
clared. To illustrate, butterfly can be defined using a let-expression:

butterfly w (x0,x1) = let t = w * x1
in (x0 + t, x0 - t)

Because let-expressions are expressions, they can appear anywhere an ex-
pression can appear, whereas where can appear only in a binding.

A lambda-abstraction, or λ-abstraction, is like an anonymous function. For
example, we could define butterfly as

butterfly = \w (x0,x1) -> let t = w * x1
in (x0 + t, x0 - t)

The backslash is Haskell’s syntax for a lambda-abstraction, and mimics the
Greek λ; patterns following the backslash are arguments; the expression follow-
ing “->” is the value returned by the λ-abstraction when applied to arguments.

Note that where cannot be used within a λ-abstraction; nor can guards.
Functions defined with guards and multiple-clause definitions can be translated
into a λ-abstraction with the aid of Haskell’s case construct, which selects one

2.2. FUNCTIONAL PROGRAMMING IN FIVE MINUTES 21

of several expressions based on pattern matching. For example, map can be
defined as the following λ-abstraction:

map = \f xs -> case xs of
[] -> []
y:ys -> f y : map f ys

2.2.6 Polymorphism and type classes

One of the key innovations of Haskell is its type classes, which add ad-hoc
polymorphism to the Hindley-Milner type system [148]. A type class is a way
of grouping types together with functions that operate on those types. Given in
the class declaration are the types of the functions of that class, and (optionally)
default definitions of some functions. For example, the standard Eq class, which
groups types that support an equality test, is defined as

class Eq a where
(==), (/=) :: a -> a -> Bool
x /= y = not (x == y)

Each type that can support the equality test “instantiates” from the Eq
class. For example, the integer type Int instantiates Eq with:

instance Eq Int where (==) = primEqInt

where primEqInt is a primitive function that generates a call to the underlying
run-time system. Another example, the Eq instance for pairs:

instance (Eq a, Eq b) => Eq (a,b) where
(x,y) == (u,v) = x==u && y==v

The type constraint (Eq a, Eq b) states that the elements of the pair must also
be comparable for equality. Type constraints also appear in function definitions.
For example, the type of the absolute function indicates that the type of the
argument and result are numeric and ordered:

abs :: (Num a, Ord a) => a -> a
abs x | x >= 0 = x

| otherwise = -x

Classes “inherit” from each other to form a hierarchy. For example, the class
of ordered types Ord inherits from the class of equable types Eq:

class Eq a => Ord a where
(<), (<=), (>), (>=) :: a -> a -> Bool
...

The standard prelude implements a full hierarchy of primitive and numeric
types—see [44] for details.

22 CHAPTER 2. BACKGROUND MATERIAL

2.3 Evaluation mechanisms

Implementations of lazy functional languages are often based on graph reduc-
tion. This section briefly reviews graph reduction and other topics related to
evaluation of functional programs. The aim here is to place into context the sug-
gested implementation (in chapter 5) of stream functions as dataflow actors. A
recent survey of issues in parallel functional programming is given by Hammond
[54].

2.3.1 Graph reduction

Evaluation of a functional program proceeds by successively reducing expres-
sions. The evaluator chooses a redex (for reducible expression), reduces it, and
then repeats. An expression that contains no redexes is in normal form. A
β-reduction, written →β , is performed when a λ-abstraction is applied to an ar-
gument; the application is reduced by substituting the body of the λ-abstraction
and replacing the formal by the actual. A δ-reduction, written →δ, is performed
when a primitive function is applied to all of its arguments; the arguments are
reduced and then the appropriate operation performed.

There are two key reduction policies. In normal-order reduction, the evalu-
ator chooses an outer-most redex. For example,

(λx . fst x + fst x) (2 ∗ 4, 6 ∗ 7) →β fst (2 ∗ 4, 6 ∗ 7) + fst (2 ∗ 4, 6 ∗ 7)
→β 2 ∗ 4 + fst (2 ∗ 4, 6 ∗ 7)
→β 2 ∗ 4 + 2 ∗ 4
→δ 8 + 2 ∗ 4
→δ 8 + 8
→δ 16

where fst (x, y) = x. In applicative-order reduction, the evaluator chooses an
inner-most redex. For example,

(λx . fst x + fst x) (2 ∗ 4, 6 ∗ 7) →δ (λx . fst x + fst x) (8, 6 ∗ 7)
→δ (λx . fst x + fst x) (8, 42)
→β fst (8, 42) + fst (8, 42)
→β 8 + fst (8, 42)
→β 8 + 8
→δ 16

Operationally, normal-order reduction applies the body of a function to its
arguments before any argument is evaluated, while applicative-order reduction
evaluates the arguments first. So, normal-order reduction does not evaluate an
expression unless its value is needed, as can be seen from the example above: the
expression (6 ∗ 7) is never evaluated. Applicative-order reduction, in contrast,
evaluates all argument expressions, regardless of whether their values are needed.

2.3. EVALUATION MECHANISMS 23

The two Church-Rosser theorems are fundamental to considerations of re-
duction order (see [104, pp. 24–25]). Informally, the first says that any two
reduction sequences will end at the same normal form provided that they both
terminate. This is of great interest, as it allows the freedom to not only change
the reduction order, but to perform reductions in parallel. The second theo-
rem says that normal-order reduction will always terminate if a normal form
exists. This is a powerful motivation for choosing normal-order reduction as the
evaluation mechanism for a programming language.

Lazy functional languages use normal-order reduction; however, the reducer
only reduces until there are no more top-level redexes. This is called weak
head-normal form, or WHNF; any term in normal form is also in WHNF. Data
structures are thus evaluated to the top level only—they may still contain un-
evaluated expressions. For example, e = (e1 : e2) is in WHNF, regardless of
what form e1 and e2 are in, but e is in normal form if and only if both e1

and e2 are in normal form. (+(3 ∗ 4)) is in WHNF, since there are insufficient
arguments to (+) and it is therefore not a redex.

In the example of normal-order reduction given above, the expression 2 ∗ 4
was evaluated twice. To avoid this, functional languages use graphs to share
expressions. At each reduction step, the reducer locates the left-most top-level
redex, reduces it, and overwrites the redex with its result. If the redex is an
application of a λ-abstraction, the reducer instantiates (makes a copy of) the
body of the λ-abstraction with pointers to the argument expressions substituted
for the formals. If the redex is an application of a primitive function, the reducer
reduces any strict arguments, and then calls the run-time system to perform the
appropriate operation.

2.3.2 Strictness

A function f is said to be strict iff

f ⊥ = ⊥

That is, the result of applying f is undefined if its argument is undefined.
Here, ⊥ denotes an undefined value—we could also say that ⊥ represents a term
that has no WHNF. Operationally, we take this to mean that f always “needs”
its argument; as a result, evaluating the argument of a strict function to WHNF
before applying the function will not affect the result. This can be generalised
to functions of several arguments; for example, g is strict in its second argument
if g x ⊥ y = ⊥.

Strictness does not imply that an argument can be evaluated further than
WHNF without endangering termination. Let Ω denote a term without a normal
form, just as ⊥ denotes a term without WHNF. A function f is hyper-strict iff

f Ω = ⊥

That is, the result of applying f is necessarily undefined if its argument has
no normal form. This is also called “exhaustive demand” [90], as opposed to

24 CHAPTER 2. BACKGROUND MATERIAL

the “simple demand” of evaluation only to WHNF. As a simple example of the
difference between strictness and hyper-strictness, consider

f (x, y) = if x > 0 then x else x + y

g (x, y) = x + y

f is strict but not hyper-strict; g, however, is hyper-strict. That is, an
argument with no normal form, say (7,⊥), does not necessarily cause the result
of applying f to be undefined, while it does necessarily cause the result of
applying g to be undefined.

2.3.3 Parallel graph reduction

A program graph typically contains, at any given moment, many redexes. Par-
allel evaluation of a graph can therefore be achieved by having many processors
evaluate these redexes simultaneously. Peyton Jones [104] describes the issues
in parallel graph reduction on a shared-memory machine.

There are three choices when performing parallel graph reduction: i) evaluate
redexes in parallel only when it cannot alter termination properties; ii) evaluate
redexes in parallel even though it may alter termination properties; or iii) allow
the programmer to choose when to perform parallel reduction. The first choice—
conservative parallelism—requires strictness analysis: any function that is strict
in one or more arguments can have the arguments evaluated in parallel with the
function body. For example, an application such as

e1 + e2

can have e1 and e2 evaluated in parallel, then the addition performed. (In this
case, of course, there is no point in evaluating the function body in parallel.)

The second choice is speculative evaluation. In speculative evaluation, an
expression such as

if e1 then e2 else e3

can have e1, e2, and e3 evaluated in parallel. One of e2 or e3 will be discarded
as soon as the value of e1 is known.

The third-choice is programmer-controlled parallelism. This can be in the
form of annotations [61], or in the form of primitive combinators. Roe [125], for
example, points out difficulties with conservative parallel graph reduction, and
suggests two new combinators, par and seq:

par :: α → β → β

par x y = y

seq :: α → β → β

seq x y =
{

y if x 6= ⊥
⊥ if x = ⊥

2.3. EVALUATION MECHANISMS 25

par e1 e2 creates a new task to evaluate e1 and returns e2. If evaluation of e1

fails to terminate, then e2 may or may not terminate. seq e1 e2 evaluates e1 to
WHNF and then returns e2. Roe gives a wide range of examples and algorithms
illustrating how these two combinators can be used to control parallel reduction
of a program graph.

2.3.4 Parallel data structures

One of the problems associated with using a pure functional language for paral-
lel programming is the sequential nature of lists. Even if an algorithm has a high
degree of intrinsic parallelism, the algorithm as expressed in a functional lan-
guage may in fact obscure this parallelism, simply because the list data structure
can only be accessed sequentially.

If data structures and functions that allow parallel evaluation of multiple
elements of the structure can be identified, the compiler can more easily identify
parallelism. In addition, the programmer is more likely to be better able to
understand the behaviour of a parallel implementation, and thus achieve better
performance.

Axford and Joy [10], for example, propose a set of list primitives that allow
parallel evaluation of list functions, including the following:

• [x] is the list containing one element.

• s ++ t is the concatenation of lists s and t.

• split s is a pair of lists, with the split point chosen non-deterministically.

Because split is non-deterministic, the implementation is free to implement
lists using any suitable tree structure.

Axford and Joy implement most of the standard Haskell list functions using
these primitives; most have a divide-and-conquer recursive implementation. As
a result, they have O(lg n) best-case and O(n) worst-case parallel complexity.
map, for example, is implemented as

map f [] = []
map f [x] = [f x]

map f (s ++ t) = map f s ++ map f t

Axford and Joy replace the standard foldl and foldr functions with a new
function, reduce, which requires an associative function argument (the obliga-
tion is on the programmer to ensure that this is the case). All but three of the
17 Haskell standard prelude functions that use foldl or foldr meet this criterion.

Maassen proposes a set of three finite data structures—sequences, tables, and
sets—and a range of first- and higher-order functions defined on them [91]. He
gives the complexities for implementation using lists and AVL trees; the latter
has logarithmic complexity for many of the functions. A range of examples
illustrate the utility of his chosen functions for programming. Roe, in contrast,

26 CHAPTER 2. BACKGROUND MATERIAL

describes the use of bags (multi-sets) for expressing parallel computation, and
shows how the Bird-Meertens formalism can be applied to parallel computation
using bags [125].

2.3.5 Functional operating systems

The expression of operating system functionality in a functional language re-
volves around the deferred evaluation of streams of messages [70]. In the context
of operating systems, a process is a function from a list of input messages of
type α to a list of output messages of type β; Turner [139], for example, gives
an example of a process:

process :: [α] → [β]
process = p s0 where

p s (a : x) = out a s ++ p (trans a s) x

where s0 is the initial state of the process, trans :: α → σ → σ is the state
transition function, which produces the next state from an input message and
the current state, and out :: α → σ → [β] produces a list of output messages
for each input message. Networks of processes are formed by applying processes
to each other’s output messages lists.

Now, because of the corollary to the first Church-Rosser theorem, a network
of processes cannot produce a result that depends on anything other than the
values of its input messages—in particular, the time of arrival of input messages
cannot affect the result. Apparently, an operating system that needs to deal with
asynchronous events cannot be written in such a language!

One approach to resolving this dilemma is to add a non-deterministic merge
operator to the language [56], which merges two lists in order of the “arrival
time” of elements. Because, however, merge is referentially opaque, reasoning
about programs that use it becomes difficult. Jones and Sinclair [69] reduce the
difficulties associated with merge by restricting its use to “systems program-
mers.” They describe an operating system design and give examples of access
to operating system services such as file editing and disk control. To ensure that
computation proceeds in an operationally useful way, streams are constructed
with head-strict cons —that is, elements are fully evaluated before transmission.

A second approach to non-determinism is Stoye’s “sorting office” [134]. In
this scheme, every output message contains an address of a destination process;
the sorting office receives all of these messages and routes each one to the ad-
dressed process. Non-determinism is thus contained in one place only—the sort-
ing office—simplifying reasoning about the system and eliminating any need for
awkward extensions to the language. New processes can be created by sending
a message to the distinguished process-creation process. Turner [139] develops
Stoye’s model, adding “wrappers” to messages to allow type checking, and using
synchronous (unbuffered) communication instead of asynchronous communica-
tion. Similarly to Jones and Sinclair, wrapper functions are hyper-strict. Apart
from eliminating the need for global garbage collection, this allows the operating
system to be executed on a loosely-coupled network of processors.

2.3. EVALUATION MECHANISMS 27

Wallace and Runciman use constructor classes [68] to express type-safe com-
munication between processes [150]. In their scheme, the message type itself
serves as the message address. Wallace has implemented an operating system
for embedded systems in Gofer; unlike the other systems reviewed here, the
stream constructor is not hyper-strict in its head [149]. Nonetheless, Wallace
suggests that head-hyper-strictness would be an important ingredient in making
evaluation of functional programs predictable enough to meet real-time schedul-
ing constraints.

2.3.6 Functional process networks

Kelly proposed that list-manipulating functions be treated as processes to be
mapped onto processors of a distributed-memory MIMD machine [77]. In his
Caliban language, programs are written in a pure functional language using stan-
dard list functions such as map and filter. An additional language construct,
moreover, contains declarations that specify which lists represent communica-
tions channels between processes. For example, the expression

f (g xs)
where

f = map abs
g = scanl (+) 0

moreover
arc 2f 2g

is a two-processor pipeline. The 2 operator converts a function into a process:
this indicates that the argument and result lists of the function so indicated are
communications channels rather than conventional lazy lists. The arc function
specifies a connection between two processes.

The power of the host language can be used to define more abstract network-
forming operations. For example, the pipeline combinator builds a pipeline
of processes. In the following, chain has been defined to insert arc between
processes in a list (fs):

pipeline :: (α → α) → α → α

pipeline fs xs = ys
where

ys = (foldl (·) id fs) xs
moreover

chain arc (map (2) fs)
∧ arc 2(last fs) xs
∧ arc 2(hd fs) ys

Using pipeline, the above network can be written

pipeline [map abs, scanl (+) 0] xs (2.1)

28 CHAPTER 2. BACKGROUND MATERIAL

The current implementation of Caliban requires that the process network
be static. At compile-time, all moreover annotations are expanded to extract a
single top-level annotation which describes a static network [38].

Kelly suggests that strictness analysis or programmer annotations be used to
minimise or eliminate the overheads associated with sending non-normal form
expressions over channels. The current implementation supports only head-
hyper-strict streams—in other words, only normal-form elements can be sent
over channels.

2.3.7 Skeletons

Section 2.3.4 showed that parallelism can be captured in terms of data struc-
tures. In contrast, Cole’s algorithmic skeletons [35] capture parallel computa-
tion in terms of a relatively abstract algorithmic description: a “skeleton” is a
particular pattern of parallel computation. Although Cole used an imperative
framework, he points out that higher-order functions are an ideal mechanism
for expressing skeletons.

The idea of selecting a parallel program structure from a catalogue of such
structures is appealing. Darlington et al [40] adapt Cole’s idea to a functional
language framework. They point out that a skeleton has an implementation-
independent meaning, as given by its functional definitions, and a behaviour
tailored to the target parallel machine—parallelism arises from the behavioural
aspect. They propose the following skeletons as higher-order functions:

pipe Given a list of functions, produce a pipeline in which each function is
allocated to a different processor.

farm Given a function from a datum and an environment, produce a “farm”
of processes which applies this function to each element of a data set and
a given environment.

dc (divide-and-conquer) Given functions to a) split a data set, b) test and
solve the trivial solution, and c) combine solutions, produce a tree-structured
parallel program that implements a divide-and-conquer algorithm.

ramp (reduce-and-map-over-pairs) Given two functions that a) represent
the interaction between any two data items, and b) combine results of
interactions between data items, produce a parallel program that calcu-
lates the interactions between all items in a data set, and combines the
interactions to produce a single solution.

dmpa (dynamic-message-passing-architecture) Given a set of processes,
each of which accepts a set of messages and produces a set of messages for
other processes, generate the parallel program that implements the set of
processes.

Darlington et al give examples in which skeletons are transformed into other
skeletons. The programmer can therefore: i) choose a skeleton that most easily

2.4. REAL-TIME SIGNAL PROCESSING 29

represents the problem to be solved, and then ii) transform the program, based
on abstract performance measures, into a skeleton that is more efficient on a
given machine architecture.

Bratvold [22] proposes a different set of skeletons: map, filter, fold, and
composition. Functionally these functions are the same as Haskell’s map, filter,
foldl, and (.). The first three are implemented as processor “farms,” and com-
position as pipeline connection of farms. Three additional skeletons, filtermap,
mapfilter, and foldmap, are compositions of the first three.

In contrast to Darlington et al , Bratvold argues that skeletons should be
identified by the compiler, not be a directive from the programmer that parallel
execution take place. His compiler uses profiling and performance prediction to
decide when to execute a skeleton in parallel; in addition, this approach allows
the compiler can detect parallelism in recursive functions [30]. Measurements
on compiled programs show execution to be within 20% of the estimates.

2.4 Real-time signal processing

The term “real-time” refers to systems in which “the correctness of the system
depends not only on the logical result of computation, but also on the time at
which the results are produced” [132]. Examples of real-time systems include
command and control systems, process control systems, flight control systems,
and so on.

This thesis focuses on a particular class of real-time system: digital signal
processing systems, which analyse, produce, and transform discrete-time signals.
Whereas conventional real-time systems respond to or process individual events,
which may occur at arbitrary times, signal processing systems process streams
of data representing discrete-time signals, the elements of which usually occur at
known rates. Signal processing systems also tend to have more stringent timing
requirements: timing parameters are expressed in tens of micro-seconds, rather
than in milliseconds.

This section provides some of the background needed to appreciate some
decisions made in later chapters. The section is largely based on my own expe-
rience with and observations of real-time programs.

2.4.1 Discrete-time signals

A discrete-time signal is a function that is defined only at a particular set of
values of time. In the common case called uniform sampling , a discrete-time
signal x(n) is related to a continuous analog signal xa(t) by

x(n) = xa(nT), −∞ < n < ∞ (2.2)

where T is the sampling period , and fs = 1/T is the sampling frequency .
Signals can be internal or external—in the latter case, they constitute an

interface between the signal processing system and an external environment.
Many signal processing systems are “off-line”—that is, the external signals are

30 CHAPTER 2. BACKGROUND MATERIAL

not processed and produced simultaneously with their occurrence in the external
environment. In real-time signal processing, however, they are.

Although discrete-time signals are defined over all time, computer imple-
mentations find it more convenient to consider only non-negative time indices,
where time zero is the nominal time at which the real-time program begins
operating. Thus:

x(n) = xa(nT), n ≥ 0 (2.3)

From here on, quantification of time indexes over positive n is implicit.
Let tx denote the clock of signal x—that is, the sequence of times at which x

is defined. Each element of a clock is called a “tick.” The clock of a uniformly-
sampled signal x with period T is

tx = {nT | n ≥ 0}

A non-uniformly-sampled signal is not characterised quite so easily. Let x̃
be a non-uniformly-sampled signal with clock t̃x. Then:

x̃(n) = xa(t̃x(n)), n ≥ 0 (2.4)

In general, a discrete-time signal does not represent samples of an analog sig-
nal. The sequence of values representing changes of the state of my refrigerator
door—open, closed, or almost-closed—is an example. A sequence of messages
between processes in a multi-tasking operating system is another. I will use the
term uniformly-clocked to mean a signal with clock {nT | n ≥ 0} for constant T ,
and non-uniformly-clocked for any other signal. Non-uniformly clocked signals
will be treated in chapter 6.

As notational short-hand, the logical and arithmetic operators extend point-
wise to clocks—that is, for some operator ⊕,

tx ⊕ ty ⇒ tx(n)⊕ ty(n)

Two clocks tx and ty are thus equal if tx = ty; tx is earlier than ty if tx < ty;
and tx is later than ty if tx > ty.

2.4.2 Streams and channels

A signal is represented in a computer by a register or data structure that updates
in time to contain zero, one, or more values of the signal. This register or data
structure I will call a channel . It could be implemented in software or hardware;
in either case, a program (or hardware) can write to and read from the channel.

Define a stream as the sequence of values that passes through a channel.
A uniformly-clocked signal x is implemented by the synchronous stream x.
Streams are thus equivalent to signals:

x(n) = x(n)

ỹ(n) = ỹ(n)

2.4. REAL-TIME SIGNAL PROCESSING 31

Unlike a signal, a stream has not one but two clocks. The write clock of x, wx,
is the sequence of times at which stream values become defined—in other words,
the times at which they are written to the stream’s channel. The read clock of x,
rx, is the sequence of times at which stream values are consumed—that is, read
from the channel. Read and write clocks are in general non-uniformly spaced:
they represent actual times at which certain events (reading from or writing to a
stream) occur, not idealised times at which signal values occur. So, while signal
clocks are understood by the program, read and write clocks are solely for our
own use in analysing and describing programs.

Assume that the action of writing a value to or reading a value from a
channel consumes an infinitesimally small amount of time. The read clock of a
stream x must therefore be later than its write clock:

rx > wx (2.5)

The relation between a signal’s clock and its stream’s clocks depend on
whether the signal is internal or external. Consider an input signal x. Because
its stream, x, is produced by the external environment, the signal clock is equal
to the stream’s write clock:

wx = tx (2.6)

For an output signal y, the stream’s read clock is equal to the signal clock:

ry = ty (2.7)

Correct real-time operation hinges on the program responding appropriately
to external signals. From equations 2.5 to 2.7, we have, for input stream x and
output stream y,

rx > tx (2.8)

and:
wy < ty (2.9)

In other words, the program cannot attempt to read from an input stream
too early, and must write to an output stream sufficiently early. The non-
zero time difference between the read or write clock and the signal clock can
be attributed to the time taken by the program to transfer a value between a
signal and a stream (for example, the interrupt response time and the time to
copy a value from a real-time input-output port into the channel).

2.4.3 Functions and systems

A signal processing system with one input signal x and one output signal y is a
function from x to y:

y = f(x)

A system is composed of functions, each with its own input and output
signals. For example, the system consisting of two series-connected functions f
and g is:

y = f(g(x))

32 CHAPTER 2. BACKGROUND MATERIAL

y u
f xg

Figure 2.4: A simple block diagram

Giving a name to the internal stream between g and f , this can also be written
as the system of equations

u = g(x)

y = f(u)

When implemented in a block diagram system, f and g become blocks, and x,
u, and y become streams. This simple system is shown in figure 2.4.

A very important function in signal processing systems is the “delay” oper-
ator:

y = z−kx ⇒ y(n) =
{

0, n < k
x(n− k) n ≥ k

The delay operator is not usually implemented as a process, but by inserting
k initial zero values into a FIFO buffer contained in the relevant channel.

2.4.4 Digital signal processors

Digital signal processors are microprocessors tailored specifically to performing
signal processing computations in real time. Most of the differences to other
microprocessors–both CISC controllers and more powerful RISC CPUs—centre
around two key points: i) the need to support certain types of arithmetic very
efficiently; and ii) the need for deterministic execution times. In this section,
I give an overview of the characteristics of these devices. I focus only on the
modern, floating-point devices; for more detailed information on specific devices,
see [114, 118, 34, 5, 6, 97, 137, 136].

Figure 2.5 illustrates a simplified architecture of a typical floating-point DSP
core. The device contains six functional units—an ALU, a multiplier, two ad-
dress units, and two load-store units (not shown here)—all of which can operate
simultaneously, a bank of floating-point data registers, and a bank of address
registers. A typical instruction thus allows one or two arithmetic operations, two
indirect loads or stores, and two address register updates. This combination of
operations is ideally suited for vector operations, in which elements are stored
in memory at fixed address increments; it is a major factor in the very high
performance of DSPs on signal processing algorithms, as compared to CISC or
RISC processors fabricated in comparable technology.

Operations for each functional unit are encoded into a single instruction
word—32 or 48 bits. DSPs thus resemble horizontally micro-coded devices more
than super-scalar (multiple-instruction issue) RISCs. Most instructions execute
in one cycle; to maintain this rate, the instruction stream is pipelined, usually to
three or four levels. Because of the limited instruction width, some restrictions
are placed on possible combinations of operations; for example, many devices

2.4. REAL-TIME SIGNAL PROCESSING 33

Floating-point
registers

Address
registers Index

registers

ALU

Address units

Address

Data

Figure 2.5: A simplified DSP chip architecture

allow the multiplier and ALU to be used in parallel if the ALU is performing
an addition or subtraction. More complex instructions also place limitations on
source and destination registers.

The TMS320C30 and TMS320C40 [137, 136] are essentially register-memory
machines: operands can be located in memory or in registers. A typical instruc-
tion for these devices is the parallel multiply-and-add instruction:

mpyf r0,r1,r0 || addf *ar0++,*ar1++(ir0)%,r2

In addition to the multiply-and-add operations, two operands are loaded
from memory and two address registers incremented. Provided that memory
operands are located in zero-wait-state memory,1 these devices can sustain in-
structions like this at a rate of one per cycle. In figure 2.5, I have explicitly
shown a data path around the data registers and the ALU and multiplier, and
around the address registers and address generators. These paths, together with
parallel data and address busses, provide the data transfer bandwidth necessary
to sustain these instruction rates.

The multiply-add instruction is the core of the FIR (finite-impulse response)
filter, a key DSP benchmark. Some devices also have a parallel multiply-add-
subtract instruction, which substantially speeds up execution of the FFT (Fast
Fourier Transform), another key benchmark.

In contrast to the TMS320C30 and TMS320C40, the ADSP-21020 and DSP96002
[5, 97] are load-store machines: operands are explicitly loaded into data regis-
ters prior to operating on them. The programmer writes separate fields of the
instruction to control the ALU and multiplier, and the load/store and address

1The placement of memory operands is a little complicated: the device has internal memory
which can be accessed twice per instruction cycle, and external memory which can be accessed
(at most) only once. The TMS320C40 has two external busses, which can both be active
simultaneously.

34 CHAPTER 2. BACKGROUND MATERIAL

units. For example, a typical parallel multiply-add instruction in M96002 code
is:

fmpy d8,d6,d2 fadd.s d3,d0 x:(r0),d4.s d2.s,y:(r5)+n5

The first two fields are multiplier and ALU operations; the second two are data
move and address update operations.

Apart from the architectural layout and instruction set, DSP devices also
feature hardware to perform zero-overhead looping. The mechanism varies with
the device, but it essentially allows the device to loop over a block of instructions
without flushing the pipeline at the end of the block. Zero-overhead looping is
essential, for example, to execute one multiply-add instruction per cycle, as
needed by the FIR filter.

The address generators are quite sophisticated, to minimise the need for
separate address manipulation instructions. Firstly, they can increment by the
contents of an index register, allowing the device to step through memory in ar-
bitrarily sized increments. Secondly, they perform modulo addressing, in which
an address register is automatically “wrapped” back to a base address when in-
cremented or decremented past a limit address. (This is descriptive only—real
DSPs implement modulo addressing a little differently.) Modulo addressing is
essential for efficient implementation of circular buffers and FIR filters. Thirdly,
they support reverse-carry addressing, which provides the “bit-reversed” ad-
dressing needed by the FFT (see section 5.2.5) at no execution cost.

Early DSPs were fully deterministic in instruction execution time: each in-
struction took exactly one cycle. The CPUs of modern DSPs are still determin-
istic, although calculating execution time requires knowledge of the location of
memory operands and, for some devices, of the interaction between successive
instructions in the instruction pipeline. The presence of prioritised DMA con-
trollers and instruction caches, however, makes exact prediction of execution
times impossible. Nonetheless, simpler interrupt-handling architectures, non-
hierarchical memory architectures, and predictable instruction execution times
still make DSP execution behaviour much more predictable than modern RISC
devices, an essential ingredient in the design of time-critical systems.

2.5 Summary

The material presented in this chapter provides the background for following,
more detailed, chapters. The pipeline parallelism model underlies the model
of computation described in Chapters 3, 5, and 6. Chapters 4, 5, and 6 rely
on functional programming concepts and notation; as well as the notation, I
presented different evaluation mechanisms for functional programs, to place into
context the dataflow style of evaluation of these programs.

Finally, because most of the work in following chapters is influenced by the
goal of real-time execution on embedded DSP device, I provided an overview of
real-time programming concepts and DSP devices.

Chapter 3

Dataflow Process Networks

Dataflow [1, 7] is a model of computation in which data items, called tokens, flow
between computing agents, or actors. A program is represented by a dataflow
graph (DFG), in which vertices correspond to actors and edges to a “flow” of
data from one actor to another. The term “dataflow” is used in a number
of different contexts; here we are interested in pipeline dataflow : actors are
long-lived, producing and consuming many items during their lifetimes. This
model is identical to Kahn process networks, for which Kahn gave a denotational
semantics [74].

A pipeline dataflow network corresponds directly to a signal flow block dia-
gram [73]: for example, a box labelled “+” on a block diagram sums two signals
in a point-wise manner. In dataflow terms, the “+” actor is fired repeatedly;
each time, it reads a token from both input channels and writes their sum to its
output channel. Figure 3.1 illustrates a simple dataflow network. The summer
actor is the one just described. The delay actor is a unit delay: each element
of v appears on w in the following time slot. The scale actor multiplies each
element of its input stream by a constant—in this case, the value −a.

Lee coined the term dataflow process to describe Kahn processes imple-
mented as a sequence of firings of a dataflow actor [86]. Each firing is gov-
erned by a rule that states conditions on input values needed to fire the actor.
Provided the sequence of actor firings is deterministic, then the actor forms a

z–1

–a

u v

w
z

summer

delay

scale

Figure 3.1: A simple dataflow network

35

36 CHAPTER 3. DATAFLOW PROCESS NETWORKS

deterministic Kahn process. We are assured by Kahn that a network of such
processes will also be deterministic, and able to produce output data before all
input data is received.

This view of a dataflow actor as a Kahn process is relatively new; in this
chapter, I develop a formalism for describing dataflow actors, and give the se-
mantics of actors and their corresponding dataflow processes. These actors are
strict—that is, read all required input tokens before producing any output—as
is common practice. The notation extends Lee’s firing rules to include state
update and token output as well as token matching and reading.

When considering the relationship between dataflow actors and non-strict
functional programming languages, non-strict actors are needed to more accu-
rately model the way in which tokens are produced and consumed. I therefore
introduce a new form of actor, called phased form. Execution of these actors
proceed in a series of phases, several of which may be required in place of a
single firing of a strict actor. Phased form also permits limited amounts of
non-determinism and gives some new insights into the behaviour of dataflow
actors.

3.1 Related work

The term “dataflow” is used in a number of different contexts. It is often
associated with dataflow machines, in which the dataflow model is the basis
of the execution mechanism of a highly-parallel machine [7]. Actors are fine-
grained machine operations such as addition, while edges of the graph represent
transfer of tokens through the machine. The machine executes an actor when
all required tokens are present on its inputs. The languages used to program
such machines [1] are often called dataflow languages.

Dataflow analyses (DFAs) are used for code optimisation in compilers [2].
DFAs provide the compiler with information such as variable lifetimes and usage,
which enables it to eliminate code that will never be executed, to re-use registers
when their contents are no longer needed, and to re-order instructions in order
to generate improved machine code sequences. Again, the nodes of the dataflow
graph are fine-grained operations corresponding to single machine instructions;
the edges of the DFG represent dependencies between instructions.

In pipeline dataflow, actors perform relatively complex tasks—that is, op-
erations that may take dozens, hundreds, or thousands of machine instructions
to complete. The edges of the DFG correspond to communications channels
between the actors. This is the model in which I am interested in this thesis.

3.1.1 Computation graphs

In 1966, Karp and Miller described a graph-theoretic model of parallel compu-
tation that is essentially pipeline dataflow [76]. The computation is represented
by a finite directed graph: each node nj represents a computational operation
Oj ; each arc dp represents a queue of data from one node to another. Associated

3.1. RELATED WORK 37

n1

n3

n2

(n,0,1,1)

(0,1,1,1)

(1,1,1,1)(0,1,1,1)

Figure 3.2: A computation graph

with each dp from ni to nj are four non-negative integers: Ap, the number of
tokens initially in the queue; Up, the number of tokens written to dp whenever
Oi executes; Wp, the number of tokens read from dp whenever Oj executes; and
Tp ≥ Wp, the number of tokens needed in dp before Oj can execute. Each arc
can be connected to only one producer and one consumer node.

Figure 3.2 illustrates a very simple computation graph, to compute n!. Each
arc is annotated with its (Ap, Up,Wp, Tp). n1 takes a token from its input, and
increments and outputs its internal value (with zero initial value). The self-
loop around n1 contains n initial tokens; these are the tokens that “drive” the
computation. n2 multiplies its two inputs together and outputs the result on
two arcs. The self-loop around n2 has one initial token, value assumed to be
zero. n3 writes the final value received to the location that holds the result of
the entire computation.

Note that n1 maintains the value of its counter internally, while n2 explicitly
passes its previous output value back to itself through an arc. Thus, the model
does not care whether or not nodes maintain an internal state or perform explicit
feedback.

Execution of a computation graph G containing l nodes is represented by a
sequence of sets ξ = S1, S2, . . . , SN , . . ., such that each set SN ⊆ {1, 2, . . . , l}.
Let x(j,N) denote the number of sets Sm, 1 ≤ m ≤ N such that j ∈ Sm, and
let x(j, 0) = 0. ξ is a proper execution of G iff

1. If j ∈ SN+1 and G has an arc dp from ni to nj , then

Ap + Upx(i,N)−Wpx(j,N) ≥ Tp

2. If, for all nodes ni and arcs dp from ni to nj , Ap+Upx(i, N)−Wpx(j,N) ≥
Tp, then ∃R > N : j ∈ SR.

Condition (1) states that, to execute an operation, the initial number of tokens
added to the total number of tokens produced to its input channel, must exceed
the total number consumed plus the threshold. Condition (ii) states that if an
operation can be executed then it will be within a finite number of steps. The

38 CHAPTER 3. DATAFLOW PROCESS NETWORKS

(a) (b)

D

111
1

1
1 2

3

41 2
3

4

Figure 3.3: A synchronous dataflow graph

sequence is thus like a partially-ordered schedule: each SN contains all nodes
eligible for execution at that time. Note that a given graph can have more than
one proper execution.

Karp and Miller prove a number of properties of this model. Firstly, the
number of performances of an operation is the same in all proper executions of
G. Also, if the initial tokens on every arc are the same, then the value of any
given token is the same for all proper executions. G is thus determinate.

Karp and Miller also develop a number of theories concerning termination
of the graph: which nodes terminate, and for those that do, how many times
they appear in all possible executions.

3.1.2 Synchronous dataflow (SDF)

Synchronous dataflow (SDF) is a slightly less general model than computation
graphs: the input threshold is equal to the number of consumed tokens. It is,
however, designed specifically for processing infinite streams. SDF scheduling
was developed by Lee and Messerschmitt [88, 89], and has since formed the
backbone of efforts to implement dataflow networks efficiently for both real-
time and non-real-time execution.

Figure 3.3a shows a simple SDF graph: the numbers next to the node inputs
and outputs are equivalent to Wp and Up; a D annotation indicates that an arc
contains one zero initial value; the small circle is a “fork” node. This graph
computes the running product of its input stream.

Compared to the computation graph, the SDF graph is “driven” by an infi-
nite input stream produced by a node with no input arcs, instead of by a finite
number of initial tokens placed on an arc.

A schedule can be calculated for an SDF graph: this is an ordered sequence
of node names that, repeated forever, computes the output streams from the
input streams. The incidence matrix Γ contains the token consumption and
production figures of the graph: Γ(i, j) is the number of tokens produced by
node j on arc i each time it is fired; if j consumes data, Γ(i, j) is negative.
Figure 3.3b shows the example graph decorated with node and arc numbers; we

3.1. RELATED WORK 39

then have

Γ =

1 −1 0 0
0 1 −1 0
0 −1 1 0
0 0 1 −1

The vector b(n) is the number of tokens on each arc at time n. Thus,

b(0) =

0
0
1
0

The vector v(n) denotes the node scheduled at time n. That is, v(n)(i) = 1
and v(n)(j) = 0 if node i is scheduled and i 6= j. Since executing a node changes
the number of tokens on arcs, we have

b(n + 1) = b(n) + Γv(n) (3.1)

Assuming that sample rates are consistent and the network does not dead-
lock, the vector q is the number of times each node is executed in the schedule:
if node i is executed k times, then q(i) = k. To find q, assign any node a repe-
tition count of 1. Follow any arc dp from that node, and assign the connected
node the repetition count Up/Wp, storing this quantity as an exact rational
number. When all nodes have been reached, find the least common multiple of
the denominators of the repetition counts and multiply to find q.

The example network is the special case called homogeneous dataflow, in
which all token counts are unity. Calculating q is trivial:

q =

1
1
1
1

Given q, a schedule is found by simulating execution of the graph at compile-
time with equation 3.1. At each step, if the numbers of tokens in an arc is at
least equal to the number of tokens consumed, append the consumer node to
the schedule. Stop scheduling a node i when it has appeared in the schedule
q(i) times. For the simple example, the only possible schedule is 〈1, 2, 3, 4〉.

The sizes of internal FIFO buffers can be determined in the same way. A
code generation system can take advantage of this fact to produce extremely
efficient code. The efficiency improvement over dynamic scheduling is so great
that considerable effort has been expended in dataflow models that are less
restricted than SDF, but which are sufficiently constrained that SDF code can
be applied to parts of the graph [26, 43].

SDF code generators operate by “firing” code generation actors at compile-
time; each time an actor is fired, it emits C or assembler code. For assembler

40 CHAPTER 3. DATAFLOW PROCESS NETWORKS

code generation, macros and symbolic names make the programmer’s task easier
and allow some optimisations. Powell et al [110], for example, describe assembler
code generation in SPW, and give some examples of the assembler source code.
A typical instruction looks like this:

ADDL tA,out tA,tX Y:(table.reg)+,tY

Here, tA, out, tX, and tY stand for registers, and table for a region of
memory. Powell et al use register allocation heuristics to assign registers, with
spill instructions inserted where necessary. For example, the above instruction
may become

ADDL A,B A,X0 Y:(R0)+,Y0

As just described, SDF code generation will tend to generate large amounts
of code for general multi-rate graphs, since the code for each actor is duplicated
each time the actor appears in the schedule. Because embedded DSP processors
often have severely limited memory space, more sophisticated scheduling tech-
niques have been developed that produce loops in the generated output code,
thus minimising the code memory required [16].

3.1.3 Kahn’s process networks

Kahn described the semantics of a language for parallel programming based on
process networks [74]. In Kahn’s language, a program consists of a network of
“computing stations” (that is, processes) connected by FIFO-buffered channels.
Each process repeatedly reads data from one or more input channels and writes
data on one or more output channels. Figure 3.4 shows the simple pipeline given
on page 15 written in Kahn’s language.

Kahn processes can only communicate through channels. Channels are
obliged to transmit data within a finite time. A process can read input channels
using blocking reads only; if data is not yet available, the process must suspend
until it becomes so. In other words, a process cannot test for the presence of
data on an input channel; nor can it wait for data on one or another of its input
channels (unlike other concurrent systems such as CSP [60]).

The semantics of a Kahn process network are expressed in terms of the
histories of data transmitted on each channel: a Kahn process is a function or
set of functions from histories to histories. Given some domain D, let D∗ be
the set of all finite sequences containing elements in D; let D∞ be the set of
infinite sequences containing elements in D; and let Dω = D∗∪ D∞. Sequences
are related by the partial ordering v, where X v Y if and only if X is a prefix
of or equal to Y . The minimal element is the empty sequence []. A chain of
sequences X = X1 v X2 v . . . v Xn v . . . has a least upper bound lub X. Dω

is thus a complete partial order (cpo).
A Kahn process is built from continuous functions—a function f is contin-

uous iff
f(lub X) = lub f(X)

3.1. RELATED WORK 41

begin
integer channel X, Y, Z;

process absolutes(integer in I, integer out O);
begin integer T;

repeat begin
T := wait(I);
send abs(T) on O;

end;
end;

process running(integer in I, integer out O);
begin integer T,V;

V := 0;
repeat begin

T := wait(I);
V := V + T;
send V on O;

end;
end;

comment : begin main program

running(X,Y) par absolutes(Y,Z);
end;

Figure 3.4: A Kahn process network

42 CHAPTER 3. DATAFLOW PROCESS NETWORKS

Continuity ensures that a process is not able to produce output only after
it has received an infinite amount of output.

A continuous process is also monotonic—that is, for any two sequences a
and b,

a v b ⇒ f(a) v f(b)

Monotonicity ensures that future output can depend only on future input,
thus allowing processes to produce output before receiving all their input.

A process with arity (m,n) has m input channels in Dω
1 ,Dω

2 , . . . ,Dω
m and

n output channels in Eω
1 ,Eω

2 , . . . ,Eω
n . The process is specified by n continuous

functions from Dω
1 × . . . ×Dω

m into Eω
1 , Eω

2 , and so on. A process network Σp

is a set of fix-point equations over cpos; such a system has a unique minimal
solution. More importantly, this minimal solution is a continuous function of
the input histories and the processes, and thus is also monotonic. This means
that: i) a network of Kahn processes also exhibits the desirable property of pro-
ducing output before receiving all its input; and ii) networks can be connected
in the same manner as single processes, thus allowing hierarchical construction
of networks.

Kahn and MacQueen [75] suggest that a Kahn process network be imple-
mented in a demand-driven style, using co-routines. When a process attempts
to read a token from an empty input channel, it suspends, and the process that
writes to that channel is activated. When the producer process writes data to
the channel, it is suspended and the consumer process resumed. The producer
process itself may be suspended in the course of producing its output data. Ul-
timately, these “demands” for data propagate back to processes that generate
input data (from, say, a file) or read it from some input channel (such as, say,
the console). There is a single “driver” process, usually the process responsible
for printing program results.

The dual to demand-driven execution is data-driven execution: rather than
executing when a successor process requires data, a process executes when it
has enough input data. A process suspends whenever it attempts to read from a
channel with no data; it is resumed by the operating system some time after data
is written to the channel. The implementation of stream-processing functions
in SISAL [46] uses this technique [50].

3.1.4 Dataflow processes

Lee defines a dataflow process to be the sequence of firings of a dataflow actor
[86]. A dataflow process is thus a special kind of Kahn process—one in which
execution is broken into a series of “firings.” Because the process is a sequence
of actor firings, a complete network can be executed by firing actors in an
appropriate order. Actors manage their own internal state, so there is no need
to provide each process with the illusion that it has exclusive access to the
CPU: context-switching is eliminated. This is a very important point for real-
time signal processing: context-switching presents a very high overhead to a
real-time digital signal processor, as the time needed to save and restore all the

3.1. RELATED WORK 43

registers of a modern DSP is quite high—see [117] for further discussion of this
issue.

Demand-driven execution on a single processor can be implemented sim-
ply and elegantly. As each actor executes, an attempt to read from an empty
channel causes the source actor to fire immediately. Since “firing” an actor in-
volves nothing more than executing a procedure, the propagation of demands
for data proceeds recursively down the dataflow graph. The recursion unwinds
as data is propagated back through the graph. Real-time execution on multiple
processors, however, presents some awkward problems. Firstly, data must be
demanded “ahead of time,” to guarantee that data is available ahead of the
output signal clocks. Secondly, a demand for data across a processor boundary
causes the demanding processor to idle while the data is being produced. Al-
though this effect could be overcome by processing a different part of the graph
while waiting, it would re-introduce the overhead of multi-tasking.

The difficulties with demand-driven execution of dataflow networks led my-
self and Matthias Meyer to abandon attempts to incorporate it into the initial
design of the SPOOK (Signal Processing Object-Oriented Kernel) parallel DSP
kernel [117, 95]. Nonetheless, we still believe that it is important and that an
efficient hybrid scheduling mechanism is possible.

With data-driven scheduling, an actor is fired when it has sufficient tokens
on its input channels. An external scheduler tests if enough tokens are available,
and fires the actor if they are. A naive implementation of data-driven scheduling
simply cycles through all actors, firing any which have sufficient input tokens.
More sophisticated schedulers attempt to minimise unnecessary testing by trac-
ing the graph in topological order [93], or by “pushing” tokens through the
graph [95].

Because of the “eager” nature of data-driven execution, processes may pro-
duce more data than will ever be needed. Some form of throttling is needed:
bounding channel buffers is one solution; pre-emptive scheduling is another.
Neither solution is elegant, suggesting that perhaps a hybrid demand- and data-
driven solution is really needed. Ashcroft [9] proposes a machine architecture
for Lucid based on mixing both methods within the same network. Edges of
the network graph are coloured according to whether they are data-driven or
demand-driven. Request tokens are propagated backwards down the demand-
driven arcs—these tokens are called questons, while normal data tokens are
called datons.

Pingali and Arvind [106] take another approach: they give a transformation
by which a dataflow graph with demand-driven semantics is transformed into
an equivalent graph with data-driven semantics. In essence, demands are made
explicit by adding arcs and actors to carry questons. The propagation of que-
stons, and the resulting propagation of datons back up the graph, is performed
using data-driven execution. Skillicorn [129] proposes that strictness analysis
be applied to Lucid programs to allow questons to be sent up the graph in fewer
hops. If it is known that an actor will always demand data from certain inputs,
then that actor can be bypassed by the questons, since a demand for its output
will simply produce demands for its input anyway. When the up-stream actors

44 CHAPTER 3. DATAFLOW PROCESS NETWORKS

to which the questons are sent produce datons, the datons are propagated in a
data-driven fashion through the bypassed (by the questons) actor.

Jagannathan surveys the current state of dataflow computing models, includ-
ing a comparison of demand- and data-driven execution [65]. Dataflow archi-
tectures have also been proposed for implementation of functional programming
languages [140]. Field and Harrison point out that demand-driven evaluation of
functional programs gives normal-order semantics, while data-driven evaluation
gives applicative-order semantics [47, chapter 14].

3.1.5 Firing rules

Lee has recently formalised the notion of “firing” an actor [86]. An actor with
arity (m,n) has a set of N firing rules

F = {F1, . . . , FN}
where each Fi is an m-tuple of patterns, one for each input:

Fi = (Pi,1, . . . , Pi,m)

Each pattern is a sequence of tokens, each being either a manifest constant
or the “wildcard” symbol ‘∗’. Lee defines a modified version of the prefixing
predicate, which we can express as:

[p1, . . . , pq] v∗ (x1 : . . . : xr : ⊥)
⇔ r ≥ q ∧ ∀i ∈ {1..q} : pi = ‘ ∗ ’ ∨ pi = xi

where the sequence (x1 : . . . : xr : ⊥) is the sequence of “available” tokens on
the input channel. There are r available tokens; ⊥ represents the undefined part
of the sequence—in other words, tokens which have not yet been computed.

A firing rule Fi of an actor with m input channels is enabled if and only if

Pi,j v∗ Aj , ∀j ∈ {1..m}
where Aj is the sequence of available tokens on the j’th input channel.

Lee’s firing rules capture the essential aspect of scheduling a dataflow actor
under a strict, data-driven semantics. By “strict,” I mean that all input tokens
must be present before the actor begins to execute. Let us consider some exam-
ples. The summer actor sums corresponding elements of two input channels; it
thus requires a token on each before it can fire:

F1 = ([∗], [∗])
The select actor consumes one token from a boolean control input: if true,

it consumes a token from its first data input and passes it to the output; if not,
it consumes a token from its other data input and passes it to the output. It
has the firing rules

F1 = ([True], [∗], [])
F2 = ([False], [], [∗])

3.2. STANDARD-FORM DATAFLOW ACTORS 45

A non-deterministic actor does not form a Kahn process. The archetypical
non-deterministic actor is merge, which passes an available token on either input
to the output. It has the firing rules

F1 = ([∗], [])
F2 = ([], [∗])

Recall that one of Kahn’s requirements is that a process perform only block-
ing reads. The non-deterministic merge does not satisfy this criterion, since
it must test its inputs to see whether they have data to pass to the output.
Non-deterministic merge can be made deterministic by making time part of the
data in the stream—see chapter 6.

Lee gives an algorithm that can determine whether a finite set of firing
rules can be tested by a process that performs only non-blocking reads [86]. A
set of firing rules that satisfies this condition Lee calls sequential . Briefly, his
algorithm works as follows: Choose an input j such that all Pi,j contain at least
one element. If the head elements of the patterns do not unambiguously divide
the firing rules into subsets, then fail. If they do, remove the head elements,
and repeat the procedure on each subset, with the modified patterns. Fail at
any time if any rule in a subset is not either empty or at least one element long.
If the algorithm terminates without failing, then the rules are sequential. In
effect, the algorithm mimics the run-time behaviour of the actor.

3.2 Standard-form dataflow actors

Lee’s firing rules capture the input conditions necessary to fire an actor, although
without saying precisely what a “firing” is, or by what mechanism the pattern
is matched against available input tokens. Apart from matching and reading
input tokens, an actor firing also i) updates the actor’s internal state (if any),
and ii) calculates and produces output tokens. In this section, I give a syntax
for describing actors, followed by a precise semantics of dataflow actors and
processes.

3.2.1 Syntax

The term “dataflow actor” is used to mean two things: the description of an
actor, and an actual instance of an actor within a network. I will call these
an actor schema and an actor instance where necessary to distinguish between
them.

A sugared syntax for actor schemata is shown in figure 3.5. Figure 3.5a is
the general form for stateful actors. The actor is called name, and has zero
or more parameters (v1, . . . , va). Parameters are arguments to the actor other
than streams, and must be reducible to a constant at compile-time. The init
clause specifies the initial value of the actor’s internal state, s0; this is also
assumed to be known at compile-time. It is followed by one or more rules, each

46 CHAPTER 3. DATAFLOW PROCESS NETWORKS

(a) actor name(v1, . . . , va) ≡
init s0

rule p : update(s) = eu

output(s) = eo

...
rule p : update(s) = eu

output(s) = eo

(b) actor name(v1, . . . , va) ≡
rule p : eo

...
rule p : eo

Figure 3.5: Sugared syntax of a standard-form actor: a) stateful actor b) state-
less actor

containing an input pattern p, an update action update(s) = eu, and an output
action output(s) = eo.

Each input pattern corresponds to one of Lee’s firing rules. A pattern is thus
a sequence of token patterns, where a token pattern is an identifier, a simple
constant, or a structured type containing element patterns. The only difference
to Lee’s firing rules is that identifiers are used instead of the symbol “*”.

Some patterns are irrefutable—that is, they cannot fail to match [71, pp.
72–74]. I use a very loose interpretation of this definition, allowing not only
identifiers and tuples of identifiers, but other structured patterns if it is known
that the matched value is such that the pattern will always match. (For an
example of an irrefutable pattern, see the group actor of figure 3.8, which uses
a vector as an irrefutable pattern.)

The update action is a function from the current value of the actor’s internal
state, s, to the value of the state after completion of a firing. s cannot be used
in rule selection, and must therefore be an irrefutable pattern. The update
expression eu can contain free variables v1 to va and any variable in p. The
output action is a function from the actor’s internal state to the sequences or
sequences of output tokens produced by this firing. The output expression eo is
a manifest sequence, or a let-expression with a manifest sequence as result. A
manifest sequence is an expression in which the length of the sequence can be
determined purely syntactically—for example, let x = y2 in [x, x, x] is a valid
output expression, but let x = y2 in copy 3 x is not. This ensures that the
number of tokens produced can be determined by examining the output action,
without knowledge of data values.

Patterns and output expressions are sequences if the actor has one input
or one output channel respectively. If it has more than one input or output
channel, the pattern or output expression is a tuple of sequences.

Some examples will clarify the above description. Consider the delay oper-

3.2. STANDARD-FORM DATAFLOW ACTORS 47

ator, expressed as a standard-form actor schema with one rule:1

actor delay (i) ≡
init i
rule [x] : update(s) = x

output(s) = [s]

The actor has one parameter, i; this value is the initial value of the actor’s
state. On each firing, the actor produces the current state, and sets the next
state equal to the value of a new input token. Output values are thus delayed
by one time slot. In signal processing, delays usually have an initial state of
zero; the delay actor of figure 3.1 is thus instantiated as delay(0).

A slightly more complex actor implements the running process of figure 3.4;
this actor has no parameters:

actor running ≡
init 0
rule [x] : update(s) = x + s

output(s) = [x + s]

For stateless actors, I use the simplified syntax of figure 3.5b, which omits
keywords and expressions related to the internal state. Written in full (as in
figure 3.5a), a stateless actor has the init value (), the update action update(s) =
s, and the output action output(s) = eo.

Here are some examples of stateless actors. The summer actor has one rule:

actor summer ≡
rule ([x], [y]) : [x + y]

The scale actor also has one rule:

actor scale (v) ≡
rule [x] : [v × x]

The select actor (section 3.1.4) has two rules:

actor select ≡
rule ([True], [x], []) : [x]
rule ([False], [], [y]) : [y]

Finally, the non-deterministic merge actor also has two rules:

actor merge ≡
rule ([x], []) : [x]
rule ([], [y]) : [y]

1Operationally, this actor is unlikely to be useful, as delays are not strict. A more accurate
version of delay is given in section 3.3.1.

48 CHAPTER 3. DATAFLOW PROCESS NETWORKS

desugar

actor name(v1, . . . , va) ≡
init s0

rule1; . . . ; rulek

≡ ((v1, . . . , va), s0, {desugarR [[rule1]], . . . , desugarR [[rulek]]})

desugarR

[[
rule p → update(s) = eu

output(s) = eo

]]
≡ (p, λs . eu, λs . eo)

Figure 3.6: Desugaring a standard-form actor

3.2.2 Desugaring

The actor schemata of the previous section are “desugared”—that is, trans-
lated into a simpler but more easily-manipulated form—by the translation of
figure 3.6. This figure introduces the notation used for syntactic translation
functions: double square brackets ([[]]) enclose a syntactic element. In desug-
ared form, an actor schema is a triple (a, s0, R), where a is a (possibly empty)
tuple of actor parameter names, s0 is the actor’s initial state, and R is a set
of rules. Each rule is itself translated into a triple (P, upd, out), where P is a
pattern, upd an update action, and out an output action.

For example, the delay actor, after applying this transformation, becomes
the triple

(i, i, {([x], λs . x, λs . [s])})
A stateless actor uses the same translation as above; as a result, the trans-

lated actor has s0 = () and each upd equal to the identity function λs . s. For
example, the select actor becomes

((), (), { (([True], [x], []), λs . s, λs . [x]),
(([False], [], [y]), λs . s, λs . [y]) })

3.2.3 Semantics

Lee defines a dataflow process to be a sequence of firings of a dataflow actor.
Provided the actor’s firing rules are sequential, this process is also a Kahn
process—that is, a mapping from input histories and initial state to output
histories. In this section, I give a semantics of actors and state precisely the
meaning of a dataflow process.

We will need some primitive types to help describe actors more precisely:
let the type of the actor’s internal state be σ; the type of an input pattern be
Patt; the type of one or a tuple of patterns be Pattern; the type of the (possibly
empty) tuple of schema parameters be Parameters.

As we saw in section 3.1.3, a Kahn process is a function from sequences to
sequences. In this chapter, we consider only infinite sequences. Let the (::=)

3.2. STANDARD-FORM DATAFLOW ACTORS 49

operator define a type synonym. The inputs and outputs of the actor are infinite
sequences or tuples of infinite sequences:

Input ::= D∞
1 × . . .×D∞

m

Output ::= E∞1 × . . .×E∞n

When the actor fires, however, it consumes and produces only finite segments
of its input and output sequences:

InputSegment ::= D∗
1 × . . .×D∗

m

OutputSegment ::= E∗1 × . . .×E∗n

Update and output actions accept a state value and produce a new state
and an output segment respectively:

UpdateAction ::= σ → σ

OutputAction ::= σ → OutputSegment

A Rule is a triple of a pattern and two actions; Rules is a set of rules; a
Schema is a triple of parameters, initial state, and a rule set:

Rule ::= Pattern×UpdateAction×OutputAction

Rules ::= {Rule}
Schema ::= Parameters× σ × Rules

Execution of an actor proceeds in two distinct phases: i) instantiation of
the actor with its parameters; and ii) execution of the actor on its stream
arguments. In [86], Lee stresses the difference between parameter arguments and
stream arguments in Ptolemy: parameters are evaluated during an initialisation
phase; streams are evaluated during the main execution phase. As a result, code
generation can take place with the parameters known, but with the stream data
unknown. Thus, the separation between parameters and streams—and between
compile-time and run-time values—is both clear and compulsory.

An actor is instantiated by supplying its schema with parameter values. To
represent instantiation of a schema name with parameter values (e1, . . . , ea),
we will write

A := name(e1, . . . , ea)

or, if the schema has no parameters,

A := name

where A is the (unique) identifier of the actor instance. Instantiating a schema
creates a new actor instance:

Actor ::= σ × Rules

50 CHAPTER 3. DATAFLOW PROCESS NETWORKS

instantiate [[Schema]] :: Parameters → Actor
instantiate [[(v, s0, {R1, . . . , Rk})]] e

≡ (s0[e/v], {inst [[R1]], . . . , inst [[Rk]]})
where
inst [[(P, upd, out)]] ≡ (P [e/v], upd[e/v], out[e/v])

Figure 3.7: Instantiating an actor

To instantiate an actor, each parameter formal occurring free in the ini-
tial state and the firing rules is substituted by the corresponding actual. Fig-
ure 3.7 gives the instantiation function. The notation E[e/v] means that each
occurrence of identifier v occurring free in E is replaced with the expression e.
This notation extends point-wise to tuples of substitution variables—that is, if
v = (v1, . . . , va) and e = (e1, . . . , ea), then

E[e/v] ⇔ E[e1/v1] . . . [ea/va]

An actor instance is connected to other actors in a network, and can then
proceed to the second part of its execution, as a dataflow process. The process
is an infinite series of firings, each of which proceeds in three stages: input, state
update, and output. The first can in turn be divided into two parts: matching
rule patterns against input sequences to select a rule, and reading the input
segments from the input sequences.

Pattern-matching and rule selection is performed by the semantic function
match, which accepts a rule and input sequences, and produces that same rule
if it matches the sequences. Thus,

match [[Rule]] :: Input → Rule
match [[R@((P1, . . . , Pm), ,)]] (X1, . . . , Xm)

= R, if match′ [[Pi]] Xi for all i, 1 ≤ i ≤ m

match′ [[Patt]] :: D∞ → Bool
match′ [[[p1, . . . , pq]]] (x1 : . . . : xq : xs)

= true, if tmatch pi xi for all i, 1 ≤ i ≤ q

The notation R@((P1, . . . , Pm), ,) is from Haskell: R is the name of the rule,
which is a triple containing patterns (P1, . . . , Pm) and two other elements of
insignificant value. The tmatch function performs pattern-matching on tokens,
as in functional languages [71].

Implicit in the definition of match is the concept of failure: if the input
patterns do not match the input sequences, then match returns ⊥ (pronounced
“bottom”), denoting an undefined value. Note also that because tmatch com-
pares each token against a pattern, all required tokens must be available before
a rule can be selected and execution proceed. The semantics thus captures the
strictness of actors.

3.2. STANDARD-FORM DATAFLOW ACTORS 51

Given a selected rule, the read function splits the input sequences into the
segments to be read by this firing, and the remainder of the sequences:

read [[Rule]] :: Input → InputSeg× Input
read [[R@([p1, . . . , pq], ,)]] (x1 : . . . : xq : xs)

= ([x1, . . . , xq], xs)

The input function combines matching and reading: it matches a rule set
against input sequences and returns the selected rule, the input segments, and
the remaining input sequences:

input [[Rules]] :: Input → Rule× InputSeg× Input

input [[{R1, . . . , Rk}]] i = let R = match [[R1]] i
2 . . .
...
2 match [[Rk]] i

(is, i′) = read [[R]] i
in (R, is, i′)

input uses the 2 operator to select a valid rule from several possible matches;
2 is “bottom-avoiding”:

⊥ 2 ⊥ = ⊥
⊥ 2 r = p
r 2 ⊥ = p
r1 2 r2 = ⊥

The last line means that pattern-matching will fail if more than one match
succeeds. This behaviour is chosen to emphasise that the semantics works only
for deterministic actors.

The update and output semantic functions update the actor’s state and
produce output according to a given rule. Their inputs are a segment of the
input sequences and the current state. These functions are somewhat simpler
to derive than input: all that is required is to bind the free variables named by
the input patterns by supplying them as arguments:

update [[Rule]] :: InputSeg → σ → σ

update [[(P, λs . eu, λs . eo)]] = λP . λs . eu

output [[Rule]] :: InputSeg → σ → OutputSeg

output [[(P, λs . eu, λs . eo)]] = λP . λs . eo

The fire function combines input, state update, and output, into a single
actor firing. At each firing, it accepts the unread input history and the current
state, and produces the remaining unread input history, the next state, and a

52 CHAPTER 3. DATAFLOW PROCESS NETWORKS

segment of the output sequences:

fire [[Rules]] :: Input× σ → Input× σ ×OutputSeg

fire [[Rs]] (i, s) = (i′, s′, o′)
where
(R, is, i′) = input [[Rs]] i
s′ = update [[R]] is s
o′ = output [[R]] is s

The function process, given a set of rules, a starting state, and a tuple of
input sequences, endlessly chooses and then fires a rule:

process [[Rules]] :: Input → σ → Output

process [[Rs]] i s = o ++ process i′ s′

where
(i′, s′, o) = fire [[Rs]] i s

The output segments are prepended to the remainder of the output sequences
by the (++) operator:

(x1 : . . . : xq) ++ ys = (x1 : . . . : xq : ys)

and we assume that (++) extends to tuples of sequences.
Finally, we can give the precise meaning of a dataflow process: the dataflow

process corresponding to the dataflow actor A is the function io [[A]], where io
supplies the actor’s initial state and complete input sequences to process:

io [[Actor]] :: Input → Output

io [[(s0,Rs)]] i = process [[Rs]] i s0

3.2.4 Consumption and production vectors

When fired, an actor consumes some number of tokens from its input streams,
and produces some number to its output streams. These numbers are manifest
in the actor’s firing rules—that is, in the input patterns and the output actions.

Let the # operator return the length of a sequence, and the # operator
return the lengths of sequences in a tuple, as a vector. # is defined informally
by

#s = 〈#s〉
#(s1, . . . , sk) = 〈#s1, . . . , #sk〉

The consumption vector C[[R]] and production vector P [[R]] contain the num-
ber of tokens consumed and produced by a rule R = (P, λs . eu, λs . eo):

C[[R]] = #P

P [[R]] = #eo

3.2. STANDARD-FORM DATAFLOW ACTORS 53

Recall that an SDF actor consumes and produces known and constant num-
bers of tokens on each firing (section 3.1.2). This property can be formally
stated in terms of consumption and production vectors. Define the ¯ operator
to return a value only if both arguments are equal:

x ¯ x = x
x ¯ y = ⊥, x 6= y
⊥ ¯ y = ⊥
x ¯ ⊥ = ⊥
⊥ ¯ ⊥ = ⊥

Let ¯ extend point-wise to vectors:

〈x1, . . . , xk〉 ¯ 〈y1, . . . , yk〉 = 〈x1 ¯ y1, . . . , xk ¯ yk〉

The consumption and production vectors of an actor with rules {R1, . . . , Rk}
are defined by

C[[A]] = C[[R1]]¯ . . . ¯ C[[Rk]]
P[[A]] = P [[R1]]¯ . . . ¯ P [[Rk]]

Thus, if, for each input, the input patterns of all clauses are the same length,
the consumption vector contains an integer in the appropriate position; other-
wise, it contains ⊥ (pronounced “bottom”), indicating that the number cannot
be determined without additional information. If the lengths of all output se-
quences for a given output are the same length, then the production vector
similarly contains an integer.

For example, summer has vectors

C[[summer]] = 〈1, 1〉
P[[summer]] = 〈1〉

The select actor has vectors

C[[select]] = 〈1,⊥,⊥〉
P[[select]] = 〈1〉

The definition of SDF actors, and the sub-class of homogeneous dataflow
actors, can now be stated in terms of consumption and production vectors:

Definition 1 (Synchronous dataflow (SDF)) An actor A with arity m×n
is synchronous dataflow (SDF) iff

C[[A]](i) 6= ⊥, ∀i, 1 ≤ i ≤ m

P[[A]](i) 6= ⊥, ∀i, 1 ≤ i ≤ n

54 CHAPTER 3. DATAFLOW PROCESS NETWORKS

Definition 2 (Homogeneous dataflow (HDF)) An actor A with with arity
m× n is homogeneous dataflow (HDF) iff

C[[A]](i) = 1, ∀i, 1 ≤ i ≤ m

P[[A]](i) = 1, ∀i, 1 ≤ i ≤ n

SDF actors are usually expressed with a single rule; call an actor with a
single rule and irrefutable token patterns a simple SDF actor. Such an actor
does not need to perform pattern-matching and rule selection—since it only has
one rule that, given enough input tokens, cannot fail to match. It therefore
needs only to count input tokens, not read their values.

3.2.5 Canonical SDF actors

Any SDF actor can be implemented as a network containing delays and instances
of just five actor schemata. In chapter 5, I will give functions equivalent to these
schemata, and give examples of their use; here, I will give the schemata texts
and argue that any SDF actor can be translated into a network of these five
actors. I will also further discuss the role of actor parameters.

Figure 3.8 lists the five actors, together with delay. Each has one parameter.
For completeness, delay is shown as an actor although it will almost always be
implemented as initial values in a FIFO buffer. Note that delay is the only actor
here that maintains a “state.”

group breaks a stream up into a stream of vectors. Unlike delay, its parame-
ter must be known in order to produce a formal (that is, executable) actor text.
(The notation x1, . . . , xk is not formal.) This is really a limitation of the fact
that an actor text must contain a manifest sequence in its output action. As
we will see in chapter 5, group can, with a more powerful notation, be defined
without requiring that k be known at compile-time. concat is the inverse of
group: it concatenates a stream of vectors into a stream. Again, its parameter
must be known in order to produce a formal actor text.

zip and unzip combine multiple streams into a stream of tuples, and vice
versa. They also require that their parameter be known at compile-time; in this
case, however, it is not possible to remove this restriction with a more powerful
notation, since the parameter determines the number of input or output channels
of the actor. In chapter 5, this limitation will force us to use restricted versions
of these functions.

Finally, the map actor takes a function as its parameter, which it applies to
each element of its input channel. If f is known, an efficient implementation of
map(f) can be generated; if not, the system must support dynamic creation of
functions since it will not have knowledge of f until run-time. An actor of this
kind mimics higher-order functions in functional languages, and could therefore
be called a higher-order actor .

I will now argue informally that any SDF actor can be implemented by
delays and these five schemata. As pointed out by Lee [86], a stateful actor
can be represented as a stateless actor together with a unit-delay feedback loop

3.3. PHASED-FORM DATAFLOW ACTORS 55

actor delay (i) ≡
init i
rule [x] : update(s) = x

output(s) = [s]

actor group (k) ≡
rule [x1, . . . , xk] : [〈x1, . . . , xk〉]

actor concat (k) ≡
rule [〈x1, . . . , xk〉] : [x1, . . . , xk]

actor zip (k) ≡
rule ([x1], . . . , [xk]) : [(x1, . . . , xk)]

actor unzip (k) ≡
rule [(x1, . . . , xk)] : ([x1], . . . , [xk])

actor map (f) ≡
rule [x] : [f(x)]

Figure 3.8: The canonical SDF actors

carrying the “state” value. The remaining five schemata can implement any
stateless SDF actor, as follows. Let the consumption and production vectors of
the actor be 〈c1, . . . , cm〉 and 〈p1, . . . , pn〉. For any input i such that ci > 1,
insert a group(ci) actor in the connected arc and change the pattern for that
input from [x1, . . . , xci] to [〈x1, . . . , xci〉]. For any output j such that pi > 1,
insert a concat(pi) actor in the connected arc and change the expression sequence
for that output from [y1, . . . , ypi] to [〈y1, . . . , ypi〉]. The actor is now HDF. If
the actor has more than one input—that is, m > 1—use a zip(m) actor to gather
all input streams into a stream of tuples, and change the input pattern from
([x1], . . . , [xm]) to [(x1, . . . , xm)]. If the actor has more than one output—that
is, n > 1—change the output expression from ([y1], . . . , [yn]) to [(y1, . . . , yn)]
and use an unzip(n) actor to change the stream of tuples back into a tuple of
streams. The actor now has one input channel and one output channel and thus
has the form (s0, {([p], λs . s, λs . [e])}); this actor is implemented by map (λp . e).

3.3 Phased-form dataflow actors

In this section, I introduce the phased form of dataflow actor. Execution of a
phased-form actor proceeds in a series of “phases”; phased form thus expresses
a finer grain of computation than standard form. One of the motivating factors
behind its development was a desire to better express non-strict and demand-
driven execution. By breaking actor firings up into phases, actors need perform

56 CHAPTER 3. DATAFLOW PROCESS NETWORKS

only the minimum amount of input and computation necessary to produce a
token on a given output.

Phased form also permits non-deterministic behaviour; the semantics out-
lined in this section provides a means of characterising non-deterministic be-
haviour. In particular, an actor can non-deterministically choose to consume
tokens from different inputs, yet still form a deterministic process.

To clarify this point, consider the sum-of-squares actor, sumsqrs; it is similar
to summer, but squares each of its two input tokens before summing them:

actor sumsqrs ≡
rule ([x], [y]) : [x2 + y2]

This definition says nothing about the order in which inputs are read—or
outputs produced, although there is no choice in this particular case. As we saw
in section 3.2.3, a standard-form actor reads all input tokens before performing
any computation or output. But this need not be so: sumsqrs could read a
token from its first input and square it before attempting to read a token from
its second input. It could even wait for a token on either input, square it, and
then wait for a token on the other input. Although this actor does not satisfy
Kahn’s blocking-read criterion, it nonetheless implements a Kahn process.

The phased form of an actor is thus a way of precisely expressing the ordering
of input, computation, and output, with non-determinism allowed in a limited
and manageable way. As we will see, this is useful when considering demand-
driven execution and potential deadlock situations. There are a number of other
motivations for this work on phased-form actors:

• Phased form can express some actors that cannot be expressed in standard
form, such as the iota actor described in section 3.3.4.

• Taken as an operational definition, computation can proceed before all
input is received. For a single actor, this is unlikely to be important; for
a network, however, it may well be, since computation can proceed in one
part of the network even though other parts are blocked waiting for data.

• Phased form has the potential to provide a more consistent semantics
of hierarchical actors, although I have not yet been able to develop an
algorithm that computes the phased form of an actor network. (See sec-
tion 3.3.6.)

Phased-form actors are a generalisation of Buck’s multi-phase integer data-
flow actors [27] and the cyclo-static dataflow of Engels et al [43]; a comparison
is given in section 3.3.4.

3.3.1 Syntax

Phased-form actors are an extension of standard-form actors. There are two
key differences:

3.3. PHASED-FORM DATAFLOW ACTORS 57

(a) actor name(v1, . . . , va) ≡
init s0

start φ0

rule 1 p : update(s) = eu

output(s) = eo

select(s) = ep

...
rule k p : update(s) = eu

output(s) = eo

select(s) = ep

(b) actor name(v1, . . . , va) ≡
start s0

rule 1 p : eo → ep

...
rule k p : eo → ep

Figure 3.9: Sugared syntax of a phased-form actor: a) stateful actor b) stateless
actor

• At each firing, only a subset of the rule set is considered for firing. This
subset is called the eligible rule set .

• If more than one rule from the eligible set is satisfied, the actor non-
deterministically chooses and fires one of them.

The full phased-form syntax is shown in figure 3.9a. The actor has k ≥ 1
rules. In order to identify the eligible rules, each rule is explicitly numbered.
The initial eligible rule set, φ0 where φ0 ⊆ {1, . . . , k}, is given by the start
clause. When a rule is fired, the actor uses the select action to update the
eligible rule set for the next firing.

There are some restrictions not made explicit in the syntax. Firstly, to-
ken patterns must be irrefutable (that is, they cannot fail to match). As for
standard-form, the state pattern in the actions must also be irrefutable. Sec-
ondly, the right-hand side of the select action is either a set of integers, or an
expression of the form

if e then {Int} else . . . else {Int}
where e is a boolean expression and Int stands for a literal integer constant.
This syntactic form ensures that the eligible rule sets are manifest in the actor
text. φ0 must also be a set of literal integer constants.

Often, some rules do not perform all of the three possible actions. For
convenience, I omit the update clause if the update action is update s = s, and
the output clause if the output action is output s = [] (or a tuple containing an
appropriate number of empty sequences).

58 CHAPTER 3. DATAFLOW PROCESS NETWORKS

actor sumsqrs ≡
init 0
start {1, 3}

rule 1 ([x], []) : update() = x2

select() = {2}

rule 2 ([], [y]) : output(s) = [s + y2]
select(s) = {1, 3}

rule 3 ([], [y]) : update() = y2

select() = {4}

rule 4 ([x], []) : output(s) = [x2 + s]
select(s) = {1, 3}

Figure 3.10: The non-deterministic sumsqrs actor

Some examples will clarify how phased-form works. The version of sumsqrs
that non-deterministically reads a token from either input is written with four
rules; it is shown in figure 3.10. (An underscore represents a “don’t-care” pat-
tern.) The delay operator was given as a (strict) standard-form actor on page 47.
A strict actor is not, however, a very good way to represent delay, since a delay
must usually be able to produce an output token before reading an input to-
ken. With phased form, we can write a version of delay that can produce and
consume tokens in arbitrary interleaving, shown in figure 3.11. In this example,
the internal state is a list of tokens; in phase 1, a token is removed from this
list and written to the output; in phase 2, a token is read from the input and
appended to this list.

For stateless actors, the simpler syntax of figure 3.9b is used instead.2 For
example, select is stateless, and has three rules:

actor select ≡
start {1}
rule 1 ([b], [], []) : [] → if b then {2} else {3}
rule 2 ([], [x], []) : [x] → {1}
rule 3 ([], [], [y]) : [y] → {1}

Finally, the non-deterministic merge actor has two rules:

actor merge ≡
start {1, 2}
rule 1 ([x], []) : [x] → {1, 2}
rule 2 ([], [y]) : [y] → {1, 2}

2The eligible rule set is of course a kind of state; since, however, I am treating the eligible
rules explicitly, the term “state” will refer to other information maintained between firings.

3.3. PHASED-FORM DATAFLOW ACTORS 59

actor delay i ≡
init [i]
start {1, 2}

rule 1 [] : update(x : xs) = xs
output(x : xs) = [x]
select(x : xs) = if null(xs) then {2} else {1, 2}

rule 2 [x] : update(xs) = xs ++ [x]
select(xs) = {1, 2}

Figure 3.11: The phased-form delay actor

desugar

actor name(v1, . . . , va) ≡
init s0

phase φ0

rule1; . . . ; rulek

≡ ((v1, . . . , va), s0, φ0, {desugarR [[rule1]], . . . , desugarR [[rulek]]})

desugarR

rule i p → update(s) = eu

output(s) = eo

select(s) = es

 ≡ (p, λs . eu, λs . eo, λs . es)

Figure 3.12: Desugaring a phased-form actor

Phased-form actors are desugared in a similar manner to standard-form ac-
tors. Figure 3.12 gives the translation: a desugared actor is a four-tuple con-
taining parameters, initial state, initial rule set, and the set of rules; each rule
is a four-tuple of input patterns and the update, output, and select actions.
Instantiation also proceeds in a similar fashion to standard-form actors, but in
this case, an instantiated phased-form actor is a triple of initial state, initial
rule set, and the set of rules.

For example, an instantiated merge actor is

((), {1, 2}, { (([x], []), λs . s, λs . [x], λs . {1, 2}),
(([], [y]), λs . s, λs . [y], λs . {1, 2})

})

60 CHAPTER 3. DATAFLOW PROCESS NETWORKS

1

2

3

4

(a)

〈1,0〉 〈0〉

〈0,1〉 〈1〉 〈1,0〉 〈1〉

〈0,1〉 〈0〉

1

2 3

(c)

〈1,0,0〉 〈0〉

〈0,1,0〉 〈1〉 〈0,0,1〉 〈1〉

(d)

1 2
〈1,0〉 〈1〉 〈0,1〉 〈1〉

(b)

1 2
〈1〉 〈0〉 〈0〉 〈1〉

Figure 3.13: Phase graphs: a) sumsqrs; b) delay; c) select; d) merge

3.3.2 Phase graphs

The possible orders in which rules can be selected are captured by the phase
graph. A phase is execution of a rule, so the phase graph is a useful tool
for characterising and analysing the behaviour of phased-form actors. As a
notational convenience, rule identifiers k are used interchangeably with the rules
themselves. Figure 3.13 shows the phase graphs of the four example actors given
previously, annotated with their consumption and production vectors. Note that
every vertex of the phase graph is in a cycle; this ensures that the actor will
continue to execute while it has input data.3

The phase graph has two kinds of vertex. Rule vertices correspond to a rule,
and are labelled with the rule’s identifier; each rule occurs exactly once. Choice
vertices correspond to non-deterministic choice, and are named choiceΦ, where
Φ is the set of its successor vertices. Thus, a choice vertex occurs once for each
non-singleton set in the select actions. Choice vertices are coloured black; they
are not labelled with their names since this is clear from context. The vertex
corresponding to the initial eligible rules set is marked by an asterisk.

The edges of the graph correspond to allowable transitions between rules.
For each singleton set produced by a rule’s select action, there is an edge from
that rule vertex to the vertex corresponding to the single rule; for each non-
singleton set, there is an edge from the rule vertex to a choice vertex. More

3It may be useful to have a special phase, called say the initialisation phase, which has no
predecessors (and is therefore not in a cycle). This could yield some practical advantages, as
it corresponds to computation that can proceed before zero time.

3.3. PHASED-FORM DATAFLOW ACTORS 61

precisely,

succ [[(, , , λs . es)]] = succ′ [[es]]
succ [[choiceΦ]] = Φ

succ′ [[{φ}]] = {φ}
succ′ [[Φ]] = {choiceΦ}

succ′ [[if b then Φ else es]] = succ′(Φ) ∪ succ′(es)

A sequence of rule firings corresponds to a path through the phase graph.
We will write a k-length path υ as a vector 〈φ1, . . . , φk〉. Let the paths function
return the set of paths from one vertex to another. If some vertex φa in the path
intersects a cycle, say, 〈φa, φb〉, the set returned by paths is infinite, including
the paths 〈. . . , φa, . . .〉, 〈. . . , φa, φb, φa, . . .〉, 〈. . . , φa, φb, φa, φb, φa, . . .〉, and so
on.

paths can be used to specify the cycles relation, which returns the set of
cycles starting at a given node:

cycles(φ) =
⋃

{paths(φ, ψ) | φ ∈ succ(ψ)}

3.3.3 Semantics

Phased form allows a more precise description of the order in which tokens are
consumed and produced. As for standard-form, each phase fulfils two conditions:

• All input tokens are consumed before any output tokens are produced.

• A phase must complete before another phase can begin.

Each phase is thus “strict”; because, however, an actor firing proceeds in a
series of phases, the actor is non-strict. I will define the meaning of a firing
and other forms of execution in terms of paths through the phase graph; this
falls short of a full semantics of phased-form actors, but is sufficient to describe
several important characteristics.

A path is represented by a vector of rules:

Path ::= 〈Rule〉

Given a k-length path through the graph υ = 〈φ1, . . . , φk〉, we need to know
the consumption and production vectors along that path, and the meaning of
“executing” υ. Let C(R) and P (R) be the consumption and production vectors
of rule R in the same way as for standard-form actors. The consumption and
production vectors of path υ are then given by

C(υ) = C(φ1) + . . . + C(φk)
P(υ) = P (φ1) + . . . + P (φk)

62 CHAPTER 3. DATAFLOW PROCESS NETWORKS

where the addition operator (+) is assumed to extend point-wise to vectors.
Firing a single rule is essentially identical to firing a single simple rule of a

standard-form actor. read, update, and output are the same as in section 3.2.3,
but slightly modified because a rule is now a four-tuple instead of a triple. Let
the step semantic function execute a single rule:

step [[Rule]] :: Input → σ → Input× σ ×OutputSeg

step [[R]] i s = (i′, s′, o′)
where
(is, i′) = read [[R]] i
s′ = update [[R]] is s
o′ = output [[R]] is s

Note that I am not trying to give a full semantics here; in particular, I
am examining only the computation performed given a path through the phase
graph—that is, with state update and output production, but not with calcu-
lation of the next eligible rule set. A full semantics would need to calculate
sets of input-to-output sequence mappings. (Sets are required to account for
non-deterministic choice.)

Execution along a given path is given by the execute function. execute
takes a path—that is, a vector of rules—and returns the input-output mapping
produced by executing those rules in order. I use the (:>) operator on vectors
in the same way as the cons (:) operator on sequences.

execute [[Path]] :: Input → σ → OutputSegment× σ

execute [[〈 〉]] i s = ([], s)
execute [[R :> Rs]] i s = (o ++ o′, s′′)

where
(i′, s′, o) = step [[R]] (i, s)
(o′, s′′) = execute [[Rs]] i′ s′

Now, a complete firing of a phased-form actor is execution along any cycle
from the start vertex:

Definition 3 (Complete firing) A complete firing of a phased-form actor is
execution along any cycle of the phase graph beginning on the start vertex φ0:

execute [[υ]] where υ ∈ cycles(φ0)

If there are cycles in the graph that do not pass through φ0, then there are
an infinite number of complete firing paths. Section 3.3.4 gives an example of
an actor like this. An actor with a infinite number of complete firing paths
can be the phased-form equivalent of SDF if it also satisfies a condition on the
consumption and production vectors:

Definition 4 (Phased synchronous dataflow) An actor with initial vertex
φ0 is phased synchronous dataflow iff: i) {υ1, . . . , υk} = cycles(φ0) is finite;
and ii) the consumption and production vectors along all cycles are equal:

C(υi) = C(υj) ∧ P(υi) = P(υj), ∀i, j : 1 ≤ i, j ≤ k

3.3. PHASED-FORM DATAFLOW ACTORS 63

By summing the vectors around each of the cycles in figure 3.13 and applying
this criterion, it can be seen that sumsqrs is phased SDF, but the other three
are not. Note that a phased SDF actor is not necessarily deterministic. Here is
an example of an actor that exhibits this kind of “internal” non-determinism:

actor silly ≡
start {1, 2}
rule 1 [x] : [x] → {1, 2}
rule 2 [x] : [x + 1] → {1, 2}

Note also that the definition of phased SDF does not include all actors that
could be considered to be SDF actors—see section 3.3.4 for an example.

In the introduction to this section, I showed by illustration that a non-
deterministic actor can produce a deterministic process. For a process to be
deterministic, a non-deterministic choice must not affect the computation per-
formed by the actor. A necessary condition for a deterministic process is that,
for each choice vertex φ, all paths υ in cycles(φ) have equal C(υ) and P(υ). A
stronger, necessary and sufficient condition must examine the output state and
sequences:

Definition 5 (Kahn actor) A phased dataflow actor forms a Kahn process iff
for each non-deterministic choice φ in its phase graph, cycles(φ) is finite and
either

1. All paths υ ∈ cycles(φ) have equal values of execute[[υ]], or

2. (a) All paths υ in cycles(φ) have equal values of fst · execute[[υ]], and

(b) All paths υ in cycles(φ) write s before using it (see below).

In condition (1), all paths behave exactly the same; in condition (2), only
the input-output mappings are the same, but the state is ignored in subsequent
decisions anyway. Condition 2b requires further explanation: execute[[υ]] need
not return the same state for all υ in cycles(φ), provided that the differing states
are ignored. Define const x y = x. A path υ = 〈φ1, . . . , φk〉 writes the state
before using it iff there exists an i such that φi has an update action of the form
const eu and ∀j ≤ i, φj has output and select actions of the form const eo and
const es.

This proposition is the main insight of this section. A practical means of
determining if the conditions are satisfied is to perform a reduction of execute
on symbolic sequences. Consider sumsqrs. Its only choice vertex is choice{1,3},

64 CHAPTER 3. DATAFLOW PROCESS NETWORKS

and cycles(choice{1,3}) = {〈1, 2〉, 〈3, 4〉}. We then have, for the path 〈1, 2〉,

execute [[〈1, 2〉]] (([x1, . . .], [y1, . . .]), s)
= (o ++ o′, s′′)

where
(i′, s′, o) = step [[1]] (([x1, . . .], [y1, . . .]), s)
(o′, s′′) = execute [[〈2〉]] (i′, s′)

= (o ++ o′, s′′)
where
(i′, s′, o) = (([x2, . . .], [y1, . . .]), x2

1, [])
(o′, s′′) = execute [[〈2〉]] (i′, s′)

= ([] ++ o′, s′′)
where
(o′, s′′) = execute [[〈2〉]] (([x2, . . .], [y1, . . .]), x2

1)
= ([] ++ o′, s′′)

where
(o′, s′′) = step [[2]] (([x2, . . .], [y1, . . .]), x2

1)
= ([] ++ o′, s′′)

where
(o′, s′′) = ([x2

1 + y2
1], x2

1)
= ([x2

1 + y2
1], x2

1)

Following a similar process for the cycle 〈3, 4〉 yields the expression ([x2
1 +

y2
1], y2

1). This satisfies condition 2a above. Since the state is written in rules
1 and 3, but not read until rules 2 and 4, condition 2b is also satisfied, and
sumsqrs therefore forms a Kahn process. Of the other graphs in figure 3.13,
select is a Kahn process because it has no choice vertices; delay and merge are
not, because they fail the equal consumption and production vector condition.

3.3.4 Cyclo-static and multi-phase integer dataflow

Buck [27] proposed multi-phase integer dataflow actors. An integer dataflow
actor is such that the number of tokens consumed or produced on each arc
is a function of an integer-valued control token. The REPEAT type of actor
consumes an integer control token in its first phase, and then executes another
phase the number of times given by that token. For example, Buck’s iota actor
reads a control token with value n, then outputs the sequence of integers from

3.3. PHASED-FORM DATAFLOW ACTORS 65

1

2

〈1〉 〈0〉

〈0〉 〈1〉

Figure 3.14: Phase graph of iota

1 to n inclusive. As a phased actor, we can write iota thus:

actor iota ≡
init (0, 0)
start {1}

rule 1 [n] : update() = (1, n)
select() = {2}

rule 2 [] : update(i, n) = (i + 1, n)
output(i, n) = [i]
select(i, n) = if i = n then {1} else {2}

Figure 3.14 shows the phase graph of iota. Not surprisingly, the actor is not
phased SDF (there are infinitely many cycles from the start vertex), although
it is deterministic. Except for its consumption and production vectors, this
graph is exactly the same as that of another special class of actor, the cyclo-
static synchronous dataflow (CSSDF) actors proposed by Engels et al [43]. The
general form of a CSSDF actor is

actor CSSDF (n) ≡
init (0, 0)
start {1}

rule 1 p1 : update() = (1, n)
output() = o1

select() = {2}

rule 2 p2 : update(i, n) = (i + 1, n)
output(i, n) = o2

select(i, n) = if i = n then {1} else {2}

Compared to iota, this actor has its value of n supplied as a parameter,
instead of being read from an input. Although this actor is SDF, the definition

66 CHAPTER 3. DATAFLOW PROCESS NETWORKS

of phased SDF cannot recognise it as such. Once instantiated and n is known,
the actor can be expanded into n + 1 phases; in this case, the phase graph
contains only a single cycle and is recognisable as SDF. Lauwereins et al [84]
show that a network of CSSDF actors can be scheduled statically, and that
the schedule can have (with certain assumptions about execution timing) lower
execution time than an SDF static schedule.

Both cyclo-static dataflow and multi-phase integer dataflow actors are used
to reduce the memory requirements required by a statically-generated schedule.
Buck extends scheduling techniques developed for boolean dataflow (switch and
select are the canonical boolean dataflow actors) to determine if a graph con-
taining integer dataflow actors has bounded schedules, and to “cluster” a graph
in order to extract control structures such as for-loops and do-while loops [26].

3.3.5 Execution mechanisms

Phased-form actors are non-strict. In this section, I examine the implications
for dynamic scheduling of phased-form actors; in the next I will look at the
implications for networks.

So far, I have not specified any restrictions on the granularity of phases. For
example, sumsqrs could also have been written

actor sumsqrs ≡
start {1}
rule 1 ([x], [y]) : [x2 + y2] → {1}

which is the same as the standard-form version and is thus strict. Phased-form
is more useful if the actor fulfils these (informal) criteria:

1. It consumes the minimum number of input tokens needed to produce a
single output token;

2. it outputs that token “as soon as possible” and performs no further com-
putation; and

3. it outputs any other tokens that can be output without performing any
further computation.

The criteria, if met, ensure that an actor performs only the minimum amount
of input, output, and computation necessary to keep data flowing through the
graph. Consider the effect on a data-driven scheduler: since input patterns
contain only irrefutable token patterns, a scheduler need only count available
tokens, not read their values. The scheduler can thus fire any actor that has
sufficient input tokens (and output space, if buffers are bounded) for one of its
eligible rules.

Demand-driven execution is also possible. A phased-form actor is likely to
perform less work than a strict actor each time it is fired. Let j be the output
channel on which a token is demanded. The target phase set Φt of a q-phase
actor is:

Φt = {φ | φ ← {1 . . . q}, P [[φ]](j) > 0}

3.3. PHASED-FORM DATAFLOW ACTORS 67

(a) (b)

A

B

N

N

Figure 3.15: Deadlock of a hierarchical actor: a) the actor network; b) a dead-
locked network

To meet the demand, the actor must execute any path υ from an element of
the current eligible phase set Φc to an element of Φt:

υ ∈
⋃
{paths(a, b) | a ← Φc, b ← Φt}

Note that the value of j cannot affect the path taken by the actor—there
is no mechanism by which the actor can know on which output data has been
demanded. This would be yet another possible source of non-determinism, and
is I believe best avoided.

3.3.6 Hierarchy and strictness

One of the issues raised by Lee in his examination of dataflow actors [86] is the
dataflow equivalent of procedural abstraction. The natural choice for this role is
the dataflow network, and block-diagram systems such as Ptolemy hierarchically
compose actors of networks of actors. As Lee points out, however, the semantics
of a hierarchical SDF actor are not in fact the same as the network of actors it
represents.

Consider the hierarchical actor N of figure 3.15a, where component actors
A and B are homogeneous, strict, actors. Considered alone, N is a fine example
of a homogeneous, strict actor. When connected in the network of figure 3.15b,
however, the network deadlocks: N cannot fire because its top input has no
data, and its top output cannot produce data until it fires. Of course, this is
no different from how any other strict 2× 2 actor would behave. It is, however,
different from how N ’s internal network would behave if it were substituted in
place of N . In that case, B could fire, producing a token on the top output; A
could then fire, producing a token on the bottom output; the cycle would then
repeat. Ptolemy side-steps this problem by expanding all hierarchical actors
before scheduling. Nonetheless, it is somewhat unsatisfactory.

A phased version of this actor, say N ′, allows computation to proceed before
receiving all of its input. Supposing for simplicity that A and B are stateless

68 CHAPTER 3. DATAFLOW PROCESS NETWORKS

(a) (b)

A1B1

B2

B3

A1
B1

B3

select

1 5

2

3 4

6 7
B2

A

B

Figure 3.16: A phased network example: a) network graph; b) phase graph

and writing, for example, A(x, y) to mean the token produced by firing A with
input tokens x and y, we can write N ′ as

actor N ′ ≡
init 0
start {1}

rule 1 ([], [y]) : update(s) = y
output(s) = ([B(y)], [])
select(s) = {2}

rule 2 ([x], []) : output(s) = ([], [A(x, s)])
select(s) = {1}

When placed into the network of figure 3.15b, N ′ does not deadlock—it
behaves in the same way as its internal network would if connected the same
way. N ′ can fire rule 1 (B) when it has data on the bottom input; in the
next phase, it can fire rule 2 (A), consuming a new input token as well as the
token received in the previous phase; it then repeats the cycle. Phased form
thus offers the promise of consistent semantics of hierarchical actors and their
corresponding networks.

An algorithm to find the phased form of a hierarchical actor is an open re-
search problem. The goal is to find an algorithm that approximates at compile-
time the set of possible run-time behaviours of the network. To illustrate, fig-
ure 3.16a is an example hierarchical actor, called say NET, and figure 3.16b is
its phase graph if actor A is homogeneous and stateless. Each phase of NET
represents one or more phases of A or B. The phased form description of the
network (obtained by tracing execution of the network by hand) is shown in
figure 3.17.

3.3. PHASED-FORM DATAFLOW ACTORS 69

actor NET ≡
init 0
start {1, 5}

rule 1 ([], [x], []) : update() = A(x)
select() = {2}

rule 2 ([b], [], []) : output() = []
select() = if b then {3} else {4}

rule 3 ([], [], []) : output(a) = [a]
select(a) = {1, 5}

rule 4 ([], [], [y]) : output() = [y]
select() = {2}

rule 5 ([b], [], []) : output() = []
select() = if b then {6} else {7}

rule 6 ([], [x], []) : output() = [A(x)]
select() = {1, 5}

rule 7 ([], [], [y]) : output() = [y]
select() = {1, 5}

Figure 3.17: The example phased network as a phased-form actor

70 CHAPTER 3. DATAFLOW PROCESS NETWORKS

3.4 Summary

This chapter has made two contributions to dataflow theory. The first is a
semantics of dataflow process networks. Given a description of an actor’s firing
function, the semantics gives the precise meaning of the dataflow process formed
by that actor. The semantic description is not, however, as concise or elegant
as I would like; in future work, I would like to re-formulate the semantics to
make it more so.

The second contribution is the description of phased actors. Although the
semantic description is incomplete, this work nonetheless offers a new charac-
terisation of dataflow actors, with interesting indications for further work. In
particular, the task of determining the phased form of a complete network should
prove challenging. It remains to be seen whether phased-form actors will lead
to more efficient scheduling of certain kinds of dataflow actors and networks, or
whether they can only be a descriptive tool.

The formal description of actors has also paved the way for following chap-
ters: in section 3.2.5, I argued that any dataflow actor can be implemented with
five schema. If we can implement functions that correspond to these schema,
then any function that can be expressed in terms of those functions can be
translated into a dataflow network.

Chapter 4

Visual Haskell

Visual Haskell is a visual, dataflow-style language based on Haskell. Its intent is
to ultimately provide a complete visual syntax for Haskell, for use as a program
visualisation tool, as well as a programming language in its own right. In both
of these roles, it is complementary to Haskell’s standard textual form, not a re-
placement or “improved” notation. Presently, only part of Haskell is supported
(notable omissions are class and type declarations). Even so, it is sufficiently
well-developed to be useful.

Visual Haskell evolved out of a need to explain some of the work in this thesis
to non-functional-programmers. It began as an ad-hoc notation for “drawing”
functional programs (see [113]); later, Ken Dawson of UTS implemented a pro-
totype editor for this language [41], stimulating its development into a more
precise and usable language.

The style of Visual Haskell is based on dataflow: programs are described as
data and function boxes, connected by arcs representing flow of data. It is in
some ways a superset of dataflow, supporting not only “structured dataflow” [81]
constructs such as conditionals and case-statements, but also pattern-matching,
higher-order functions, and scoping. And it has Haskell’s polymorphic type
system, although no visual notation for it. Because, however, of its lexical
scoping, unrestricted Visual Haskell programs do lose one of the key advantages
of dataflow: explicit data-dependencies throughout the whole program.

Of particular interest in Visual Haskell is the way it handles higher-order
functions: because Visual Haskell is curried, higher-order functions are as easy
to construct as first-order functions. There is no need for special “function slots”
[98], and no enforced distinction between first-order and higher-order functions
as in VisaVis [109]. Any construct—a case-expression, say—can be a function,
and can be applied in the same way as a named function.

The next two sections briefly survey work on visual languages, and then
introduce Visual Haskell by example. Following sections formally give the syntax
of Visual Haskell as a translation from Haskell’s abstract syntax into a concrete
visual syntax.

71

72 CHAPTER 4. VISUAL HASKELL

4.1 Related work

Visual programming languages (VPLs) are relatively new. Although still the
subject of disagreement on their worth, there are nonetheless many “real-world”
projects that use visual programming [29]. The success of these systems indi-
cates very strongly that visual programming—if applied to appropriate problem
domains and supported by appropriate tools—offers a kind of understanding
that is absent in purely-textual languages.

Two of the most successful interface paradigms in visual programming lan-
guages are dataflow and forms [79]. In signal processing, dataflow visual lan-
guages have been used for some years [17, 87], because of the common use of
block diagrams in describing signal processing systems. They have been used
successfully in other fields as well, such as image processing and instrumenta-
tion [111]; Hils [59] surveys a number of dataflow visual languages. A form is
a layout of cells, each containing a formula that computes its value, usually in
terms of the values of other cells. Many dataflow languages use forms as well
as dataflow: Ptolemy [87], for example, uses a form to enter actor parameters,
and dataflow to connect streams; Labview [81] uses forms as “front panels” for
“virtual instruments.”

Informal diagrammatic notations have been used to describe or explain func-
tional programs for some time. Reade [112], for example, explains function
application using box-and-arrow diagrams; Kelly [77] illustrates networks of
streams and processes written using an annotated pure functional language;
Waugh et al [151] illustrate the effect of program transformation on parallelism.

There have also been proposals for formal visual functional languages. Cardelli
[31] proposed a visual functional language in which function application is de-
noted by juxtaposition of a function name with its arguments; bracketing is
denoted by containing boxes; pattern-matching can select one of several expres-
sions; bindings are denoted by placing a left-pointing arrow between a name
and an expression. Figure 4.1 shows this definition of the factorial function in
Cardelli’s language:

fact 0 = 1
fact (n+1) = (n+1) * fact n

There are two frames: one for each clause. In the top frame, the vertical bar
represents zero, the box one. In the bottom frame, the heavy rectangle attached
to the ellipse represents “+1”. Boxes enclosing arguments “point” to the function
applied to them. The whole expression is bound to the icon “!”.

Cardelli suggests that the visual language is most useful when itself applied
to the manipulation of two-dimensional data structures. He gives examples
of manipulations on boxes containing characters and other symbols, and of
functions which place a frame around a box, and which decompose a compound
box into a list of its components.

Although not a functional language, Najork and Golin’s visual dataflow lan-
guage ESTL (Enhanced Show-and-Tell) [98] has many similar features, including
higher-order functions and a polymorphic type system. A key concept in ESTL

4.1. RELATED WORK 73

n nn

Figure 4.1: The factorial function in Cardelli’s language

is inconsistency : an arc that passes through an inconsistent box cannot carry
data. For example, figure 4.2 illustrates the factorial function in ESTL. To the
left is its type declaration: factorial is a function from integers to integers. The
main box is split into two sub-boxes. In the left one, the input data flows into
a box labelled “0”; if the input data is zero, then the box’s value, one, is passed
to the output. Otherwise, the box is inconsistent and produces no data. On the
right, the data flows into the predicate box “> 0”; provided the input datum
satisfies the predicate, the containing box is not inconsistent, and data flows to
produce an output value. If the datum is zero, then the box is inconsistent and
produces no data.

Inconsistency is thus used to perform the role of conditional execution; to-
gether with ESTL’s structured type notation, it also performs pattern-matching.
Iteration is also governed by inconsistency: the iteration construct repeatedly
applies its internal dataflow graph to its previously-produced data for as long
as the graph is consistent.

Higher-order functions are supported by function slots, in which a function
icon is placed inside the icon of a higher-order function. Visual Haskell’s argu-
ment slots (section 4.5.1) are a generalisation of ESTL’s function slots. ESTL
also includes a visual notation for a polymorphic type system; this may be a
good starting point for Visual Haskell’s missing type notation.

Poswig et al describe VisaVis [109], a visual functional language based on
Backus’ functional programming language FP [11]. The language is essentially a
visual dataflow language, with explicit support for higher-order functions: func-
tion arguments are placed within icons of higher-order functions. The VisaVis
editor, implemented in Smalltalk, supports some interesting concepts to make
the act of programming easier. For example, a first-order function icon can be
dragged over a higher-order function icon to make the first-order function into
an argument. Dragging a box connected to the output of a function over a
box connected to the input of a second function cause the functions to become
connected by an arc. I do not consider issues such as these at all in this chapter.
VisaVis does enforce an artificial (in my view) distinction between first-order
and higher-order functions, mainly because it is based on FP.

Kelso also proposes a visual functional language in which programmer inter-
action influences the design of the language [78]. Expression graphs are similar

74 CHAPTER 4. VISUAL HASKELL

Z

Z
0

1

–1 Z >0

Z

Z

Figure 4.2: The factorial function in ESTL

to other dataflow languages; however, inputs to the expression are connected
to terminator nodes containing the argument type; outputs are connected to
terminator nodes labelled with the type of the entire expression (that is, a func-
tion type). Application of a function to an argument is achieved by dragging
an output node onto an input node. Sub-expressions can be collapsed into a
single node. Mechanisms such as this are important to reduce the “clutter” of
complex visual expressions.

Visual languages cannot be represented by conventional grammars and other
means of describing programs, and are often described by example. There is,
however, an increasing amount of work on grammars for visual syntax; this is
particularly relevant to work on automatic generation of visual language parsers,
as in [37]. Golin and Reiss [53], for example, use a “picture layout grammar.”
The underlying grammar model is based on multisets to eliminate the ordering
implicit in textual grammars. A number of primitive operators specify rela-
tionships between pictures—for example, the production A → contains(B, C)
matches a picture with a production C inside a production B. More complex
productions can be defined in terms of these operators, together with additional
constraints on picture attributes.

A more general formalism, conditional set rewrite systems (CSRS), is pro-
posed by Najork and Kaplan [100]. A CSRS consists of a set of rewrite rules on
sets of terms, each governed by a predicate on terms. For example, the rewrite
rule

box(b), num(n, p) → fbox(b), if inside(p, b)

states that b is a “finished box” if a number is located inside it. If, using this
rewrite rule together with several others, a picture can be rewritten to a single
finished box, then it is valid in the visual language defined by the rewrite rules.
Najork and Kaplan show how a CSRS can be used not only to specify visual
syntax, but also (with a different set of rewrite rules) to translate a picture

4.2. AN INTRODUCTION TO VISUAL HASKELL 75

into a textual language. They also show that a CSRS can specify a three-
dimensional visual language (presumably motivated by their work on Cube, a
three-dimensional logic programming language [99]).

Following sections of this chapter will touch on differences between Visual
Haskell and visual dataflow languages. One of motivations for using a func-
tional language in this thesis is the apparent correspondence between functional
languages and dataflow. This is highlighted by the fact that languages for pro-
gramming dataflow machines are often functional [1]. On closer examination,
however, there are some important differences.

Ambler et al , in their survey and comparison of programming paradigms [4],
highlight some of the differences between the functional and dataflow paradigms.
Because pipeline dataflow operates on streams of data, its evaluation mechanism
is neither strict nor non-strict (see section 5.3). Functions are not first-class ob-
jects in dataflow, whereas they are in Visual Haskell—figure 4.17a, for example,
shows a function value (a partially-applied λ-abstraction) flowing along an arc.

Ambler et al do not comment on structuring mechanisms for dataflow, such
as described by Kodosky at al [81]. As I point out in section 4.4.2, Visual
Haskell includes some mechanisms similar to those used in structured dataflow
languages, but more general. On the down-side, these constructs may interfere
with dataflow schedulers and so on, since the “flow” of data into these constructs
is not always explicit. Another powerful feature of functional languages that is
rare in dataflow languages is pattern-matching, although ESTL [98] and CUBE
[99] both support a form of pattern-matching.

Finally, a key difference between functional and dataflow languages is the
treatment of I/O. In a functional language, I/O is performed in two key ways
[44]: i) by calling system primitives with lazy lists representing the whole his-
tory of input or output; or ii) by calling system primitives with a continuation
function. Recently, the idea of monadic I/O [72] has been adopted: this tech-
nique is superficially similar to continuations; however, the external “world” is
single-threaded through the I/O code, allowing I/O to be performed immedi-
ately as a side-effecting operation. In contrast, dataflow languages perform I/O
with special nodes that produce or consume streams.

4.2 An introduction to Visual Haskell

Visual Haskell is essentially a visual dataflow language: functions are repre-
sented by named boxes, and function application by arcs between boxes. Fig-
ure 4.3 shows the Visual Haskell form of the following version of the factorial
function (from section 2.2):

fact n | n == 0 = 1
| otherwise = n * fact (n - 1)

A function definition is displayed in its own window, indicated by the shad-
owed rounded rectangle. The name of the function, fact, and its icon, a stylised
“!” character, are displayed in the window’s title bar.

76 CHAPTER 4. VISUAL HASKELL

n

n

1

1

fact

n

n

0

Figure 4.3: The factorial function in Visual Haskell

On the inside right of the window frame are the input patterns; in this case,
there is only one, n. On the inside left are the result ports: the expressions
connected to this port are the result values of the function. The guarded al-
ternatives are separated by a dashed line. At the top right, for example, is the
guard n == 0. (I use iconic, not textual, representations for binary operators.
For example, = instead of ==, and × instead of *.) The boxes for n and 0 are
adjacent to the box for ==; this is an alternative notation to connecting boxes
with arcs. The result expression—in this case, just the constant 1, is connected
to a result port. Below the dashed line, the otherwise condition is “drawn” as
blank space. Note the recursive call to fact, denoted by its icon.

Pattern bindings are shown by connecting an arc from an expression to a
pattern graphic. The binding

twopi = 2 * pi

is shown in figure 4.4a. (A variable is the simplest pattern.) Note that the
port on the pattern is semi-circular instead of triangular, and that the arc to
a pattern port does not have an arrow. Patterns can be nested: they look
rather like an expression drawn “backwards.” For example, figure 4.4b shows
the pattern

((x,y) : z : zs) = ...

The box divided by the jagged line is the pair constructor, and the tall narrow
box is a list constructor. Note that patterns can either be connected by an arc,
or juxtaposed in the appropriate location.

Figure 4.5 shows the following definition of Haskell’s map function:

map f [] = []
map f (x:xs) = f x : map f xs

As before, the function name and icon appear in the window’s title bar. This
time, however, the function definition has two clauses, separated in the visual
syntax by a solid horizontal line. Note the use of the list constructor icon
as a pattern at the right-hand side of the lower clause, as well as as a data
constructor towards the left of this clause. The recursive call to map is denoted

4.2. AN INTRODUCTION TO VISUAL HASKELL 77

(a) (b)

x

y

z

zs

2

pi
twopi

Figure 4.4: Patterns

map

[]

f

f

f

x

xs

[]

f

Figure 4.5: The map function

by the double-box icon. Its first argument, f , is shown inside the icon itself.
This is an example of an argument slot—see section 4.5.1.

The “icons” I use in this thesis are rather plain for ease of drawing—more
interesting icons would be used in a real graphical development system. Fig-
ure 4.6 shows the icons I use for some of the Haskell standard-prelude data
constructors, while figure 4.7 shows icons for some standard-prelude functions
on lists. Data constructors like Tuple2 are produced by the desugaring transla-
tion (section 4.3.4).

The choice of iconic notation is I think a very personal one and one not
readily systematised. In my choice of icons, I have used a visual theme to
represent a class of icons and various (and arbitrary) decorations) to indicate
specific icons. For example, a doubled box indicates a higher-order function
over lists; higher-order functions over vectors (in chapter 5) have the obscured
box filled black. Note that Visual Haskell does not depend on icons: they are
“syntactic sugar,” and any Visual Haskell program can be drawn with labelled
boxes (the plain syntax described in section 4.4) instead of icons. Although
excessive use of icons can certainly obscure program meaning to one unfamiliar

78 CHAPTER 4. VISUAL HASKELL

a) Tuple
2

b) Tuple3

1
c) Cons

2
d) Cons h) (:+)

g) (:/)2
e) List

3
f) List

Figure 4.6: Icons for some standard prelude data constructors

with them, I believe that familiarity with a consistently-designed icon set yields
a great improvement in ease of program understanding.

An icon-like annotation is also used in arcs to indicate type. For example,
list-carrying arcs are decorated with an asterisk-like annotation. These annota-
tions are a useful visual aid to program understanding, although I have not yet
formalised their representation.

Incidentally, I am in the habit of drawing Visual Haskell expressions so that
the data flow is from right to left. The reason is simple: this is the same direction
in which data “flows” in textual programs. For example, in f ·g ·h, data “flows”
through h, g, and then f—see figure 4.8. Visual Haskell, however, does not care
about the direction, and some of the diagrams in this thesis use left-to-right
data flow instead.

A prototype visual editor was constructed by Ken Dawson as an undergrad-
uate project [41]; the editor indicates that a two-view development system based
on Visual Haskell is feasible. One interesting point noted during the construc-
tion of this prototype is that a visual parser is not needed to interpret visual
programs. The prototype editor builds a graph representing the Visual Haskell
program as the user “draws” the program. The editor is syntax-driven: in any
given context, the editor only allows the user to draw pictures that make sense
in Visual Haskell. To generate Haskell code from a completed Visual Haskell
function, the system traverses the graph, generating (linear) Haskell code on the
way—there is never any need to parse a two-dimensional picture. Cardelli made
much the same observation, although his system translated abstract syntax trees
into visual representations [31].

Despite the fact that Visual Haskell does not include all of Haskell, Dawson’s
system was able to generate executable Haskell functions. The type declaration
for each function was inserted textually into a form associated with the func-
tion; other information in the form included the numbers of inputs and outputs.
During generation of textual Haskell, the function type was simply written ver-
batim to the output file. Although Dawson’s printer would only print acyclic
graphs, this is an oversight that would be simple to correct.

4.3. VISUAL SYNTAX PRELIMINARIES 79

(a) map

(b) zipWith

(c) foldl

(d) foldr

(e) scanl

(f) scanr

Figure 4.7: Icons for some standard prelude functions

f g h

Figure 4.8: Function composition

4.3 Visual syntax preliminaries

Because Visual Haskell was designed to be an alternative notation for Haskell,
this chapter specifies Visual Haskell in terms of Haskell. Although this approach
may limit the scope of concepts that can be used in or introduced into this
visual language—for example, ESTL’s concept of inconsistency—it does have
some advantages:

• Haskell has powerful features not found in visual dataflow systems: poly-
morphism and higher-order functions are two examples.

• It is likely to be easier to precisely define the semantics of Visual Haskell
in terms of Haskell’s semantics, than attempting to define a new semantics
from scratch.

• It makes the notion of a “two-view” development system [120] feasible.

• Visual Haskell programs can be executed by standard Haskell compilers
and interpreters; all that is required is a translator from visual to textual
syntax.

The remainder of this section describes the means by which the visual syntax
is specified.

4.3.1 Visual elements

A Visual Haskell program is composed of many visual elements, arranged on
paper or on a computer screen. The surface on which elements are arranged is
called the canvas (from [102]). Any valid program fragment is a pict (short for

80 CHAPTER 4. VISUAL HASKELL

(d) (e) (f)

(a) (b) (c)

Figure 4.9: Simple visual elements: a) output ports; b) input ports; c) contain-
ment; d) data connection; e) pattern connection; f) adjoinment

“picture”). Picts are recursively composed of simpler picts, and ultimately of
primitive picts—boxes, icons, lines, strings, and so on. There are two special
kinds of primitive pict: ports and arcs. Ports serve as connection points between
picts. Output ports (figure 4.9a) are triangular if they carry a non-function
value, and rectangular if they carry a function. Input ports (figure 4.9b) are
triangular in expressions, and semi-circular in patterns. Arcs join picts via
their ports. There are two kinds of arcs: data arcs (figure 4.9d) are used in
expressions, while binding arcs (figure 4.9e) are used in patterns.

There are three key ways of composing complex picts. Two picts are attached
if they are located immediately adjacent to each other (figure 4.9f). Every port,
for example, is attached to a pict of some kind. Picts are connected if there is
an arc from a port of one to a port of another (figure 4.9d and e); the connected
picts, the ports, and the arc together form a new pict. And a pict contains
another if the second is wholly enclosed by the first (figure 4.9c). Nickerson [101]
claims that these three constructions—which he calls adjoinment , linkage, and
containment—account for the majority of diagrams used in computer science.

4.3.2 Specifying the visual syntax

The syntax of Visual Haskell is specified as a translation from Haskell’s abstract
syntax to a concrete visual syntax. The abstract syntax used in this chapter
is given in figure 4.10. As far as a syntax of Haskell goes, it is by no means
complete, but it is enough for the purposes of this chapter. Some points to note:

• Sub-scripts distinguish unique occurrences of each production.

• Functions like Tuple2 and Cons1 are produced by a de-sugaring trans-
lation (section 4.3.4). In Haskell, these are equivalent to (,) and (:)
respectively.

4.3. VISUAL SYNTAX PRELIMINARIES 81

v → (non-function identifier) Values
f → (op) | (function identifier) Function names
k → 0 | 1 | . . . | [] | () | . . . Literal constants
c → Tuple2 | Cons1 | . . . Data constructors

op → + | - | / | * | :+ | :/ | . . . Binary operators
p → v | k | c | f | p1 p2 | v@p Patterns
e → v | k | c | f Expressions

| e1 e2

| e1 . e2

| let d in e
| \ umatch
| case e of match1; . . . ;matchk

| if g1 then e1 else if · · · else ek

g → e Boolean guards
d → d1; d2 Bindings

| p = e
| p = e where d
| p | g1 = e1; · · · ; | gk = ek [where d]
| f match1; . . . ; f matchk

match → umatch | gmatch Match phrases

Figure 4.10: Haskell’s abstract syntax

• A binary operator (op) enclosed in parentheses is treated as though it were
a function identifier. The de-sugaring translation translates all operators
into this form.

• The constant production (k) also includes floating-point literals, character
literals, and string literals. String literals are treated as constants instead
of as lists of characters.

• The umatch and gmatch productions represent Haskell’s “match” phrases—
see section 4.4.5.

• A semi-colon indicates concatenation. For example, the binding d1; d2

contains two bindings (each of which may itself be a series of bindings).

• Square brackets indicate an optional part. In the visual syntax, optional
non-terminals are shown as though they were present; it is understood
that visual non-terminals are actually present only if the textual ones are.

• The backslash used in the λ-abstraction is not in constant-width typeface.
It should be, but I am unable to get LATEXto produce it.

The translation from abstract syntax to a picture is broken into three passes:

82 CHAPTER 4. VISUAL HASKELL

1. A textual de-sugaring pass (section 4.3.4). This removes some of Haskell’s
syntactic sugar to reduce the number of special cases. For example, infix
operators are changed to prefix functions, and special syntax for lists and
tuples is changed into data constructors.

2. A translation from Haskell’s abstract syntax into the core visual syntax
(section 4.4). Each production is rewritten into a concrete visual syntax.

3. A selective “visual sugaring” translation (section 4.5.1), in which a picture
in core syntax is modified to improve its appearance and layout.

The visual syntax is quite abstract—it does not specify details such as the
exact position of picts on the canvas, but only the topological relationships
between them. For example, it states that two picts are connected, but does
not state their relative or absolute positions on the canvas. The exact layout and
positioning of picts will, we shall assume, be decided by some other mechanism
called the layout manager. The layout manager will be some form of automatic
graph drawing or screen layout algorithm, assisted interactively by a user.

4.3.3 A simple visual language

To assist in the notation of and motivation behind the visual syntax and sug-
aring sections (sections 4.4 and 4.5.1), I will give an example of a very simple
language. Consider the following expression language, which has only variables,
and functions of arity 1:

v → (non-function identifier)
f → (function identifier)
e → v | f e

In a positional grammar approach, the visual syntax of this language could
be specified using primitive visual operations. Suppose that the primitives vbox
and fbox describe particular kinds of boxes used for variables and functions.
The operation name produces the displayable string representing its argument;
contains and connect represent the containment and linkage relations. Then,
we could write

v → contains(vbox, name(v))
f → contains(fbox,name(f))
e → v | connect(e, f)

Although I could translate Haskell’s abstract syntax into a grammar such as
this, I have chosen a more direct approach—the result of the translation is a vi-
sual representation, not just a textual description of one. Figure 4.11a gives the
rewrite rules for the simple language. The first two rules are straight-forward:
variables are represented by a grey box with a single output port; functions by

4.3. VISUAL SYNTAX PRELIMINARIES 83

(b)

xf
g

v ⇒ “v”

f ⇒ “ f ”

⇒f e f e

(c)

v ⇒ “v”

f ⇒ “ f ”

⇒f e f e

(a)

Figure 4.11: The visual syntax of a simple language: a) translation rules; b) a
simple sentence; c) translation rules with port matching

a larger white box with one input port and one output port. The name of an
identifier enclosed in quotes is meta-syntax for the equivalent displayable string.

Now, the third rule rewrites function application. A diamond-shaped graphic
represents a visual non-terminal—that is, the visual equivalent of the production
with which it is labelled. Every visual element other than non-terminals is
concrete visual syntax—that is, elements that become part of the picture. In
this case, the only such element is the arc that connects the output port to the
input port. By recursively applying the rewrite rules, the complete picture is
produced; figure 4.11b, for example, is the picture that represents the sentence
f (g x).

With currying and functions of more than one argument, this simple ap-
proach doesn’t work. Two new concepts are needed: live and dead ports; and
matching against already-existing ports. I will illustrate these concepts with
a more complex visual syntax for the same language; functions with multiple
arguments are left until section 4.4.1.

Figure 4.11c gives the translation rules with port matching. When a variable
or function is encountered, it is created with live ports; these are coloured
grey. Now, when two objects are connected, the connected ports are killed , and
become black. The difficulty is that the ports already exist: if I draw them as
black ports, then they will be new additions to the picture, and the picture will
end up with grey ports and black ports. By matching against existing ports,
we can avoid this difficulty. Consider the input port of e in the third rule of
figure 4.11a: it is black, and partially obscures another grey port. In order
to apply this rewrite rule, the obscured grey port must match a grey port on

84 CHAPTER 4. VISUAL HASKELL

(b)

(a) (c)

“v”

“ f ”

⇔ v

f⇔

“v”

“v”

≥0

≥1

⇔ “v”

xf g

xf

x
g

ff

ff

Figure 4.12: Sugaring the simple language: a) the sugaring rules; b) before
sugaring; c) after sugaring

e. The result picture contains the obscuring port—that is, the black one. In
contrast, the output port of f matches a live port, and remains live.

Note that the reason for port matching is to make it easier to support curried
functions, not merely to change the colour of connected ports! Although this
seems complex at first, it has removed the need to translate Haskell into an
intermediate language, as in an earlier paper [116].

Having translated a program into a picture, it is unlikely that this picture
will be as appealing as it could be. Icons, for example, are a popular ingredi-
ent in visual interfaces. We might also seek to remove redundancies left over
from textual notation: multiple boxes for the same variable, for example. These
changes to the picture do not affect its meaning, but are a kind of visual “syn-
tactic sugar.” This kind of modification is expressed with a set of bi-directional
rewrite rules. Figure 4.12a shows a suitable set for the simple language. The
first two rules allow a variable or function box to be replaced with an icon—the
squiggly graphic is meta-syntax for the icon representing the object with which
it is labelled. The third rule allows a variable box to be “shared” between ap-
plications.1 In all rules, the left production is produced by the translation into
core syntax, and the right is the alternative form. All rules are reversible, hence
the double-ended arrows.

A sugaring rewrite is allowed only if the result is acceptable to the layout
manager. If, for example, there is no icon defined for a particular function,
then the layout manager will simply avoid that particular transformation; if
merging two variable boxes causes an arc to cross another, then the merge
will be disallowed. In other words, the sugaring rules are used selectively and
intelligently. To illustrate, figure 4.12b shows a fragment of a visual program in
core syntax; figure 4.12c shows how it might look after visual sugaring.

1 To be pedantic, the language as given is too simple to even allow multiple variable
occurrences. Assume that there are other productions that I have omitted.

4.4. THE CORE SYNTAX 85

e1: · · · :en: e ⇒ Consn e1 · · · en e (4.1)
(e1, . . . , en) ⇒ Tuplen e1 · · · en (4.2)
[e1, . . . , en] ⇒ Listn e1 · · · en (4.3)

e1 f̀`e2 ⇒ f e1 e2 (4.4)
e1 op e2 ⇒ (op) e1 e2 (4.5)
(e op) ⇒ (op) e (4.6)
(op e) ⇒ (op) [2,1] e (4.7)
flip f ⇒ f [2,1] (4.8)

-e ⇒ negate e (4.9)

Figure 4.13: De-sugaring rules

4.3.4 De-sugaring

The first phase of the translation removes some of Haskell’s syntax for lists and
tuples. The rewrite rules of figure 4.13 accomplish this. The amount of desug-
aring is minimal. The first three rules (equations 4.1 to 4.3) recognise a series
of comma- or cons-operators and combine them into a single constructor; this
allows the use of more meaningful icons. Equation 4.4 removes infix operators
formed by back-quoting a function. Equations 4.5 to 4.7 translate binary oper-
ators and sections. Equations 4.7 and 4.8 produce a “permuted function”—see
page 87. Equation 4.9 translates the only unary operator, negation.

4.4 The core syntax

The core syntax of Visual Haskell is specified by a set of rewrite rules from
Haskell’s abstract syntax directly into concrete visual syntax, in the style of
section 4.3.3. The use of ports is more complex, and this is explained in sec-
tion 4.4.1. The rules are given in five groups: simple expressions, structured
expressions, patterns, bindings, and “match phrases,” in that order. Note that
the recursive re-application of rules implicitly selects the correct rule accord-
ing to context—that is, the rule applied for an occurrence of say v is selected
according to whether v occurs in an expression or a pattern.

4.4.1 Simple expressions

This section gives the syntax of simple expressions—that is, expressions that do
not use containment. This small subset of Haskell is approximately equivalent to
the language features of pure dataflow languages. Figure 4.14 gives the rewrite
rules for these expressions: variables, constants, data constructors, function
application, and function composition.

86 CHAPTER 4. VISUAL HASKELL

f

k

v

nc

⇒

⇒

⇒

⇒

(a)

(c)

“v”

“ c ”

“k”

n“ f ”

(b)

(d)

⇒(g) n“ f ”
i1

in
f [1, ..., in]i

e1

e2
n(e) ⇒e1 e2

e1
e2

1

n

⇒(f) e1 . e2

Figure 4.14: Visual syntax: simple expressions

Variables and constants (figure 4.14a and b) are the same as in figure 4.11c.
Function variables and data constructors (figure 4.14c and d) are also similar
to figure 4.11c, but have n input ports, all live. n is the arity of the constructor
or function; from here on, n will always mean the arity of the whole production
under consideration. Unlike the earlier examples, however, the output port is
rectangular, indicating that it is function-valued. Visual sugaring can be used
to replace the boxes used here with icons—see section 4.5.1.

Recall that enclosing an object’s identifier in double quotes is meta-syntax
for its name as a displayable string. The name of a variable or function is its
identifier. There are some special names: the name of a parenthesised operator
is the operator without parentheses—for example, the name of (+) is “+”; the
names of the constants [] and () are “[]” and “()”; the name of the wildcard
() is a blank string.

Application of a function-valued expression to an argument connects the
corresponding picts (figure 4.14e). Because a function-valued expression can
have more than one live input port, port matching is used to select the set of
live ports. This is indicated by the dashed line between the input ports of e1.
The top-most live port is connected to the argument pict, and is killed, changing
its colour to black. This is how currying is handled in the visual syntax: each

4.4. THE CORE SYNTAX 87

time an additional argument is supplied to a function, the next live port is
connected and killed; eventually, if all arguments are supplied, the function box
has no remaining live ports.

Port matching is also used on the output ports of e1 and e2. The output
port of e2 matches a live port, which can be either triangular or rectangular,
as indicated by the superposition of the two shapes. The port is killed. The
output port of e1 matches a rectangular port, since e1 must be a function. The
result port is annotated with a small n: this means that it is a triangle if n is
zero, or a rectangle if n is greater than zero. Thus, if the newly connected port
of e1 was the last one—that is, the function is applied to all its arguments—the
port changes from a rectangle to a triangle.

Once an expression has been used as an argument, it cannot have any live
input ports. The black diamond in the lower corner of the e2 non-terminal
means that any remaining live ports are killed.

Function composition (figure 4.14f) is similar to function application. Be-
cause e1 and e2 must both be functions, the match shapes for the output ports
are both rectangular. The main point to note is this: the first live port of the
result pict is the port attached to e2, not to e1 as for function application. This
is indicated by the “1” annotation on e2’s input port. If e1 has more than one
live port, then all but the first also remain live, and will be connected after the
port attached to e1. (Usually, though, e1 will have no remaining live ports.)

In a visual language, it is easy to apply arguments in arbitrary order. To
express this, I use the special syntax f [i1, ..., in] to denote a function variable
to which arguments are supplied in a different order. The j’th argument to
f [i1, ..., in] is the ij ’th argument to f . This I call “permuted application”; per-
muted functions are produced by some of the de-sugaring rules (section 4.3.4).
The visual syntax of a permuted function variable is similar to that of a nor-
mal function, but with port j annotated with ij . These numbers are concrete
syntax—that is, they appear on the canvas. In a graphical development envi-
ronment, permuted application would, I expect, be used more than in standard
Haskell, because the visual representation does not impose an order of argu-
ments as a textual representation does.

An example will clarify how function application and composition works.
Consider the expression

((+) x . negate) y

Figure 4.15a shows its visual terminals; figure 4.15b show three steps in the
translation, from top to bottom. In the first, (+) is applied to x: the connected
ports are killed. In the second step, this pict is composed with negate: the
second port of (+) is matched, and connected to the output port of negate.
Note that the input port of negate remains live. Finally, the pict just produced
is applied to y: the connected ports are killed, as expected. Note also that the
output port of (+) changes to a triangle, since the last input port of the whole
pict has just been connected.

The alert reader may have noticed a source of ambiguity here: the picture

88 CHAPTER 4. VISUAL HASKELL

(a) (b)

x

x
x

negate
y

negate

x

negate y

Figure 4.15: An example translation: ((+) x . negate) y: a) visual termi-
nals; b) three steps in the translation

at the bottom of figure 4.15b could also represent x + (negate y).2 The ambi-
guity arises because composition does not retain any visual grouping construct.
A visual editor could perhaps best resolve the ambiguity by retaining the com-
position in its internal data structure; at the user’s request, it would display the
grouping as a containing box, and allow it to be removed or altered.

4.4.2 Structured expressions

With the aid of some simple conditional actors such as select (page 44), it is
possible to encode loops and other constructs such as conditional execution
in a pure dataflow framework [81]. It is also possible to analyse a graph to
extract the constructs encoded therein [27]. Nonetheless, Kodosky et al [81]
argue that the dataflow paradigm should be extended to incorporate structured
constructs. They add loops, a case construct, and a sequencing construct to the
Labview language, calling the result “structured dataflow.” General-purpose
visual dataflow languages generally provide such constructs—see Hils’ survey
[59]. Special-purpose languages such as that of Ptolemy [87] do not, relying
instead on the lower-level host language.

Haskell does not have explicit loops, since it uses recursion instead of it-
eration. Visual Haskell does, however, have several structures that resemble
structured dataflow: let-expressions, conditionals (if-then-else), λ-abstractions,

2This is a useful distinction only if Visual Haskell is intended to provide a complete syntactic
equivalent to Haskell. In the original development of Visual Haskell, the idea of a “two-
view” development system featured very heavily; for such a system, the difference between
((+) x . negate) y and x + (negate y) is significant. In future development of Visual
Haskell, I expect that this exact correspondence will not be necessary.

4.4. THE CORE SYNTAX 89

and case-expressions. Each of these is delimited by a containing box, or en-
closure, and can be connected on the outside as any other expression can. A
novel feature arises because Haskell is higher-order: if a structured expression
is function-valued, it has one or more live input ports, and can thus be con-
nected in the same way as a function variable. This is an improvement over the
language of my earlier paper [116], which required explicit apply nodes for all
structures except λ-abstractions.

The visual syntax of a let-expression is essentially a containing box labelled
“let” (figure 4.16a), containing the expression result e and local bindings d.
e is connected to a dummy port on the inside of the enclosure. If the whole
expression has non-zero arity n, then the box has n live input ports attached to
it. The output port is rectangular if n is non-zero, otherwise triangular. In the
visual sugaring phase, sharing can be used to connect variables bound in d to
uses of that variable in e. The area of the canvas over which sharing can occur
is called a region; in this case, it is the entire inside of the box. To illustrate,
figure 4.17a shows the expression

let t = w * x1 in (x0+t, x0-t)

A series of conditional (if-then-else) expressions is grouped into a single
visual construct (figure 4.16b). (Translation into case-expressions, as in the
Haskell report [44], would be too cumbersome visually.) Each guard gi and its
consequent ei are placed into one horizontal section of the containing box, but
separated by the heavy arrow glyph. Sections are separated by a heavy dashed
line. gi and ei are each in their own region—that is, there can be no sharing
between them. There is no guard gk, so its region is left entirely blank. As for
let-expressions, a series of conditional expressions has one or more input ports if
it is function-valued. To illustrates, figure 4.17b is a function-valued conditional
expression applied to a variable:

(if b then f else g) x

λ-abstractions (figure 4.16c) are also a containing box; this time, however,
the syntax of the box and its contents are delegated to another production,
called umatch (see section 4.4.5). umatch is similar to the enclosing box of
let-expressions, but contains one or more patterns for the λ-abstraction’s argu-
ments. Figure 4.17c includes a λ-abstraction:

map ((\x y -> x + y) (f x))

A case-expression (figure 4.16d) uses pattern-matching to select an expres-
sion from several alternatives. Each of these alternatives is a match clause
(see section 4.4.5); they are “stacked” one above another in the order in which
they are tested. The case value e is connected to a special input port above the
stacked match expressions; the grey rectangle is an argument slot (section 4.5.1),
so e can be placed within the case if the layout manager will allow it. Again,
the shape of the output port depends on n, as does the number (if any) of input
ports. Figure 4.17d is a function-valued case-expression applied to an argument:

90 CHAPTER 4. VISUAL HASKELL

⇒
e

d

let

n nlet d in e(a)

⇒(b)

e1 g1

ek

n

if

n

if g1

k

then e1 else

if ...

eelse

⇒\ umatch umatch

λ

n(c)

⇒
n

case

n

match1

matchk

e

(d)

case match

match

1

k

...
e of

Figure 4.16: Visual syntax: structured expressions

4.4. THE CORE SYNTAX 91

b
x

if

f

g

(c)

(b)

λ

x

y

xf

x

case

f

g

(d)

b

True

False

let

x1

w
tx0

x0

(a)

Figure 4.17: Examples of structured expressions (see text)

(case b of
True -> f
False -> g) x

Although I argued that these constructs have a precedent in structured data-
flow, they are more general than structured dataflow. A structured dataflow
construct behaves on the outside just like a dataflow actor: all of the data on
which it operates comes in through input ports. Because Visual Haskell has
scope and named variables, however, this is not necessarily true for the con-
structs just described. A λ-abstraction, for example, fulfils this condition only
if it has no free variables. The λ-abstraction in figure 4.17c is like this; for
comparison, the λ-abstraction (\x -> x + y) is not, since y occurs free.

A similar idea applies to the other constructs: to conform to the dataflow
model, they must not use data not supplied to them explicitly. The conditional
in figure 4.17b, for example, uses b even though b is not supplied to the construct
by a dataflow arc. Compare this with the Labview case, which selects one of
several functions, and then applies that to an argument [81]. The Haskell case
can be used this way, as in figure 4.17d, but need not be. In this sense, then,
the Visual Haskell case is more flexible. For λ-abstractions, a transformation
known as lambda-lifting can be used to eliminate free variables [105]; it may be
possible to find a similar transformation for case-expressions.

4.4.3 Patterns

Patterns “de-construct” arguments, and bind names to expressions (or parts of
expressions). Haskell’s pattern syntax is essentially a subset of its expression

92 CHAPTER 4. VISUAL HASKELL

k

v

c

p2

p1

p

⇒

⇒

⇒

⇒

⇒

“c”

“v”

“k”

n

f ⇒ “ f ”

“v”
v p@

p1 p2

(a)

(b)

(e)

(f)

(c)

(d)

Figure 4.18: Visual syntax: patterns

syntax; visually, patterns look like expressions connected “backwards.” Every
pattern has one input port and zero or more output ports; patterns are the only
kind of object which can have more than one output port. Patterns are not
common in visual languages, although Enhanced Show-and-Tell (ESTL) [98]
supports a very similar facility based on inconsistency .

Figure 4.18 gives the rewrite rules for patterns. Variables and constants are
drawn as grey boxes, with a single live semi-circular input port (figure 4.18a,
b, and d). Non-function variables also have a single output port. This port is
not live—no patterns can be attached to it—but the port can still be used for
sharing, since sharing does not require live ports (section 4.5.1). Data construc-
tors are drawn as a white box with one input port and one or more live output
ports (figure 4.18c). As for expressions, this box can be replaced by an icon in
the visual sugaring (section 4.5.1).

Nested patterns are translated by figure 4.18e. Live output ports of a con-
structor are connected and killed in order, in the same way in which function ap-
plication connects and kills live input ports. For example, the pattern (:+) x y
firstly connects the first output port of (:+) to the input port of x; then the sec-
ond output port to y. Note that some common nested patterns are removed by

4.4. THE CORE SYNTAX 93

the desugaring translation (section 4.3.4). For example, (x:y:ys) is translated
into Cons2 x y ys.

Finally, as-patterns are drawn as the pattern with a variable box attached
(figure 4.18f). The variable box has a single output port, which can be used for
sharing.

4.4.4 Bindings

A binding binds a name to a value. Many visual dataflow languages only allow
binding of names to functions (function bindings), and thus avoid the problem
of free variables. Visual Haskell also allows names to be bound to values (pattern
bindings).

A series of bindings is displayed in the same region (figure 4.19a). As noted
earlier, the visual syntax does not specify the relative positions of bindings. In
core syntax, the two bindings are not connected; with sharing, pattern bindings
can be connected, and thus inter-mingled within the region. At the module level,
the layout manager should place bindings one above the other. At other levels,
it should place function bindings one above the other, and pattern bindings
clustered together so that sharing can be used effectively.

The simplest kind of pattern binding has its value e connected to its pattern
p (figure 4.19b). Any live input ports of e are killed. If a simple pattern
binding has local definitions, its right-hand side is put into a containing box
(figure 4.19c). The appearance is very like a let-expression, but without the
“let” label, and with no input ports regardless of its arity.

A guarded pattern binding has the form p | g1 = e1; · · · ; | gk = ek [where d]
(figure 4.19d). The visual syntax of the right-hand side is very similar to that
for conditionals (figure 4.16b), with the addition of some bindings d. d is placed
in its own region.

The final rewrite rule is for function bindings (figure 4.19e). Within the
region in which it is defined, a function binding is shown as a small rounded
rectangle containing the function’s name, and with an appropriate number of
dead input ports and a dead output port. For editing, the function definition is
displayed in its own window: the title bar contains the function’s name and its
icon (if it has one). The body of the window is a stack of match phrases.

4.4.5 Match phrases

A match phrase, in Haskell, is a series of patterns, guards, and result expressions
used in case-expressions and function bindings. There are two types: those
without guards, and those with. These are represented in Visual Haskell by
the productions umatch and gmatch respectively; the production match can be
either of these (figure 4.10).

Figure 4.20a shows the textual and visual syntax of unguarded match phrases.
Textually, an unguarded match is a set of patterns p1 . . . pm, a delimiter -> or
=, an expression e, and an optional where clause containing local definitions d.
The difference between the clauses with delimiter -> or = is the context in which

94 CHAPTER 4. VISUAL HASKELL

⇒

⇒
e

d
n

pwhere dep =

⇒ epep =

⇒; d2d1
d1

d2

(c)

(b)

(a)

(d)

| g1

k

= e1

where

p

. . .|

g = e| k

[]d

match
⇒

match

1

k

...
f

f
(e)

match1

matchk

“ f ” n

“ f ” f

e1 g1

ek gk

n
p

nd

Figure 4.19: Visual syntax: bindings

4.4. THE CORE SYNTAX 95

(a) umatch → p1 · · · pm -> let d in e
| p1 · · · pm -> e [where d]
| p1 · · · pm = let d in e
| p1 · · · pm = e [where d]

⇒

e

d

p1

pm

(b) gmatch → p1 · · · pm | g1 -> e1; · · · ; | gk -> ek [where d]
| p1 · · · pm | g1 = e1; · · · ; | gk = ek [where d]

⇒

e

d

p1

pm

1 g1

ek gk

Figure 4.20: Visual syntax: match clauses

they occur: the former is used within case-expressions, while the latter is used
in function bindings. Although Haskell distinguishes the two cases syntactically,
Visual Haskell does not.

Visually, an unguarded match is similar to a let-expression, with the addition
of the set of patterns. The expression, bindings (if they exist), and the patterns
are all in the same region.3

A second type of unguarded match is also given in figure 4.20a; these con-
tain a let-expression at the top level and have no auxiliary definitions. This
simplifies the common case in which a let-expression occurs at the top level, as
in f p1 . . . p2 = let d in e and \ p1 . . . p2 -> let d in e; visually, the effect is
to remove a redundant containing box.

Figure 4.20b shows the syntax of guarded match phrases. Textually, a
guarded match is a set of patterns p1 . . . pm, a delimiter -> or =, a series of
guards gi and consequents ei, and an optional set of bindings d. Visually, a
guarded match is similar to a series of conditionals, but with the addition of the
bindings and patterns. The bindings and patterns are within the same region;
as for conditionals, each gi and ei is isolated in its own region. Although not
shown in the figure, the visual syntax for an otherwise guard is just blank space.

3 d can in fact redefine variables in p1 . . . pm—although Haskell has no problem with this,
there should perhaps be a way of “crossing out” the over-ridden variables in p1 . . . pm.

96 CHAPTER 4. VISUAL HASKELL

4.5 Improving the visual syntax

The core syntax can be enhanced in several ways. In this section, I will firstly
give sugaring rules in style of section 4.3.3. These rules improve the appearance
of Visual Haskell programs considerably. They do not, however, help with one
of the key reasons for using a visual notation: the handle they give on structural
properties of a program. For example, many of the examples in chapter 5
illustrate arrays of functions connected in various ways. To assist with this kind
of program visualisation, more complex visual representations are needed, and
I give three that I use in this thesis.

4.5.1 Visual syntactic sugar

Figure 4.21 lists the sugaring rules. As explained in section 4.3.3, the layout
manager permits a sugaring rewrite only if the result pict can be sensibly laid
out on the canvas. There are four sets of rules: for icons, variable sharing,
attachment, and argument slots.

Icons A critical ingredient in any visual language is the use of meaningful
symbols. Visual Haskell—in common with many other visual languages—
optionally uses icons to represent application of certain functions; it also
allows the use of icons for variables, constants, and data constructors.
Figure 4.21a gives the sugaring rules for icons. (Recall that a quoted
production is visual meta-syntax for a displayable string, and a squiggly
box is visual meta-syntax for an icon.) This icons I use for standard
prelude data constructors and functions were shown in figures 4.6 and 4.7;
more icons for special cases will be introduced in following chapters where
necessary.

Sharing In the core visual syntax, each occurrence of a variable in a textual
Haskell program produces a unique pict on the canvas. If layout permits,
these picts can be shared—that is, have more than one arc connected to
them. There are two cases captured by the rewrite rules of figure 4.21b:
in the first, the arcs from a variable box can be re-connected to a pattern
variable box of the same name and with zero or more output arcs; the
variable box is deleted from the canvas. In the second, the arcs from a
variable box can be re-connected to another variable box of the same name
with one or more output arcs; the first box is deleted from the canvas.

Attachment Picts can be attached instead of connected (figure 4.21c). Again,
there are two rules. In the first, any two picts connected by a data arc can
be attached; the arc and the two ports disappear from the canvas. The
figure uses a blank diamond to denote any visual syntax; a numeral in the
bottom-right corner distinguishes unique occurrences. In the second rule,
any pict and a pattern connected by a binding arc can be attached.

Argument slots Enhanced Show-and-Tell (ESTL) [98] and DataVis [58] have
function slots . A function slot is a position in the icon of a higher-order

4.5. IMPROVING THE VISUAL SYNTAX 97

⇔“ f ”
“ f ”

(a)

“k” ⇔ k

“v” ⇔ v

“c” c⇔

“ f ” f⇔

“v”

“v”

≥0

≥1

⇔ “v”

“v”

“v”

≥1

≥1

⇔ “v”

21 21

p p

⇔

⇔

(b)

(c)

(d)

ee ⇔

⇔“v” “v”

Figure 4.21: Sugaring rules: a) icons; b) sharing; c) attachment; d) argument
slots

98 CHAPTER 4. VISUAL HASKELL

(a) (b) (c)

Figure 4.22: Illustrating type annotations: a) (a,b); b) [[a]]; c)
Stream (Vector α)

function in which a function argument can be placed. Visual Haskell has
a generalised form of this idea, which I call argument slots: an icon can
have slots for one or more of its arguments—whether functions or not. If
layout permits, the argument connected to the corresponding input port
is drawn in the argument slot—that is, within the icon.

There are three rules for argument slots. In the first, a function argument
to a higher-order function has its name placed into the slot. This is used
frequently for higher-order functions, such as the application of map in
figure 4.4b. The second rule is similar but applies to variables. The third
allows any arbitrary expression to be placed within an argument slot. This
allows function icons to be placed into the slot; even complex expressions
can be placed into the slot if layout permits. In all three rules, the port
corresponding to the argument disappears.

Type annotations I use an informal system of annotations on arcs to indicate
their types. Figure 4.22 illustrates a few annotated arcs: type variables
(such as α) are represented by black circles; tupling by placing tuple el-
ement annotations side-by-side on an arc; lists by an asterisk-like anno-
tation; streams (section 5.3) by an open circle; vectors (section 5.2) by a
slash. If necessary, a type annotation is enclosed by a box, which can in
turn be annotated.

4.5.2 Iteration boxes

Most general-purpose visual programming languages support iteration in some
form or another. All of the visual dataflow languages in Hils’ survey [59], for
example, support iteration. One technique is the use of special iteration con-
structs; Labview, for example, incorporates for-loops and while-loops into its
structured dataflow model in this way [81]. Each is a containing box with an
internal dataflow graph, which executes each time through the loop. Other lan-
guages use cycles and special-purpose dataflow nodes; in Khoros, for example,
the programmer places a LOOP glyph at the start of a section of flow-graph
to be iterated, and a feedback connection to this glyph from the end of the
flow-graph section [154].

Pure functional languages rely on recursion instead of iteration. In a higher-
order language such as Haskell, patterns of iteration are captured by higher-

4.5. IMPROVING THE VISUAL SYNTAX 99

(a) (b)

f f

Figure 4.23: Illustrating iteration: a) map; b) scanl

order functions; applying the higher-order function is equivalent to coding an
iterative loop in other languages (see sections 5.2.2 and 5.3.4). Visual Haskell,
along with the visual functional language VisaVis [109], thus uses a function
icon to represent iteration.

There is, however, a limit to how much information one icon can convey,
and so in previous work [113] I have used a representation similar to structured
dataflow iteration constructs. Two examples are given in figure 4.23. In this
representation, the computation performed on each iteration is shown as a data-
flow graph inside a generic icon representing the type of iteration. Each input
to this graph is one element of an input aggregate (list, stream, or vector); each
output is one element of an output aggregate.

For lists, the generic icon is a white-shadowed box, as used by the icon for
map. In map f (figure 4.23a), for example, the internal graph is a function
application—that is, f is applied to an input element to produce an output
element. If the function maintains a “state” value between iteration, this is
shown as a crossed box. In scanl f (figure 4.23b), for example, the state is one
input to each iteration; it is also updated with the output element. Figure 5.22
shows a more complex example of this representation.

4.5.3 Unfolded higher-order functions

Higher-order functions combine functions, and are thus often more usefully
thought of—in a visual language—as a means of constructing program graphs.
For example, I gave in figure 4.14f a special syntax for function composition,
which combines two function boxes in a meaningful way. Without this syntax,
f . g would be represented as a box labelled “.” connected to function-variable
boxes labelled f and g.

Higher-order functions such as map and scanl can be thought of as rep-
resenting an “array” of function applications—one to each element of a list.
Figure 4.24a illustrates map shown in a manner that conveys this idea. The two
narrow horizontal boxes represent deconstruction of a list into individual ele-
ments, and construction of a list from its elements. The dashed line symbolises
elided function application boxes.

100 CHAPTER 4. VISUAL HASKELL

(a) (b)

f f f f f f

Figure 4.24: Unfolded higher-order functions: a) map; b) scanl

A second style of representation unfolds a higher-order function assuming
certain properties of its argument. For example, figure 4.24b shows scanl as
it would appear if its argument list contained four elements. Both of these
styles show programs using higher-order functions in a very “structural” way;
sections 5.4 and 5.5 use unfolded representations extensively.

I am unaware of any proposal to incorporate this kind of representation into
a visual language. Although Lauwereins et al [84] use unfolded diagrams, they
do not appear to be part of their visual interface yet. In Visual Haskell, these
representations are still informal. To incorporate them into a visual interface,
one could perhaps mark a list (or other aggregate data type) for “expansion.”
These unfolded representations would then be a valid sugaring rewrite rule.

4.5.4 Wiring

A number of functions on lists re-arrange elements of their argument list. When
used in conjunction with unfolded higher-order functions, it is helpful to draw
these functions as “wiring.” Figure 4.25 illustrates the expression map f ·reverse.
The long rectangles on the right and left represent list construction and de-
construction respectively. reverse is shown as a mass of wires, and map f is
shown unfolded.

The need for wiring is more apparent with the vector operations of sec-
tion 5.2. Figure 5.5 gives example of additional wiring functions, while figure 5.9
uses them in the definition of the Fast Fourier Transform.

4.6 Summary

There is, I believe, significant value in a precise visual syntax for Haskell that
can replace the ad-hoc notations that are sometimes used. This chapter pre-
sented such a syntax for a substantial portion of Haskell. The missing syntax
will need to be provided to make Visual Haskell complete: apart from type

4.6. SUMMARY 101

f

f

f

f

f

f

f

f

Figure 4.25: Wiring: map f · reverse

declarations, syntax is needed for user-defined operators, modules, list com-
prehensions, and array comprehensions. In addition, a way of specifying more
sophisticated syntax, as used in sections 4.5.2 to 4.5.4, is also needed. One ap-
proach I have explored is to translate abstract syntax into a low-level picture
language like that used in picture layout grammars. This approach turned out
to be too cumbersome for the core syntax, but may be acceptable if limited to
special purposes.

Although I have used Visual Haskell mainly for program visualisation so far,
the idea of a “two-view” development system is intriguing. In a two-view system,
the programmer can switch between text and pictures at arbitrary levels of a
program. For example, a picture can contain an expression in a text box, while
a text window can contain a picture. Figure 4.26 illustrates the idea with two
alternative views of the expression map ((\x y -> x + y) (f x)) (illustrated
as a complete picture in figure 4.17c).

map ((f x))

λ

x

yxf\x y –> x + y

(a) (b)

Figure 4.26: Mixing text and pictures: a) text-in-picture; b) picture-in-text

102 CHAPTER 4. VISUAL HASKELL

Chapter 5

Static Process Networks

Real-time signal processing programs are oriented around two key aggregate
data-types: arrays, which I will call vectors, and streams. Their base elements
are almost invariably numbers. Streams are fundamental to a real-time signal
processing program, even if they only exist as a data structure at the interface
to external signals. Vectors are inherent in signal processing algorithms that
operate on segments of a signal, such as transforms.

Digital signal processors are designed to operate most efficiently in loops,
and it is therefore important that a high-level programming language be able to
express iteration through vectors and streams clearly. The first section of this
chapter develops a Vector data-type and associated functions, which capture the
key operations on vectors. An example, the Fast Fourier Transform, illustrates
their use.

Because Haskell is lazy, it is easy to write infinite data structures. Func-
tional operating systems and process networks (sections 2.3.5 and 2.3.6) use
lazy lists to model communications channels between processes. Here, I will use
an explicitly-defined Stream data-type to model communication, and give six
Haskell functions that can be implemented using the canonical SDF actors of
section 3.2.5.

With these six functions, we can use the features of Haskell to increase
the expressiveness with which we write dataflow networks: some higher-order
functions encapsulate common types of processes; other higher-order functions
capture common interconnection patterns, such as serial and parallel connection;
yet others represent various linear, mesh, and tree-structured interconnection
patterns. The use of these language facilities for constructing process networks
was explored by Kelly [77]; here, I extend this work to real-time streams and
signal processing. This style of programming could perhaps be called “data-
parallel process programming,” and provides a counter to the position that
functional parallelism does not provide adequate abstraction from individual
threads of computation.

Because all functions on streams are defined in terms of the six primitive
functions, the programmer does not define recursive functions on streams. This

103

104 CHAPTER 5. STATIC PROCESS NETWORKS

style of programming is advocated by Backus [11] and by Bird [20], because:
i) non-recursive programs tend to be more concise than recursive ones; and ii)
there is less chance of making errors, such as forgetting a termination condition.

The final task of this chapter is to adapt the algebraic style of program
transformation to streams and processes. The result is a set of provably-correct
program transformations that can be used to alter the structure and degree of
parallelism present in a process network program. We can use these techniques
to eliminate apparent efficiency defects caused by the use of very-high-level pro-
gramming language, and to tailor a program to a given hardware configuration
for better execution efficiency.

5.1 Related work

At present, most “real-world” DSP programming is in assembler or C. Block-
diagram systems are perhaps the most popular alternative programming tech-
nology. One of the drawbacks of block-diagram systems is that they are generally
oriented towards particular hardware systems, and thus fall short of a generally-
applicable production tool. Willekens et al argue that block-diagrams alone are
inadequate for specifying DSP systems, since they do not permit expression of
control flow; detailed computation is best specified in a textual language, leaving
the block diagram to higher levels of description [153].

Another approach uses light-weight operating system kernels and support
libraries [103, 39, 142]. This is particular evident in parallel systems, where the
added complexities of multi-processor communication and synchronisation seem
to encourage adoption of multi-tasking kernels.

The approach in which I am interested here is to use a programming lan-
guage, but at a much higher level than C. Silage [57] is perhaps the best example
of a language designed specifically for DSP programming; recent work explores
higher-level signal processing programming concepts [141]. It has also evolved
into a commercial product, DFL [153].

The most noticeable feature of Silage is its support for streams of data and
delays. The expression x@1 is the signal x delayed by one sample. Arithmetic
operations extend point-wise to streams. Silage also supports fixed-point data
types and arithmetic, an important aspect of programming real DSP devices.

Freericks and Knoll use recursive functions to define signal-processing func-
tions [80]. Higher-order functions can also be used to capture particular patterns
of recursion [48]. An unusual aspect of their language is an explicit suspension
construct that supports data-driven programming; this is used to code inter-
faces to real-time I/O channels. They propose to use partial evaluation in their
compiler to eliminate the potential run-time overhead of recursion.

A recurring theme in DSP programming is the use of streams to represent
discrete-time signals. Streams were first proposed by Landin as a means of sep-
arating the control structure of Algol-60 loops from the loop body [83]. Landin
represents a stream as a pair of the head element, and a nullary function repre-
senting the rest of the stream. Stream elements are thus “evaluated when they

5.2. VECTORS 105

are come to”—calculation of each successive loop control value and execution
of the loop body proceed in an interleaved manner.

Burge further developed the idea of streams, as a way of structuring pro-
grams as a set of independent sub-programs [28]. He uses the same represen-
tation as Landin, and lists a number of functions that are now standard in
functional programming languages: maps applies a function to each element
of a stream; generate f x produces the sequence x, f x, f2 x, and so on; zips
produces a stream of pairs from two streams; filter removes elements that fail
to satisfy a predicate; and so on.

Wendelborn and Garsden compare a number of stream implementations
[152], and point out the difference between channels and streams, noting that
the terms overlap somewhat in usage. A channel is destructive, since elements
are appended to the channel. Kahn process networks and the dataflow process
model use channels, since new tokens are appended to them. Streams are func-
tional: the stream producer is part of the stream itself. Landin and Burge, for
example, use a function to represent the remainder of the stream; lazy functional
languages implement streams as recursively-defined, lazily-evaluated lists.

The ease with which lazily-evaluated streams lend themselves to signal pro-
cessing has also been noted by Globirsch [52]. He uses lazy lists to simulate
signals, and gives a number of simple filters in Haskell, suggesting that the
conciseness of the programs makes Haskell an excellent tool for prototyping.
Prototyping image processing programs in a functional language is advocated
by Michaelson et al , who use four higher-order functions to code a range of
image processing algorithms [96]. In related work, Bratvold compiles these
higher-order functions into parallel code for a Meiko Transputer system [22].

5.2 Vectors

Vectors play an important role in signal processing. Recall from section 2.4.4
that the instruction sets of modern DSPs support very efficient vector opera-
tions. This section describes a Vector datatype implemented in Haskell, and
a set of functions in Haskell that can be implemented efficiently on DSPs.
These functions are typical of those present in what Sipelstein and Blelloch
call “collection-oriented” languages [128].

Appendix A lists the code for the Vector module. As for the standard
prelude, I will treat this code as a semantic definition only—in other words,
the compiler “understands” the vector functions and generates efficient code for
them. The key issue is avoiding laziness: if vector functions can be compiled in
a hyper-strict context, we can avoid graph-building, and access vector elements
through pointers.

5.2.1 The Vector datatype

The Vector datatype is defined in Haskell as

data Vector α = NullV

106 CHAPTER 5. STATIC PROCESS NETWORKS

| α :> Vector α

A vector thus has type Vector α, where α is the type of its elements. Defined
like this, vectors are much the same as lists, but with different data constructors.

The vector function takes a list and produces a vector:

vector [x, y, z] → (x :> y :> z :> NullV)

Because this is clumsy, I will assume that Haskell has a special syntax for
vectors, as it does for lists, and enclose vectors in angle brackets, thus: 〈x, y, z〉.
Instead of NullV, I will write 〈 〉.

I also find it convenient to annotate the vector type signature with vector
lengths. For example, the function to perform an inner-product summation of
two vectors has the type:

ip :: Num α ⇒ Vectork α → Vectork α → α

For input arguments, interpret these length annotations as pre-conditions:
that is, they specify conditions on the arguments that must be satisfied for the
function to produce a well-defined result. This is a key part of the “programming-
by-contract” approach to software development [94]. In this case, the two input
vectors must be the same length. Since a compiler is not required to generate
correct code if pre-conditions are violated, an implementation can focus on gen-
erating the fastest code possible for two equal-length vectors (for example, by
omitting a test for equal length).

If type annotations are attached to nested vector types, then the inner an-
notation specifies that all sub-vector are the same length. For example,

xs :: Vector (Vectork α)

is a vector of vectors, in which all sub-vectors are the same length, whereas the
sub-vectors in

ys :: Vector (Vector α)

may be different lengths. By annotating vector functions this way, we can choose
either efficient implementation (xs) or generality (ys), as appropriate. It would
be an interesting research topic to extend the Haskell type system to infer at
compile-time whether or not these constraints are met.

5.2.2 Iterators

Vector iterators are higher-order functions that apply a function across all el-
ements of a vector. In effect, each of them captures a particular pattern of
iteration, allowing the programmer to re-use these patterns without risk of er-
ror. This is one of the most persuasive arguments in favour of inclusion of
higher-order functions in a programming language [64].

Figure 5.1 shows the iterators unfolded, in the style of section 4.5.3. The
diagrams illustrate the pattern of computation represented by each iterator in

5.2. VECTORS 107

a very structural way; this viewpoint of higher-order functions is particularly
important when using them to build networks of processes (section 5.4). The
iterators all have complexity O(n) in the length of the vector. Their types are
listed in figure 5.2.

The simplest iterator is mapV (figure 5.1a), which is analogous to map on
lists. For example,

mapV (+1) 〈1, 2, 3, 4〉 → 〈2, 3, 4, 5〉

iterateV (figure 5.1b) produces a vector of a specified length from an initial
value and a function which produces each successive value. The first element of
the vector produced by iterateV is the initial value; for example,

iterateV 5 (+1) 3 → 〈3, 4, 5, 6, 7〉

To generate a vector of k complex numbers equally spaced around the unit
circle, we can write:

mapV cis (iterateV k (+(2.0× pi/k)) 0.0)

where cis θ = cos θ + j sin θ. The copyV function creates a vector containing
k copies of a given element; it is easily defined with iterateV:

copyV :: Int→ α → Vector α
copyV k x = iterateV k id x

where id x = x.
foldlV (figure 5.1c) and foldrV “fold” a vector into a single value. For exam-

ple, to sum the elements of a vector,

foldlV (+) 0 〈1, 2, 3, 4〉 → 10

This particular expression is common enough to make it worth giving a name
to:

sumV :: Num α ⇒ Vector α → α
sumV = foldlV (+) 0

Like some other vector iterators and many of Haskell’s higher-order functions
on lists, the folding functions come in “left-handed” (foldlV) and “right-handed”
(foldrV) flavours. The left-handed flavour iterates from the first element to the
last; the right-handed flavour iterates from the last element to the first. Note,
however, that the right-handed functions are not quite mirror-images of the left-
handed ones, as the typing of the function argument changes—this can be seen
by examining figure 5.2.

scanlV (figure 5.1d) and scanrV “scan” a function across a vector: the result
produced on each application of the function argument is written to the output

108 CHAPTER 5. STATIC PROCESS NETWORKS

f f f f

f f f f

f f f f

f f f f

(a)

(b)

(c)

(d)

(e)

f f f

Figure 5.1: Unfolded vector iterators: a) mapV; b) iterateV; c) foldlV; d) scanlV;
e) meshlV

5.2. VECTORS 109

mapV :: (α → β) → Vectork α → Vectork β
iterateV :: Int→ (α → α) → α → Vector α
foldlV :: (α → β → α) → α → Vector β → α
scanlV :: (α → β → α) → α → Vectork β → Vectork α
meshlV :: (α → β → (α, γ)) → α → Vectork β → (α, Vectork γ)

foldrV :: (β → α → α) → α → Vector β → α
scanrV :: (β → α → α) → α → Vectork β → Vectork α
meshrV :: (β → α → (γ, α)) → α → Vectork β → (α, Vectork γ)

Figure 5.2: Iterator type signatures

vector and used as one input to the next application. For example, to produce
a “running sum” of elements in a vector: 1

scanlV (+) 0 〈1, 2, 3〉 → 〈1, 3, 6〉

meshlV (figure 5.1e) and meshrV capture a “mesh-like” pattern of iteration;
they are like a combination of mapV and scanlV or scanrV. The argument
function produces a pair of values: the first is input into the next application of
this function, and the second is the output value. As an example, consider this
expression:

meshlV (λa x . (x, a)) 0 〈1, 2, 3〉 → (3, 〈0, 1, 2〉)
Note that the second element of the result pair is the input vector shifted right.
We can, if we wish, define the (>>) operator (see next section) as

(>>) :: α → Vectork α → Vectork α
x >> xs = snd (meshlV (\a x -> (x,a)) x xs)

5.2.3 Combiners

Combiners do not perform any computation, but combine vectors and elements
into new vectors. Their type signatures are listed in figure 5.3.

+++ joins two vectors into a single vector. concatV joins a vector of vectors
into a single vector. Note that its type signature requires that all sub-vectors
be the same length. For example,

〈1, 2, 3〉+++ 〈4, 5, 6〉 → 〈1, 2, 3, 4, 5, 6〉
1 Readers familiar with functional programming will notice that this definition differs from

the standard Haskell scanning functions on lists. In comparison,

scanl (+) 0 [1, 2, 3] → [0, 1, 3, 6]

The vector versions are defined as they are so that the output vector is the same length as the
input vector: this affords some efficiency improvement if the input vector can be over-written
with the result.

110 CHAPTER 5. STATIC PROCESS NETWORKS

(+++) :: Vector α → Vector α → Vector α
concatV :: Vectorj (Vectork α) → Vectorjk α

(:>) :: α → Vector α → Vector α
(<:) :: Vector α → α → Vector α
(>>) :: α → Vectork α → Vectork α
(<<) :: Vectork α → α → Vectork α

Figure 5.3: Combiner type signatures

concatV 〈〈1, 2, 3〉, 〈4, 5, 6〉〉 → 〈1, 2, 3, 4, 5, 6〉
The remaining combiners implement shift-register-like operations: (:>) and

(<:) attach an element to the left or right of a vector respectively; (>>) and
(<<) shift an element into the left or right of a vector respectively.

0 :> 〈1, 2, 3〉 → 〈0, 1, 2, 3〉

0 >> 〈1, 2, 3〉 → 〈0, 1, 2〉
A smart compiler will sometimes be able to produce O(1) implementations

of the combiners. Consider the expression e1 +++ e2. If the destination address
registers for e1 and e2 are set to point into the memory area allocated for the
result of the whole of the above expression, the vectors produced by e1 and e2

can be produced directly into the result of (+++). No copying at all is required!
To do this will require some sophisticated analysis.

The shift operators can be implemented with O(1) complexity, using the
modulo addressing hardware of modern DSP devices (page 34). Thus, the (<<)
operator will write its right argument at the current position in the vector and
increment the address register; if it moves outside the vector memory, it is
reset by the addressing hardware back to the first position in the memory. A
function that reads the vector operates in a similar way, reading from the current
position—one position “past” the last element written—up to the last element
written. The (>>) operator is similar, but decrements the address register before
performing the write.

5.2.4 Selectors

Selectors do not perform any computation, but just re-arrange vector elements.
Figure 5.4 lists their types. In Visual Haskell, most selectors can be drawn as
“wiring” (section 4.5.4). Figure 5.5 shows some selectors in this way; as for the
unfolded vector iterators, this visual representation provides a very “structural”
and intuitive grasp of their operation.

The first function, lengthV, returns the length of a vector:

lengthV 〈0, 1, 2, 3, 4〉 → 5

5.2. VECTORS 111

lengthV :: Vector α → Int
atV :: Vector α → Int→ α
selectV :: Int→ Int→ Int→ Vector α → Vector α
groupV :: Int→ Vectorjk α → Vectorj (Vectork α)
transpose :: Vectorj (Vectork α) → Vectork (Vectorj α)
zipV :: Vectork α → Vectork β → Vectork (α, β)
unzipV :: Vectork (α, β) → (Vectork α, Vectork β)

Figure 5.4: Selector type signatures

evensV v = selectV 0 2 (lengthV v ‘div‘ 2) v
oddsV v = selectV 1 2 (lengthV v ‘div‘ 2) v
takeV k v = selectV 0 1 k v
dropV k v = selectV k 1 (lengthV v - k) v
headV v = v ‘atV‘ 0
tailV v = dropV 1 v
lastV v = v ‘atV‘ (lengthV v - 1)
initV v = takeV (lengthV v - 1) v
reverseV v = selectV (lengthV v - 1) (-1) (lengthV v) v

Figure 5.5: Additional selector functions

atV selects an individual element of a vector:

〈0, 1, 2, 3, 4〉 àtV̀ 3 → 3

selectV selects linearly-spaced elements of a vector. The first argument is the
position of the start element; the second the stride between elements; the third
the number of elements. Its result is undefined if any elements are “outside”
the vector. For example,

selectV 1 3 2 〈0, 1, 2, 3, 4〉 → 〈1, 4〉

With atV and selectV, many other useful functions are easily defined (fig-
ure 5.5): to select the odd or even elements of a vector; to take or remove the
first k elements of a vector; to split a vector into two equal halves; to produce
the “head” and “tail” of a vector; to produce the last element of a vector, and
all elements except the last; and to reverse a vector.

groupV splits a vector into a vector of vectors; elements are discarded if the
length of the new sub-vectors does not exactly divide the length of the input
vector. For example,

groupV 2 〈0, 1, 2, 3, 4, 5, 6〉 → 〈〈0, 1〉, 〈2, 3〉, 〈4, 5〉〉

transpose swaps the two outer dimensions of a vector. For example,

transpose 〈〈0, 1〉, 〈2, 3〉, 〈4, 5〉〉 → 〈〈0, 2, 4〉, 〈1, 3, 5〉〉

112 CHAPTER 5. STATIC PROCESS NETWORKS

zipV and unzipV combine two vectors into a vector of pairs, and vice versa.
For example,

zipV 〈0, 1, 2〉 〈3, 4, 5〉 → 〈(0, 3), (1, 4), (2, 5)〉
unzipV 〈(0, 3), (1, 4), (2, 5)〉 → (〈0, 1, 2〉 〈3, 4, 5〉)

These can be used to implement “butterfly” access patterns, as used in the
Fast Fourier Transform algorithm. The two functions duals and unduals are
drawn as “wiring” in figure 5.6. They are defined as:

duals :: Vector2k α → Vectork (α, α)
duals v = zipV (takeV k v, dropV k v)

where
k = lengthV v ‘div‘ 2

unduals :: Vectork (α, α) → Vector2k α
unduals v = let (x,y) = unzipV v in x +++ y

duals requires that the length of its argument is even. Here is an example:

duals 〈0, 1, 2, 3, 4, 5〉 → 〈(0, 3), (1, 4), (2, 5)〉
zipV and unzipV are also useful for defining iterators that accept or pro-

duce more than one vector argument. For example, we can define the function
zipWithV, which applies a function point-wise across two input vectors, as

zipWithV :: (α → β → γ) → Vectork α → Vectork β → Vectork γ
zipWithV f xs ys = mapV (\(x,y) -> f x y) (zipV xs ys)

Any binary operator or function can be extended to operate on vectors in
this way; for example,

zipWithV (+) 〈1, 2, 3〉 〈4, 5, 6〉 → 〈5, 7, 9〉
A useful example of this kind of operation is the vector inner-product:

ip :: Num α ⇒ Vectork α → Vectork α → α
ip v w = sumV (zipWithV (*) v w)

If implemented naively (by copying elements) most of the selectors have O(n)
complexity. A smart compiler could, however, reduce most of the selectors to
O(1) complexity. To see why, recall that a DSP can increment two address
registers by the contents of two index registers in each instruction. Suppose
that elements of a vector are located at contiguous addresses in memory. An
expression such as mapV (+1) will generate a single-instruction loop that, on
each iteration, loads and adds one to a vector element, stores the result of
the previous iteration, and increments both the source and destination address
registers by one. Now consider the expression mapV (+1) · odds. Before the
loop, the source address register is incremented by one (to point to the element
at offset one in the vector), and the loop count halved. The loop itself is the
same, except that the source address register is incremented by two instead of
one. This is easily generalised to arbitrary strides by using index registers.

5.2. VECTORS 113

(a)

(b) (c)

Figure 5.6: Selectors as “wiring”: a) reverseV; b) duals; c) unduals

5.2.5 Example: the Fast Fourier Transform

The Fast Fourier Transform (FFT) algorithm is one of the most important
algorithms in signal processing. Although formulated as a recursive “divide-
and-conquer” algorithm, implementations of the algorithm are usually coded
in an iterative manner for efficiency. As an aid to understanding the iterative
algorithm, a so-called “butterfly diagram” can be drawn; figure 5.7 shows the
diagram for the FFT coded here, for a 16-point input vector. This particular
form of the FFT is a complex, radix-2, decimation-in-time algorithm with bit-
reversed output [133].

Figure 5.8 is the FFT algorithm in Haskell, coded directly from the butterfly
diagram. The top level of this function has a guard that checks that the supplied
log2 vector length is correct. To explain how the rest of this code works, I
will start at the inner functions and work outwards. Bit-reversed re-ordering is
performed by the bitrev function, which assumes that the length of its argument
vector is a power of two. It can be defined recursively as

bitrev :: Vector α → Vector α
bitrev 〈x〉 = 〈x〉
bitrev xs = bitrev (evens xs) ++ bitrev (odds xs)

Usually, however, we would expect an implementation to provide it as a
primitive function, using the reverse-carry addressing of modern DSPs.

The “twiddle” factors, twiddles, is a vector of complex numbers situated on
the unit circle. For n = 16, the value of twiddles is:

114 CHAPTER 5. STATIC PROCESS NETWORKS

x(0)

x(1)

x(2)

x(3)

x(4)

x(5)

x(6)

x(7)

x(8)

x(9)

x(10)

x(11)

x(12)

x(13)

x(14)

x(15)

X(0)

X(8)

X(4)

X(12)

X(2)

X(10)

X(6)

X(14)

X(1)

X(9)

X(5)

X(13)

X(3)

X(11)

X(7)

X(15)

–1

–1

–1

–1

–1

–1

–1

–1

–1

–1

–1

–1

–1

–1

–1

–1

–1

–1

–1

–1

Figure 5.7: The 16-point FFT butterfly diagram

〈W 0
16,W

4
16, W

2
16,W

6
16,W

1
16,W

5
16,W

3
16,W

7
16〉

where
Wm

n = e−2πm/n

twiddles is obtained by applying the negate and cis functions to negative
phase angles on the unit circle, and applying a bit-reversal re-ordering to the
result.

The next level processes a single “segment.” segment groups a segment into
pairs of “dual” nodes, performs a butterfly operation on each pair, and then
regroups the nodes into the original ordering. Note how partial application
is used to distribute the twiddle factor for this segment to all applications of
butterfly. (butterfly is defined on page 18.) Figure 5.9a illustrates (unfolded) a
segment of the second stage of a 16-point FFT.

The next level of the FFT is a single “stage” of the algorithm—there are
four of these for a 16-point FFT. A stage consists of a number of segments m
where m = 1, 2, 4, 8, and so on. stage divides the data vector into segments,
applies segment to each segment and a single twiddle factor, and combines the
result into a single vector again. Figure 5.9b illustrates (unfolded) the second
stage of a 16-point FFT.

The next level is what we might call the “pipeline” level, since it applies
a series of stages one after the other; this pattern is captured by foldrV. The

5.3. STREAMS 115

fft :: Int -> Vector (Complex Float) -> Vector (Complex Float)
fft k xs | n == 2 ^ k = (bitrev . foldrV stage xs . iterateV k (* 2)) 2

where
stage :: Int -> Vector (Complex Float) -> Vector (Complex Float)
stage k = concatV . zipWithV segment (takeV m twiddles) . groupV k

where m = n ‘div‘ k

segment :: Complex Float -> Vector (Complex Float)
-> Vector (Complex Float)

segment twid = unduals . mapV (butterfly twid) . duals

twiddles :: Vector (Complex Float)
twiddles = (bitrev . mapV (cis . negate) . halfcycle) n

n = lengthV xs

Figure 5.8: The FFT function

argument to each stage is the length of segments within that stage: for a 16-
point FFT, for example, the vector required is 〈16, 8, 4, 2〉. The iterateV function
generates this vector (in reverse order). Figure 5.9c illustrates this level of the
FFT.

5.3 Streams

The Haskell Stream datatype defined in this section allows us to simulate data-
flow process network programs in Haskell. As for vectors, I will make some
assumptions about how the compiler will treat this datatype. The Haskell code
for the Stream module is listed in appendix A.

5.3.1 The Stream datatype

The Stream datatype declaration is almost the same as that for Vector:

data Stream α = NullS
| α :- Stream α

As we saw in sections 2.3.5 and 2.3.6, pragmatic implementations of pro-
cess networks in functional programming languages evaluate each element of a
stream in a hyper-strict context—that is, elements are fully evaluated before
transmitting them to another process. Let us therefore assume the same for
Stream.

The stream function produces a stream from a list:

stream [x, y, z] → (x :- y :- z :- NullS)

116 CHAPTER 5. STATIC PROCESS NETWORKS

(a)

(b)

(c)

butterfly

butterfly

butterfly

butterfly

twid

groupVsegment

segment

concatV

takeV

m ndiv

twiddles
k

stage stage

2

stage

2

stage

2

2 4 8 16

bitrev

2

Figure 5.9: Parts of the 16-point FFT in Visual Haskell: a) segment; b) stage;
c) fft

5.3. STREAMS 117

I will assume that Haskell has a special syntax for streams, and enclose
streams in curly brackets, thus: {x, y, z}. Instead of NullS, I will write { }. In
this chapter, I consider only infinite streams.

Annotations on streams indicate their sample rate. To see why, consider the
process that sums corresponding elements of two input streams:

summer :: Num α ⇒ Streamn α → Streamn α → Streamn α

If the two inputs had different sample rates, then buffer memory would very
quickly become exhausted. The annotations, treated as pre-conditions, ensure
that sample rates are always correct.

If a stream contains vectors, than an annotation on the vector type is a con-
straint on the lengths of the vectors. Thus, Streamn (Vectork α) is a stream
of rate n, containing vectors of length k. These annotations will also be use-
ful when transforming process networks. As for vector lengths, extending the
Haskell type system to infer correct sample rates would be most interesting.

5.3.2 Process primitives

In section 3.2.5, I argued that any SDF actor—and therefore any SDF network—
can be built with delays and instances of five actor schemata. In this section, I
give a Haskell function for each of these actors. The types of the six functions
are given in figure 5.10. Recursive definitions are given in section A.

The “cons” operator (:-) attaches an element to the front of a stream. It
is equivalent to placing an initial value in a stream—that is, a unit delay. For
example,

x :- {a, b, c} → {x, a, b, c}
It is common in signal processing for delays to have an initial value of zero,

so define a new function named (confusingly) delay:

delay :: Num α ⇒ Stream α → Stream α
delay xs = zero :- xs

groupS breaks a stream into a stream of vectors of length k, where k is its
first argument. groupS is directly equivalent to the group actor. This is the
basic mechanism by which the sample rate of streams can be decreased. If the
length of the input stream is not a multiple of k, the final incomplete vector is
discarded. For example,

groupS 2 {a, b, c, d, e} → {〈a, b〉, 〈c, d〉}

concatS is the reverse, concatenating a stream of vectors into a stream of
elements. Unlike concat, concatS does not need an argument giving the length
of the vectors in the stream, as it calculates them at run-time. (The vector-
length assertion in the type states that all vectors are the same length.) For
example,

concatS {〈a, b〉, 〈c, d〉} → {a, b, c, d}

118 CHAPTER 5. STATIC PROCESS NETWORKS

(:-) :: α → Streamn α → Streamn α
groupS :: Int→ Streamnk α → Streamn (Vectork α)
concatS :: Streamn (Vectork α) → Streamnk α
zipS :: Streamn α → Streamn β → Streamn (α, β)
unzipS :: Streamn (α, β) → (Streamn α, Streamn β)
mapS :: (α → β) → Streamn α → Streamn β

Figure 5.10: Types of stream functions

zipS combines two streams point-wise into a pair of streams. For example,

zipS {a, b, c} {1, 2, 3} → {(a, 1), (b, 2), (c, 3)}

unzipS is almost the reverse of zipS: it produces a pair of streams from a
stream of pairs. For example,

unzipS {(a, 1), (b, 2), (c, 3)} → ({a, b, c}, {1, 2, 3})

zipS and unzipS are equivalent to the actors zip(2) and unzip(2) respectively.
Haskell’s type system does not allow a function to accept a variable number of
arguments. This restriction is overcome by assuming that there exists a whole
family of zipping and unzipping functions: zipS3, zipS4, and so on. In theory,
this does not affect my claim that the six functions given in this section are the
minimum set of functions needed to write any SDF actor, since triples, four-
tuples, and so on can be represented by nested pairs, and the zipping functions
defined in terms of zipS and unzipS.

mapS is equivalent to the map actor. It applies a function to each element
of a stream:

mapS (+1) {1, 2, 3, 4} → {2, 3, 4, 5}
In section 3.2.3, I discussed the difference between “parameter” and “stream”

arguments. The functional programming language deals quite well with the
two different types of argument: as long as the stream arguments follow the
parameter arguments, it is easy to create parameterised stream functions that
are equivalent to instantiated actors: (groupS 4), for example, is the function
that divides its stream argument into 4-vectors. Slightly more sophisticated are
examples like mapS (∗4), which multiplies each element of its stream argument
by four. There is no need for a “constant stream” of fours, as would be required
by languages such as Lucid [143].

A further point to note is a difference in the way that processes are instanti-
ated. In section 3.2.3, an actor is instantiated by binding it to a unique vertex
name; stream arguments are supplied via the graph topology. With the Haskell
functions of this section, however, a process does not exist as a unique entity
until all arguments have been supplied. I will call a function that contains
streams in its input or output types a process-function; once all arguments are
supplied, the process-function applied to its “parameter” arguments becomes a

5.3. STREAMS 119

process. For example, mapS and mapS f , applied to no further arguments, are
process functions; mapS f xs is a stream, produced by the process mapS f .

Because a process-function does not become a process until all arguments
are supplied, process-functions can be supplied as arguments to higher-order
functions. For example, we can write mapV (mapS f) xs to produce a vector of
processes; section 5.4 explores this idea.

5.3.3 An example

A first-order recursive digital filter is defined by

y(n) = a0x(n) + a1x(n− 1)− b1y(n− 1)

where a0, a1, and b1 are the filter coefficients. This can be reformulated as

w(n) = x(n)− b1y(n− 1)

y(n) = a0w(n) + a1w(n− 1)

The block diagram of this simple filter is shown in figure 5.11a. Define scale
and summer (page 47) as Haskell functions:

scale :: Num α ⇒ α → Stream α → Stream α
scale a xs = mapS (* a) xs

summer :: Num α ⇒ Stream α → Stream α → Stream α
summer xs ys = mapS (\(x,y) -> x + y) (zipS xs ys)

Then, we can define the first-order IIR filter in Haskell as:

iir1 :: Num α ⇒ α → α → α → Stream α → Stream α
iir1 a0 a1 b1 x = let

w = summer x (scale (- b1) w)
u = delay w
y = summer (scale a0 w) (scale a1 u)

in
y

Figure 5.11b shows this definition in Visual Haskell, laid out to mimic the
block diagram, and with icons used for scale, summer, and delay. In this dia-
gram, and from here on, I omit the containing window for function definitions.
This example demonstrates that Visual Haskell can be made to look like block
diagrams, and should therefore be able to tap the same appeal to intuition as
block diagram systems. Note the importance of defining suitable functions to
aid the visual representation of programs. In the textual program, it would have
been as easy to write, for example,

u = 0 :- w
y = summer (mapS (* a0) w) (mapS (* a1) u)

120 CHAPTER 5. STATIC PROCESS NETWORKS

Σa0

a1x

yw

u

Σ

b1

a0

a1

z–1

Σ Σ
a0

a1–b1

x yw

u

(a)

(b) zzzzzzzzzzzzzzzzzzzzzzzzzzz –1

b1–

Figure 5.11: A first-order recursive filter: a) in block-diagram notation; b) in
Visual Haskell

instead of

u = delay w
y = summer (scale a0 w) (scale a1 u)

but we would then not have been able to use icons as effectively.

5.3.4 Process constructors

Of the primitive functions, mapS is the only higher-order function. Additional
higher-order functions are readily defined in terms of the primitives. I call
higher-order functions on streams process constructors, because of their key
role in constructing process networks. Their types and definitions are listed in
figure 5.12; their definitions are shown diagrammatically in figure 5.13.

zipWithS (figure 5.13a), zipOutS, and zipOutWithS (figure 5.13b) are point-
wise process constructors like mapS, but build processes with more than one
input or output. For example, a point-wise addition process is written

zipWithS (+)

A process that outputs the sum and difference of two inputs is written:

zipOutWithS (λx y . (x + y, x− y))

The other process constructors maintain a state. Although the definitions
given in figure 5.12 use a feedback loop to carry the state around a purely-
functional actor, recursive definitions could also be given. For example, scanS
could be defined as

5.3. STREAMS 121

zipWithS :: (α → β → γ) → Stream α → Stream β → Stream γ
zipWithS f xs ys = mapS (\(x,y) -> f x y) (zipS xs ys)

zipOutS :: (α → (β, γ) → Stream α → (Stream β, Stream γ)
zipOutS f xs = unzipS (mapS f xs)
zipOutWithS :: (α → β → (γ, δ)) → Stream α → Stream β

→ (Stream γ, Stream δ)
zipOutWithS f xs ys

= unzipS (mapS (\(x,y) -> f x y) (zipS xs ys))
iterateS :: (α → α) → α → Stream α
iterateS f a = let ys = a :- (mapS f ys) in xs

generateS :: (α → (α, β)) → α → Stream β
generateS f a = let (zs,ys) = zipOutS f (a :- zs) in ys

scanS :: (α → β → α) → α → Stream β → Stream α
scanS f a xs = let ys = zipWithS f (a :- ys) xs in ys

stateS :: (α → β → (α, γ)) → α → Stream β → Stream γ
stateS f a xs = let (zs,ys) = zipOutWithS f (a :- zs) xs in ys

Figure 5.12: Process constructor definitions

scanS f a NullS = NullS
scanS f a (x:-xs) = let x’ = f a x in x’ :- scanS f x’ xs

The two definitions are equivalent; I have chosen the state-as-feedback form so
that these new functions can be treated as hierarchical dataflow actors.

iterateS (figure 5.13c) and generateS (figure 5.13d) produce a stream from a
single input value; the key difference is that iterateS outputs the state on each
application of its argument functions, while generateS produces each output
value and the next state on each application. For example, the process that
produces the stream {0, 1, 2...} is written

iterateS 0 (+1)

A useful function defined in terms of iterateS generates a stream containing
an infinite number of copies of its argument:

repeatS :: α → Stream α
repeatS = iterateS id

scanS (figure 5.13e) and stateS (figure 5.13f) also propagate a state value
between iterations. For example, the process

scanS 0 (+)

122 CHAPTER 5. STATIC PROCESS NETWORKS

(c) d)

(e) (f)

(b)

(a)

xs

ys

xs

ys

a

ys

zs

a

xs
ys ys

zs

a

xs

a
ys

f

f

f f

f f

Figure 5.13: Process constructors: a) zipWithS; b) zipOutWithS; c) iterateS; d)
generateS; e) scanS; f) stateS

produces the running sum of its input stream. A more interesting process is one
that, given some integer k, outputs, for each input value, a vector containing
that value and the past k − 1 values:

slide :: Num α ⇒ Int→ Stream α → Stream (Vector α)
slide k = scanS (<<) (copyV k 0)

For example,

slide 3 {1, 2, 3, 4} → {〈0, 0, 1〉, 〈0, 1, 2〉, 〈1, 2, 3〉, 〈2, 3, 4〉}
This is a common operation in signal processing. To illustrate, the equation

defining a k’th-order finite-impulse-response (FIR) filter with impulse response
h is:

y(n) =
k∑

i=0

h(i)x(n− i)

5.4. PROCESS NETWORK CONSTRUCTION 123

iph

#h

k

Figure 5.14: The FIR filter function

In other words, for each input value, output the inner product of the impulse
response and the most recent k input values. In Haskell:

fir :: Num α ⇒ Vector α → Streamn α → Streamn α
fir h = mapS (ip h) . slide (lengthV h)

fir is illustrated in figure 5.14. The icon for slide is supposed to evoke a
stack with items “falling off” the bottom. There is a large amount of redundant
communication between the two processes: each input value is sent from the
slide process to the scanS process #h times. This apparent overhead can be
removed using program transformation—see section 5.5.2.

Consider now a recursive filter of arbitrary order, shown in block diagram
form in figure 5.15a. Its equation is

w(n) = x(n)−
k∑

i=1

b(i)w(n− i)

y(n) =
k∑

i=0

a(i)w(n− i)

where k is the filter order. This diagram is difficult to draw in a formal notation
because of the arbitrary order. As for the FIR filter, we group all the z−1 delays
into a single state with slide. In the following definition, illustrated in Visual
Haskell in figure 5.15b, I have used two applications of slide for clarity:

iirn :: Num α ⇒ Vector α → Vector α → Streamn α → Streamn α
iirn a b x

= let
c = mapV negate b
w = summer x (mapS (ip c) (slide (lengthV b) (delay w)))
y = mapS (ip a) (slide (lengthV a) w)

in
y

5.4 Process network construction

The previous section gave examples of first-order process networks. A first-
order network is one in which a process-function never appears as an argument

124 CHAPTER 5. STATIC PROCESS NETWORKS

z–1

Σ Σ
a0

a1–b1

x yw

Σ Σ

z–1

an–bn

(a)

(b)

y

wΣ

zzzzzzzzzzzzzzzzzzzzzzzzzzz –1ip c ipa

b #a

kk

x
b

a
cb negate

Figure 5.15: The n-th order recursive filter: a) block-diagram form; b) gener-
alised form

5.4. PROCESS NETWORK CONSTRUCTION 125

(a)

(c)(b)

h g f

f

g

f

g

Figure 5.16: Simple network-forming functions: a) composition; b) fan; c) par

to a higher-order function—each process thus appears explicitly in the program
text.

We can take advantage of the powerful features of the host functional lan-
guage to increase the expressive power available to us for writing dataflow pro-
cess network programs. Higher-order functions are the most useful of these:
they capture patterns of instantiation and interconnection between processes.
This section is mainly concerned with illustrating the kinds of networks that
can be produced this way; the resulting style of programming could perhaps be
called data-parallel process parallelism.

5.4.1 Simple combinators

Function composition connects processes in series; a series of composed functions
forms a pipeline. Figure 5.16a illustrates the pipeline f · g ·h, where f , g, and h
are processes. New higher-order functions to express other topologies are easily
defined. For example, fan applies two processes to one stream; par applies two
processes each to one stream of a pair. They are defined as follows:

fan :: (α → β) → (α → γ) → α → (β, γ)
fan f g xs = (f xs, g xs)

par :: (α → β) → (γ → δ) → (α, β) → (γ, δ)
par f g (xs,ys) = (f xs, g xs)

Figure 5.16b and c illustrate these two functions. Note, however, that this
visual syntax has not been defined in chapter 4. An important feature of a
visual language implementation for visualising these kinds of networks is thus
user-defined visual syntax for higher-order functions.

126 CHAPTER 5. STATIC PROCESS NETWORKS

xs
fs

(a)

(b)

f

xs

fff

Figure 5.17: Linear process networks

5.4.2 Simple linear networks

Supplying a process-function as argument to any vector or list iterator gives rise
to an array of processes (or process-functions). The expression

mapV (mapS f) xs

where xs :: Vector (Streamn α) is a vector of streams, is a linear network of
identical processes. The network is shown in figure 5.17a. A similar network
results for point-wise constructors:

zipWithV (zipWithS f) xs ys

These examples used mapS or zipWithS as the process constructor. This is
for ease of explanation—process constructors that maintain state can also be
used. For example, the following expression builds a linear array of processes,
each built with scanS:

mapV (scanS f a) xs

where a is the initial state of all processes. To build an array of processes with
differing initial state, each taken from a vector as, we can write

zipWithV (scanS f) as xs

5.4. PROCESS NETWORK CONSTRUCTION 127

The previous examples built arrays of identical processes. We can, if we
wish, apply a vector of functions fs so that each process in the network behaves
differently:

zipWithV mapS fs xs

Figure 5.17b illustrates the network that results. This construction corre-
sponds to par, using vectors of functions and data instead of pairs. The network
corresponding to fan, in which a linear array of (different) processes is applied
to a single stream xs is this:

mapV (λf . mapS f xs) fs (5.1)

5.4.3 Pipelines

Composition builds pipelines in which each process is explicitly represented in
the text (figure 5.16a). It is easy to define a higher-order function that connects
a vector of functions in series:

series :: Vector (α → α) → α → α
series fs = foldlV (.) id fs

If each f in fs is a process-function, then series produces a pipeline. For
example, to create a pipeline of k identical processes, make k copies of the
process and pipeline them:

series (copyV k p) xs

where p :: Streamn α → Streamn α. One useful way of creating a pipeline of
different processes is to parameterise a process by supplying each instance of
the process with a different first argument, as in

series (mapV p v) xs (5.2)

where p is the process and v is a vector of arguments. To see how this works,
suppose that p = λi . mapS (f i) and v = 〈1, 2, 3〉. The expression (mapV p v)
evaluates to

〈mapS (f 1), mapS (f 2), mapS (f 3)〉
Unfolding series and then foldlV gives

(mapS (f 1) ·mapS (f 2) ·mapS (f 3))

which is shown in figure 5.18.
There is, however, a more direct way to achieve this result. We can relate

series to foldrV with the following identity:

series (mapV f v) x ≡ foldrV f x v (5.3)

The pipeline of parameterised processes in equation 5.2 becomes

foldrV p xs v (5.4)

128 CHAPTER 5. STATIC PROCESS NETWORKS

1f 3f2f

Figure 5.18: A pipeline process network

We could instead use foldlV to make data flow through the pipeline from left
to right. Some care is needed, as the order of arguments to p must be swapped:

foldlV (flip p) xs v

The idea of parameterising a process network by mapping a process to a vec-
tor of parameters occurs often in pipelines, but is easily used for other network
structures. For example, equation 5.1 is an example in which many instantia-
tions of a process are applied to a single stream; to parameterise each process,
we first produce a vector of parameterised processes, then map these to the
stream xs:

mapV (λp . p xs) (mapV p v)

In this particular case, it is easy to write an expression for the desired network
directly, so:

mapV (λi . p i xs) v

The way in which the parameter to p affects it depends on how p is con-
structed. For example, if

p = λi . mapS (f i)

then the parameter i becomes the first argument to the mapped function, f . If,
however,

p = scanS f

then i is the initial state of p.

5.4.4 Meshes and systolic arrays

The remaining vector iterators, when used with a process-function argument,
give rise to various mesh-structured networks. For example, the following ex-
pression, illustrated in figure 5.19a, “folds” a vector of streams into a single
stream:

foldlV (zipWithS f) s ts

where f is a binary function. The vector generation functions, used in this way,
produce a vector of streams from a single stream, as illustrated in figure 5.19b:

iterateV k (mapS f) s

The scanning vector functions produce a vector of streams from a vector
of streams; as a result, they can be used to express two-dimensional arrays of
processes. For example,

meshlV (zipOutWithS f) s ts

5.4. PROCESS NETWORK CONSTRUCTION 129

(a)

(b)

(c)

ts

s

s

ss

ts

A B D

C

ffff

f f f

ffff

ffff

ffff

ffff

Figure 5.19: Mesh process networks

130 CHAPTER 5. STATIC PROCESS NETWORKS

produces an array of processes with a mesh-like inter-connection pattern. By
applying this function to a second vector of streams, we get a two-dimensional
array of processes as shown in figure 5.19c. The expression for this network is

meshrV (meshlV (zipOutWithS f)) ss ts

The two-dimensional mesh is very like a systolic array, in which a “wave” of
computation proceeds across the array. Patterns such as these algorithms de-
veloped for hardware implementation, and there has been some interesting work
on using functional languages for hardware design. Sheeran’s µFP language, for
example, is a functional language based on Backus’ FP, and includes structur-
ing operations similar to those presented here [127]. This language has evolved
into the hardware design and verification language Ruby, in which circuits are
represented as relations between signals (instead of as functions from signals to
signals) [67]. Haskell has also been used to specify and simulate systolic arrays:
McKeown and Revitt give higher-order functions for expressing systolic arrays
and illustrate with a number of algorithms [92].

5.4.5 Network construction in dataflow systems

Recently, two block diagram systems have included network construction. In
GRAPE-II, geometric parallelism specifies multiple invocations of a block [84].
In the visual language, these invocations all appear as one block. The number
of invocations is specified in a textual language;2 these values must be known at
compile-time. The connection topology is also specified in the textual language.
If the output of one invocation feeds into the input of the next, an additional
feedback arc is also shown. This technique allows complex structures to be
expressed without needing to provide higher-order functions.

Ptolemy has adopted a form of higher-order function notation [86]. Special
blocks represent multiple invocations of a “replacement actor.” The Map actor,
for example, is a generalised form of mapV. At compile time, Map is replaced by
the specified number of invocations of its replacement actor; as for GRAPE-II,
this number must be known at compile-time. Unlike mapV, Map can accept a
replacement actor with arity > 1; in this case, the vector of input streams is
divided into groups of the appropriate arity (and the number of invocations of
the replacement actor reduced accordingly).

The requirement that the number of invocations of an actor be known at
compile-time ensures that static scheduling and code generation techniques will
still be effective. Further work is required to explore forms of higher-order
function mid-way between fully-static and fully-dynamic. For example, a code
generator that produces a loop with an actor as its body, but with the number
of loop iterations unknown, could still execute very efficiently.

2The referenced paper gives these values in a textual form. It is not clear whether they
can be expressed in the visual language.

5.5. PROCESS NETWORK TRANSFORMATION 131

(a) (b)

g

ff

g

Figure 5.20: Illustrating network types

5.5 Process network transformation

Because they lack side-effects, functional languages lend themselves very well
to program transformation. In this section, I will demonstrate the algebraic
style of program transformation, exemplified by the Bird-Meertens formalism
(BMF) [20]. The key characteristic of this style is that it makes extensive
use of a “catalogue” of known algebraic laws of functions, rather than relying
on discovery through lower-level methods. BMF, also known as “Squiggol,”
is being developed as a “programming by calculation” method of developing
programs from specifications. I will use Haskell as the notation for writing
transformations, in a similar manner to [21], instead of the more concise notation
of [20].

The key contribution of this section is to adapt the Bird-Meertens theory
of lists to work with streams; the result is a powerful tool for restructuring
process networks. Particularly powerful transformations become available for
networks constructed with higher-order functions. I identify four distinct classes
of transformation suitable for use with process networks. The transformations
given here are common cases, and are by no means an exhaustive catalogue.

Transforming programs to improve performance is also advocated by Car-
riero and Gelernter [32], who transform between programs expressed in the
most “natural” of their three categories of parallelism, into a more efficiently-
implementable category. However, their transformations are ad-hoc, lacking the
equational basis of the Bird-Meertens style.

5.5.1 Type annotations

Transformations in the Bird-Meertens formalism (BMF) are, in general, in-
dependent of structural information about the arguments of the transformed
functions, other than the types. Unfortunately, many of the transformations of
this section are correct only if arguments satisfy certain structural constraints.
In particular, we will be concerned with the lengths of vectors, and the data
rates of streams. For example, consider the simple network (figure 5.20a)

par (mapS f) (mapS g) (5.5)

We could merge the two processes into one (figure 5.20b), and transform

132 CHAPTER 5. STATIC PROCESS NETWORKS

equation 5.5 into

unzipS ·mapS (par f g) · (uncurry zipS) (5.6)

If the sample rates of the two streams are different, however, equation 5.6 will
not operate as a real-time program. Because equation 5.6 “consumes” data
from both streams at equal rates; data will accumulate on the input with the
higher rate, resulting in buffer overflow or heap exhaustion. This problem can
be isolated at zipS: the sample rates of the two streams do not meet the sample
rate pre-conditions of zipS.

To specify that transformations are only valid if certain length or sample-
rate conditions are satisfied, I will append the annotated type of the expressions
on either side of a transformation. Thus, our example transformation would be
written:

par (mapS f) (mapS g)
≡ unzipS ·mapS (par f g) · uncurry zipS
:: (Streamn α, Streamn β) → (Streamn γ, Streamn δ)

5.5.2 Fusion

A common example of an algebraic law on functions is map distributivity , so
called because it expresses the fact that map distributes backwards through
function composition:

map f ·map g ≡ map (f · g)

This law states that applying g to each element of a list and then f to
each element of the list, is equivalent to applying g then f to each element of
the list. The correctness of this law depends only upon the properties of map,
not upon properties of f or g. This is the essence of the algebraic style of
program transformation: computational behaviours are captured by functions
(with particular emphasis on higher-order functions); structural properties of
expressions are then easily recognised; expressions are transformed using appro-
priate function identities. There are similar identities for other combinations
of functions—foldl and map, for example; collectively, these are known as loop
fusion identities.

The first class of process network transformations is a simple adaptation of
these identities to process network. The simplest is

mapS f ·mapS g ≡ mapS (f · g) (5.7)
:: Streamn α → Streamn β

The left-hand side of equation 5.7 represents two processes (figure 5.21a);
the right-hand side represents a single process (figure 5.21b). Transformation
using this identity thus has the effect of increasing or decreasing parallelism,
depending on the direction in which the transformation is applied. The types
of all fusion identities are the same as equation 5.7, so will be omitted below.

5.5. PROCESS NETWORK TRANSFORMATION 133

gf

(a) (b)

gf

Figure 5.21: Process fusion

We can easily find more fusion identities. Fusion of two processes constructed
with mapS and scanS is captured by:

mapS f · scanS g a
≡ stateS (λa x . let a′ = g a x in (a′, f a′)) a

(5.8)

A more general identity captures fusion of two processes built with stateS:

stateS f a · stateS g b (5.9)
≡ stateS (λ(a, b) x . let (b′, t) = g b x

(a′, y) = f a t
in ((a′, b′), y)

) (a, b)

To illustrate process fusion, consider the inefficient version of the FIR filter
(page 123). Transformation into a more efficient version is straight-forward:

fir h
= (definition of fir)

mapS (ip h) · slide (lengthV h)
= (unfold slide)

mapS (ip h) · scanS (<<) (copyV (lengthV h) 0)
= (fusion: equation 5.8)

stateS (λa x . let a′ = (<<) a x in (a′, (ip h) a′))
(copyV (lengthV h) 0)

= (simplify)

stateS (λa x . let a′ = a << x in (a′, ip h a′))
(copyV (lengthV h) 0)

This version of the FIR filter is harder to read than the original version.
Figure 5.22 shows this version in Visual Haskell using an iterator view (sec-
tion 4.5.2). Although we could have written this less-readable but more effi-
cient version from scratch, it is readily derived from the easier-to-read and more
maintainable version. As well as being easier to read, the original version uses
a well-known utility function (slide).

A difficulty with the process fusion identities is that there seems to be no
end to the number of identities that we may require. This problem was noted

134 CHAPTER 5. STATIC PROCESS NETWORKS

iph
#h 0 s

s'<<

Figure 5.22: The transformed FIR filter

some time ago by Wadler in the context of lazy lists [144]. This led to the de-
velopment of (successively) the techniques of listlessness [145] and deforestation
[147], aimed at automatic fusion of list functions for program efficiency. More
recently, Gill et al discovered an improved method [51], which is now part of
some Haskell compilers.

It is not easy to see, however, how these techniques can be applied to our
purposes, for two reasons. Firstly, they rely on expanding the functions in
question to recursive first-order form; we, however, seek to retain the higher-
order functions, since they are our key to efficient “imperative” implementation
as dataflow actors. Secondly, the transformations are in the fusion direction
only; as often as not, we are as interested in making processes smaller (“fission”)
instead of larger.

5.5.3 Parallelisation

The second class of identity transforms a process containing application of a
vector iterator into a vector of processes, and vice versa. This class of identity
does not appear in BMF, since they are needed only because the operational
characteristics of vectors and streams differ.

I call this class of identity horizontal parallelisation. Two new zipping func-
tions are needed, which zip a vector of streams into a stream of vectors, and
vice versa:

zipx :: Vectork (Streamn α) → Streamn (Vectork α)
unzipx :: Streamn (Vectork α) → Vectork (Streamn α)

The simplest parallelisation identity is this:

mapS (mapV f)
≡ zipx ·mapV (mapS f) · unzipx
:: Streamn (Vectork α) → Streamn (Vectork α)

(5.10)

The left-hand side of equation 5.10 is a single process (figure 5.23a); the
right-hand side is a vector of k processes (figure 5.23b). Since zipx ·unzipx = id
and unzipx · zipx = id , it is straight-forward to modify this identity as follows:

unzipx ·mapS (mapV f) · zipx
≡ mapV (mapS f)
:: Vectork (Streamn α) → Vectork (Streamn α)

(5.11)

5.5. PROCESS NETWORK TRANSFORMATION 135

(a) (b)

(c) (d)

a

a

f

f

f

f

f f

Figure 5.23: Horizontal parallelisation

Equation 5.11 is probably more useful when starting with a vector of pro-
cesses, whereas equation 5.10 is more useful when starting with a single process.

Consider now a process that repeatedly applies foldrV, such as might be
obtained by calculating the sum of each vector in a stream:

mapS (foldrV (+) 0)

We can parallelise this process in a similar manner:

mapS (foldrV f a)
≡ foldrV (zipWithS f) (repeatS a) · unzipx
:: Streamn (Vectork α) → Streamn α

(5.12)

Figure 5.23c shows the left-hand side of this identity; figure 5.23d the right-
hand side. As for process fusion, horizontal parallelisation quickly leads us to
the problem of a large number of combinations of higher-order functions. A
technique for automatically deriving identities of this class would be helpful
indeed.

5.5.4 Pipelining

The third kind of identity constructs or combines pipelines of processes, where
each process is parameterised by a different value. Pipelining was explored
extensively by Kelly [77]. The following identity relates a single process to a

136 CHAPTER 5. STATIC PROCESS NETWORKS

(a)

(b)

v
x x xs

f i
i

λ

f i
i

λ

xs

v

f

Figure 5.24: Pipelining

pipeline of parameterised processes, each constructed with mapS:

mapS (series fs) ≡ series (mapV mapS fs) (5.13)
:: Streamn α → Streamn α

Suppose now that fs is produced by mapping a function to a vector of pa-
rameters, v. The right-hand side then becomes

series (mapV mapS (mapV f v))

which, by map fusion, becomes

series (mapV (mapS · f) v)

As we saw by equations 5.2 and 5.4, foldrV can be used instead of explicitly
parameterising functions or processes. We can rewrite equation 5.13 in the
equivalent form:

mapS (λx . foldrV f x v) xs
≡ foldrV (λi . mapS (f i)) xs v
:: Streamn α

(5.14)

In this form, this identity is similar to horizontal parallelisation of the fold
operators, except that the stream feeds into the end of the pipeline instead of
a vector of streams feeding across the pipeline. I have used the structure on
the left-hand side of equation 5.14 (figure 5.24a) in the FFT example of [113];
it is also similar to the FIR filter example of a second paper devoted to process
network transformation [122]. The right-hand side (figure 5.24b) is a pipeline
of processes, each parameterised by its own i from vector v.

5.5. PROCESS NETWORK TRANSFORMATION 137

5.5.5 Promotion

The fourth class of identity is derived from Bird’s “promotion” identities [21].
The map promotion identity expresses the idea that map can be “promoted”
through concatenation:

map f · concat ≡ concat ·map (map f)

In other words, concatenating a list of lists and applying f to each element is
the same as applying f to each element of each sub-list, and concatenating the
result.

Adapting this identity from lists to vectors, we get

mapV f · concatV ≡ concatV ·mapV (mapV f) (5.15)
:: Vectorj (Vectork α) → Vectorj×k β

Now, for any function

divideV :: Vectorj×k α → Vectorj (Vectork α)

that satisfies

concatV · divideV = id (5.16)
:: Vectork α → Vectork α

we can rewrite equation 5.15 as

mapV f ≡ concatV ·mapV (mapV f) · divideV (5.17)
:: Vectork α → Vectork β

Equation 5.17 gives us a slightly more useful perspective: to apply f to each
element of a vector, divide it into sub-vectors, apply f to each element of each
sub-vector, and join the result back into a vector.

With this, we can change the “grain size” of vectors of processes. For exam-
ple,

mapV (mapS f)
= (promotion: equation 5.17)

concatV ·mapV (mapV (mapS f)) · divideV
= (horizontal parallelisation: equation 5.11)

concatV ·mapV (unzipx ·mapS (mapV f) · zipx) · divideV

(5.18)

The result of equation 5.18, shown in figure 5.25, is a vector of processes with
the size of each process determined by divideV. By adjusting the way in which
divideV breaks up a vector, we can control the degree of parallelism obtained
by this transformation.

A similar law holds for the fold functions; on foldl, the law is3

foldl f a · concat ≡ foldl (foldl f) a

3Bird [21, page 123] gives this law as a variant of the fold promotion law for non-associative
operators.

138 CHAPTER 5. STATIC PROCESS NETWORKS

f

f

Figure 5.25: Promotion

Laws of this kind are useful for controlling the grain size of processes in a
pipeline – see the derivation of the pipeline FIR filter in [122] for an example.

5.6 Summary

This chapter presented an approach to programming dataflow networks in a
functional programming language. I argued that vector functions in a functional
language (section 5.2) provide potential for efficient execution on DSP devices,
and showed how a small set of stream functions (section 5.3) can be used to
write very concise definitions of typical signal processing functions.

Based on these functions, I demonstrated: i) how higher-order functions pro-
vide a very powerful notation for building networks of dataflow processes; and ii)
that program transformation techniques developed for functional programming
languages can be adapted to process networks. In particular, there are four key
classes of transformation that have distinct effects on process networks, and I
gave examples illustrating the use of these four classes. Note that, although I
have not addressed it in this thesis, many similar transformations can be applied
to vector functions—for concrete examples, see [122].

In functional languages, program transformation techniques are applied in
two ways: i) for hand derivation and optimisation of programs, and ii) as an
automatic optimisation tool in functional language compilers. Hand derivation
can be quite difficult, as seen, for example, by my derivation of a parallel FIR
in [122], and Jones’ derivation of the FFT algorithm [67]. I believe the most
appropriate path for further development of the transformations presented here
would be in the context of a transformational dataflow programming tool: the
programmer would choose from a catalog of transformations to be applied by
the tool.

Chapter 6

Dynamic Process Networks

In the previous chapter, I considered static, SDF networks expressed in Haskell.
The use of SDF networks in block-diagram systems like Ptolemy [87] is well-
established, and SDF networks are adequate to describe the bulk of signal pro-
cessing systems—Ptolemy’s predecessor, Gabriel [17], supported only SDF.

As soon as we consider systems which interact with asynchronous events,
however, synchronous dataflow is inadequate. For example, consider the “digital
gain control” shown in figure 6.1. The gain control signal has a value only when
a person changes the position of a gain control knob. In order to produce an
appropriate output signal, we must be able represent the times of occurrence of
gain control values relative to the input signal.

There are two key approaches to modelling time:

• Insert hiatons into the stream. A hiaton is a special token representing
the passage of time [143].

• Attach a time-stamp to each token, denoting the real time at which the
token occurs [24].

In this chapter, I develop a hybrid approach suitable for real-time implemen-
tation: a hiaton can represent any number of ticks of the “base clock” to which

Input signal Output signal

Gain control

Figure 6.1: A simple digital gain control

139

140 CHAPTER 6. DYNAMIC PROCESS NETWORKS

all timing of the stream is quantised. This approach avoids having processes
spend all their time testing for hiatons; it also prevents unbounded latencies, a
potential problem with real-time implementation of time-stamps.

The approach described here contrasts with other approaches to modelling
time, in that it maintains a dataflow implementation focus through the use of
time-passing tokens. Because it explicitly models time, it is more general than
dynamic dataflow systems employing switch and select actors [26]. It contrasts
with the approach taken in the family of “synchronous” (in a different sense
to SDF) languages [13], which compile dataflow-like programs into finite-state
machines.

Timed streams imply dynamic scheduling; they also give rise to dynamic
process networks. (Although dynamic networks can be created using only syn-
chronous stream functions, I have not been able to think of a realistic example.)
A complete music synthesiser example provides ample opportunity to explore
dynamic process networks: the synthesiser exhibits a very high level of asyn-
chronous behaviour.

6.1 Related work

Prior to the development of SDF scheduling, block-diagram oriented simulation
systems used dynamic actor scheduling. Messerschmitt’s BLOSIM simulator
[93], for example, fired actors in round-robin fashion; an actor that had insuffi-
cient input data was required to return to the simulator immediately.

A general approach to supporting multiple models of computation has been
taken in Ptolemy: a domain is a graph that supports a given model of compu-
tation; this graph has an interface that allows it to be embedded within graphs
of a different domain [25]. The “dynamic dataflow” (DDF) domain [42] im-
plements dynamic scheduling of dataflow graphs. In the DDF domain, input
channels to the graph are initialised with a fixed number of tokens, and the
actors fired until no further firings can be made. This allows a DDF domain
to be embedded within an SDF domain. An entirely different approach to time
is taken in the discrete-event (DE) domain [42]. Here, actors operate on timed
events; a global clock is used to order actor firings correctly in time, according
to the times of occurrence of the actor’s input events.

None of these approaches is, however, really suitable for figure 6.1. Pino et
al [107] have recently developed the notion of “peek” and “poke” actors. These
actors act as the interface between two independently-scheduled graphs, running
on two different processors. For example, the multiplier in figure 6.1 would
execute on a real-time DSP device, while the control signal would be written
to a shared memory location by a control CPU. Because the reads and writes
are unsynchronised, the amplitude of the output signal will change as expected
provided that the latency of the control CPU processing is undetectable to a
human listener.

The approach I develop in this chapter explicitly represents time. It thus has
the advantage of precision over Pino et al ’s method, although it will be more

6.2. TIMED SIGNALS AND STREAMS 141

complex to implement. Other languages that explicitly model time include
real-time extensions to Lucid, and the synchronous languages. Lucid [143] is a
dataflow-like language, in which all data—even constants—occurs in streams.
Faustini and Lewis [45] propose that each stream also have an associated stream
of time windows, where a time window is a pair (a, b) that denotes the earliest
time at which the corresponding daton can be produced, and the latest time it
needs to be available. Skillicorn and Glasgow [130] use a similar approach: they
associate earliest and latest time streams with each data stream, and construct
isomorphic nets operating on these streams. From the earliest input streams, the
earliest time at which any token is produced is calculated; from the latest output
streams, the latest time at which any token can be produced is calculated.

The synchronous languages [13] also explicitly model time. They are based
on the synchrony hypothesis: each reaction to an event is supposed to be in-
stantaneous [15]. Inter-process communication in Esterel, for example, is done
by broadcasting events to all processes; the broadcast and all responses to it
are instantaneous. This simplifying assumption allows a precise specification
of time semantics and compilation of programs into finite-state automata. The
family of synchronous languages includes Esterel [15], Lustre [33], Signal [14],
and RLucid, a version of Lucid extended with time-stamps [108].

6.2 Timed signals and streams

In section 2.4.1, a non-uniformly clocked signal x̃ was defined at times given by
its clock , t̃x. I will drop the x̃ notation now, as it will be clear from context
whether a signal is uniformly or non-uniformly clocked.

The clock tx is quantised to a base clock bx = {nT | n ≥ 0} for constant T .
tx thus only has values in bx:

tx(n) ∈ bx, n ≥ 0

If the signal is a sampled version of an analog signal xa, then

x(n) = xa(tx(n)), n ≥ 0

Because I am working within the framework of an existing language, I cannot
add a time semantics to the language, as I could if starting afresh. Instead, I
make time information explicit—that is, time is just data. Tokens that carry
time information are called hiatons: 4n is a hiaton that denotes n ticks of the
base clock, and 4 is a unit hiaton, which denotes a single tick. Tokens that
carry signal data are called datons. A stream carrying datons and hiatons is a
timed stream; here is an example:

{1,4, 3, 4,42, 7}4
where the 4 subscript indicates a timed stream (as opposed to a synchronous
stream).

The Haskell type definition for tokens is:

142 CHAPTER 6. DYNAMIC PROCESS NETWORKS

data Token α = Hiaton Int ---Hiaton

| Daton α ---Single-value daton

| Datons <Token α> ---Timed vector

| Block <α> ---Synchronous vector

Unit datons, denoted by the Daton tag, occupy a single tick of the base clock;
the datons in the example stream above are unit datons. A stream containing
only hiatons and unit datons is called a simple stream. There are two other
kinds of daton: a timed vector is a vector of hiatons and unit datons, written
〈4,42, 7〉4; a synchronous vector is a vector of data, each element of which is
equivalent to a unit daton. The duration of a token is the number of base-clock
ticks it occupies, and is given by the duration function:

duration :: Token α → Int
duration (Hiaton n) = n
duration (Daton x) = 1
duration (Datons v) = sumV (mapV duration v)
duration (Block v) = lengthV v

A timed stream is a stream of tokens. NullT is the stream terminator (equiv-
alent to { } on synchronous streams); :-: is the timed stream constructor:

data Timed α = NullT
| Token α :-: (Timed α)

In an earlier paper [116], I used two representations of passing time: time-
stamps, and unit hiatons. The problem with unit hiatons is that they imply
that processes will do a great deal of work just marking time—that is, processing
hiatons. Time-stamps, on the other hand, have indeterminate latency—some
functions may not produce output until an indeterminate time after they have
read the required input. This is unacceptable for real-time operation, and is the
reason why I have adopted a hybrid approach.

Consider a timed merge function: this function produces a token when it
receives a token on either input, but takes account of token durations so that
the output token appears at the correct tick. Datons are passed to the output;
hiatons result in a new hiaton (of possibly different duration) on the output.
Because the arrival time of tokens is not synchronised to the token durations,
timed merge cannot produce an output hiaton until the next input token is
received—only then is the duration of the output hiaton known. If the dura-
tion of input hiatons is unbounded—as for time-stamped data—then the time
between receiving an input daton and producing the following output hiaton is
also unbounded.

For real-time operation, then, the duration of all tokens must be bounded
by some limit, say L. Suppose that L = 32. The stream {1,474, 2}4 does not
have bounded latency, but the stream {1,432,432,410, 2}4 is. A process that
produces a real-time stream must ensure that it meets this requirement; and a
process that consumes a real-time stream must ensure that its output streams
have latency no greater than that of the input stream.

6.3. FUNCTIONS ON TIMED STREAMS 143

(:-:) :: Token α → Timed α → Timed α

tmapT :: (α → Token β) → (Int→ Token β) → Timed α → Timed β
zipT :: Timed α → Timed β → Timed (Token α, Token β)

tstateT :: (α → β → (α, Token γ)) → (α → Int→ (α, Token γ))
→ α → Timed β → Timed γ

groupT :: Int→ Timed α → Timed α
concatT :: Timed α → Timed α

concatvT :: Timed α → Stream α
timeT :: Stream α → Timed α

Figure 6.2: Types of timed stream functions

6.3 Functions on timed streams

This section presents a set of “primitive” functions on timed streams, as I did
for synchronous streams in section 5.3.2. Again, the aim is to provide a set
of functions with known dataflow actor equivalents, so that a process network
can be translated into a dataflow network. Because, however, the variety of
operations on timed streams is much greater than on synchronous streams, I
cannot claim that these functions are complete in any way. Nor have I provided
dataflow actor equivalents for these functions, as further work is required to find
the most useful set of functions. The types of the functions presented in this
section are listed in figure 6.2. Recursive definitions are given in appendix A.

6.3.1 Basic functions

The first three functions are similar to mapS, zipS, and stateS on synchronous
streams. Because of the presence of hiatons, they are necessarily more complex.
All three accept simple timed streams—that is, streams containing only hiatons
and unit datons.

tmapT has two function arguments: the first is applied to the value of each
unit daton, the second to the duration of each hiaton. Both produce a token—a
hiaton or any kind of daton is acceptable. Using tmapT, we can define a version
of map that only operates on unit datons and ignores hiatons:

mapT :: (α → β) → Timed α → Timed β
mapT f = tmapT (Daton . f) Hiaton

For example,

mapT {1,4, 3, 4,42, 7}4 → {2,4, 4, 5,42, 8}4

144 CHAPTER 6. DYNAMIC PROCESS NETWORKS

tmapT can also be used to define filterT, which replaces unit datons that do
not satisfy a predicate with unit hiatons:

filterT :: (α → Bool) → Timed α → Timed α
filterT p = tmapT

(\x -> if p x then Daton x else Hiaton 1)
Hiaton

The second function, zipT zips two timed streams into a timed stream of
pairs; this stream contains a pair whenever either of its two input streams
contains a unit daton. Because only one of the streams can contain a daton,
one element of the pair can be a daton while the other is a unit hiaton. For
example,

zipT {1,4, 3, 4,42, 7}4 {1,44, 6,4}4
→ {(1, 1),4, (3,4), (4,4),4, (4, 6), (7,4)}4

With zipT, it is easy to define functions that operate on two timed streams.
The first is the unfair timed merge discussed in section 6.2. The unfair merge
outputs only the value from its first input if datons occur on both input streams
at the same time:

mergeT :: Timed α → Timed α → Timed α
mergeT xs ys = tmapT merge Hiaton (zipT xs ys)

where
merge (Daton x, Daton y) = Daton x
merge (Daton x, Hiaton 1) = Daton x
merge (Hiaton 1, Daton y) = Daton y

An operation found in synchronous languages with time semantics produces
elements of one signal (the “data” signal) at the times at which elements of
another signal (the “clock” signal) occur. In the Haskell version, whenT, a unit
hiaton is output if the data signal has no value when the clock contains data.
For example,

{8,42, 5, 4,4, 2, 1}4 ẁhenT̀ {1,4, 3, 4,42, 7}4 → {8,4,4, 5,42, 2}4
The definition of whenT is very similar to that of the unfair merge:

whenT :: Timed α → Timed β → Timed α
whenT xs ys = tmapT when Hiaton (zipT xs ys)

where
when (Daton x, Daton y) = Daton x
when (Daton x, Hiaton 1) = Hiaton 1
when (Hiaton 1, Daton y) = Hiaton 1

tstateT is the final primitive of this first group; it propagates a “state” value
along the stream. tstateT takes two function arguments: one applied to each
daton value, and one to the duration of each hiaton. Both functions also accept

6.3. FUNCTIONS ON TIMED STREAMS 145

a “state” argument, and both produce a pair containing an output token and
the next state. For example, to replace each daton with the number of ticks
since the previous daton occurred, propagate a counter as the state and output
it when a daton occurs:

deltaT :: Timed α → Timed Int
deltaT = tstateT f g 1

where
f a x = (1, Daton a)
g a n = (a+n, Hiaton n)

For example,

deltaT {1,4, 3, 4,42, 7}4 → {1,4, 2, 1,42, 3}4

6.3.2 Timed vectors

A timed vector is a vector of tokens, marked in a timed stream by the tag
Datons. There are two primitives for working with streams containing timed
vectors: groupT and concatT. These functions are analogous to groupS and
concatS on synchronous streams.

groupT produces a timed vector stream from a simple timed stream. Unlike
groupS, the last vector may have a different duration to the rest. For example,

groupT 2 {1,4, 3, 4,42, 7}4 → {〈1,4〉4, 〈3, 4〉4,42, 〈7〉4}4
concatT joins a stream of hiatons, unit datons, and timed vectors back into

a timed stream. To illustrate, let us use concatT to up-sample a simple timed
stream. In the following definition, tmapT is used to replace each daton by a
timed vector containing the daton and a hiaton, and to multiply the duration of
each hiaton by the up-sampling factor. concatT joins the timed vector stream
back into a timed stream.

upsampleT :: Int→ Timed α → Timed α
upsampleT k = concatT . tmapT f g

where
f x = Datons 〈Daton x, Hiaton (k-1)〉
g n = Hiaton (k*n)

For example,

upsampleT 2 {1,4, 3, 4,42, 7}4 → {1,4,42, 3,4, 4,4,44, 7,4}4
A more complex function using concatT “retimes” a simple timed stream.

This is useful for reducing the number of hiatons in streams produced by filterT.
The first argument is the latency of the output stream; the function assumes
that the latency of the input stream is no greater than this value. It works by
propagating a count of the number of ticks since the last daton was output, and
emitting a hiaton when a daton is encountered or the count reaches the latency:

146 CHAPTER 6. DYNAMIC PROCESS NETWORKS

retimeT :: Int→ Timed α → Timed α
retimeT k = concatT . tstateT f g 0

where
f 0 x = (0, Daton x)
f i x = (0, Datons 〈Hiaton i, Daton x〉)
g i n | i+n < k = (i+n, Datons 〈 〉)

| otherwise = (i+n-k, Hiaton k)

For example,

retimeT 2 {1,4, 3, 4,4,4, 7}4 → {1,4, 3, 4,42, 7}4
The requirement that input latency be no greater than the output latency makes
sense when real-time effects are considered. If the input stream has some latency
L, then the timing of the output tokens will still, in effect, exhibit a delay of
L; just because the output hiatons have a lower maximum duration does not
make them advance in time. For the sake of following examples, assume there
is a global variable named latency with value two.

6.3.3 Synchronous and timed streams

The last two functions of figure 6.2 operate on both timed and synchronous
streams. concatvT concatenates a vector containing only unit datons and syn-
chronous vectors into a synchronous stream. Two useful functions defined using
concatvT are fillT, which inserts a specified value into empty slots of a stream,
and holdT, which inserts the most recent daton value into empty slots:

fillT :: α → Timed α → Stream α
fillT a = concatvT . tmapT f g

where
f x = Daton x
g n = Block (copyV n a)

holdT :: α → Timed α → Stream α
holdT a = concatvT . tstateT f g a

where
f v x = (x, Daton x)
g v n = (v, Block (copyV n v))

For example,

fillT 0 {1,4, 3, 4,42, 7}4 → {1, 0, 3, 4, 0, 0, 7}

holdT 0 {1,4, 3, 4,42, 7}4 → {1, 1, 3, 4, 4, 4, 7}
The introduction to this chapter gave a simple example of a timed user

control over a real-time signal processing function. The “digital gain control”
is easily defined by:

6.3. FUNCTIONS ON TIMED STREAMS 147

digitalGain :: Num α ⇒ Stream α → Timed α → Stream α
digitalGain signal control

= zipWithS (*) signal (holdT zero control)

This simple idea can be used to convert any kind of real-time process into
one with dynamic user control.

timeT converts a synchronous stream to a timed stream by adding Daton
tags. For example, we could use it to convert a synchronous boolean signal into
a “clock” stream, defined only when the original stream contains the value True:

clockT :: Stream Bool→ Timed Bool
clockT = retimeT latency . filterT (== True) . timeT

Note that the clock signal is retimed to latency. One use for timed streams
may be to reduce the data rate of a signal. To do so, define a function that
outputs a daton only when the input value changes. This function, edges, is
defined in terms of clockT and whenT; its first argument is the starting value
with which it compares the first value in the stream:

edges :: Eq α ⇒ α → Stream α → Timed α
edges a xs = retimeT latency

((timeT xs) ẁhenT̀
(clockT (zipWithS (/=) xs (a:-xs))))

For example,

edges 0 {1, 1, 3, 4, 4, 4, 7, 7} → {1,4, 3, 4,42, 7,4}4
edges can be used with deltaT to find the distance between zero-crossings of

a signal:

(deltaT · edges True ·mapS (≥ 0)) {0, 1, 2,−1,−1,−2, 1,−1}
→ {42,4, 4,42, 3, 1}4

Suppose we wish to encode and transmit a signal as straight-line segments.
The encoding produces as its first value the first value of the signal, as its second
the slope of the first segment, and thereafter, the slope of the signal whenever
it changes:

encode :: Num α ⇒ Stream α → Timed α
encode xs = edges huge (zipWithS (-) xs (zero:-xs))

where
huge = fromInteger (-100000000)

where huge is some value that cannot appear in the input stream.
For example,

encode {0, 1, 2, 2, 2, 0,−2,−3,−3,−3,−3}
→ {0, 1,4, 0,4,−2,4,−1, 0,42}4

To reconstruct the signal, do a zero-order interpolation and then integrate:

148 CHAPTER 6. DYNAMIC PROCESS NETWORKS

decode :: Num α ⇒ Timed α → Stream α
decode = scanS (+) zero . holdT zero

For example,

decode {0, 1,4, 0,4,−2,4,−1, 0,42}4
→ {0, 1, 2, 2, 2, 0,−2,−3,−3,−3,−3}

6.4 Dynamic process networks

Dynamic process networks arise when streams are “nested.” Typically, syn-
chronous streams are nested within timed streams—that is, each daton of the
timed stream creates one or more processes that produce a new synchronous
stream. This new stream is produced concurrently with other streams already
initiated by the timed stream. After some time, the synchronous streams end,
and the process or processes producing it disappear. This section describes prim-
itive functions that make finite synchronous streams, “spawn” new processes,
and combine streams. The types of these functions are listed in figure 6.3.

6.4.1 Finite synchronous streams

The first four functions of figure 6.3 are used to create finite synchronous
streams. As the example in section 6.5 will show, synchronous streams are
often created by taking an initial prefix of one stream, following it with another
stream, and so on. Consider how we might do this with Haskell standard pre-
lude functions on lists (described in section 2.2.1). To define a function that
produces a stream containing the first five elements of a list followed by an
infinite number of copies of the fifth element, we write:

fiver xs = let ys = take 5 xs
in ys ++ repeat (last ys)

For example,

fiver [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] → [1, 2, 3, 4, 5, 5, 5, . . .]

If we interpret the functions used in fiver as processes, there are four: take,
++, repeat, and last. ++ and last do almost no work: ++ outputs elements of
one stream until it terminates, and then outputs elements of a second stream;
last just waits for a stream to terminate, then outputs the last element.

Because a finite stream often has a second stream appended to it, I have
defined functions on streams to take an additional function argument, of type
α → Stream α. A function of this type is called a generator ; a Haskell type
synonym makes it easier to recognise:

type Generator α = α → Stream α

6.4. DYNAMIC PROCESS NETWORKS 149

doneS :: Generator α
truncateS :: Stream α → Stream β → Generator β → Stream β

takeFiniteS :: (β → α → β) → (β → α → Bool) → β → α
→ Stream α → Generator α → Stream α

takeAsLongS :: (α → Bool) → Timed α → Stream β
→ Generator β → Stream β

Figure 6.3: Types of finite stream functions

For example, the stream version of take, takeS, outputs a given number
of elements from its input stream; it then applies the generator to the last of
these elements. Used this way, the generator is called a stream continuation.
The generator becomes a new process which produces further elements into the
output stream. If takeS is unable to produce any output elements (for example,
the input stream is empty or k = 0), there is no element to which to apply the
continuation. To work around this, takeS also accepts a value to be passed to
the continuation.

For example, the above example, translated to synchronous streams, be-
comes

fiver xs = takeS 5 0 xs repeatS

which requires only two processes.
To terminate the output stream, use the doneS generator. doneS takes a

single element, ignores it, and produces an empty stream. For example, to take
the first five elements of a synchronous stream xs and terminate:

takeS 5 0 {1, 2, 3, 4, 5, 6, 7, 8, 9, 10} doneS → {1, 2, 3, 4, 5}

takeS is defined in terms of a more complex primitive function, takeFiniteS;
the definition of takeS and that of additional finite stream functions are listed
in figure 6.4. takeFiniteS accepts the following arguments:

• A function from a state and the current input value to the next state.

• A predicate from a state and the current input value; the stream contin-
uation is applied to the last output element when the predicate returns
True.

• The initial state.

• The argument to the stream continuation if no output elements were pro-
duced.

• The input stream.

• The stream continuation.

150 CHAPTER 6. DYNAMIC PROCESS NETWORKS

takeS :: Int -> a -> Stream a -> Generator a -> Stream a
takeS = takeFiniteS (\n _ -> n-1) (\n _ -> n > 0)

takeWhileS :: (a -> Bool) -> a -> Stream a -> Generator a-> Stream a
takeWhileS p = takeFiniteS (_ _ -> ()) (_ x -> p x) ()

mapWhileS :: (a -> Bool) -> (a -> b) -> a
-> Stream a -> Generator b -> Stream b

mapWhileS p f a xs = truncateS
(takeWhileS p a xs doneS)
(mapS f xs)

takeWhileDeltaS :: Num a => (a -> Bool) -> a
-> Stream a -> Generator a -> Stream a

takeWhileDeltaS p a (x:-xs) c
= x :- truncateS

(takeWhileS p a (zipWithS (-) xs (x:-xs)) doneS)
xs
c

Figure 6.4: More functions for making finite streams

takeWhileS is also defined in terms of takeFiniteS; it stops reading its input
stream when a predicate fails. For example,

takeWhileS (< 4) 0 {1, 2, 3, 4, 5, 6, 7} doneS → {1, 2, 3}
truncateS is a primitive; it stops reading its second argument stream when

its first argument stream terminates. For example,

truncateS {1, 2, 3, 4} {a, b, c, d, e, f} doneS → {a, b, c, d}
With truncateS, we can define a few more finite stream functions, which will

be used in the synthesiser example. mapWhileS (figure 6.4) applies a function
to elements of its input stream; it stops reading the input stream and calls the
continuation when a supplied predicate fails. For example,

mapWhileS (< 4) (+1) 0 {1, 2, 3, 4, 5, 6} repeatS
→ {2, 3, 4, 4, 4, 4, . . .}

takeWhileDeltaS is like takeWhileS, but stops reading the input stream and
calls the continuation when the difference between successive elements fails to
satisfy the supplied predicate. For example,

takeWhileDeltaS (< 2) 0 {1, 2, 3, 5, 7, 9} doneS → {1, 2, 3}
The final primitive in this group is takeAsLongS. This function stops reading

a synchronous stream when a daton of a timed stream fails a supplied predicate.

6.4. DYNAMIC PROCESS NETWORKS 151

spawnT :: (α → Bool) → Timed α → Timed (Timed α)
combineT :: (Vector α → β) → Timed (Stream α) → Stream β

Figure 6.5: Types of dynamic process functions

For example,

takeAsLongS (< 6) {1,42, 4,42, 7,4}4 {1, 2, 3, 4, 5, 6, 7, 8} doneS
→ {1, 2, 3, 4, 5, 6}

6.4.2 Dynamic process functions

The last two primitive functions given in this section “spawn” new streams, and
combine synchronous streams. Their types are given in figure 6.5. spawnT is
the key to building dynamic process networks. For each daton that satisfies a
given predicate, spawnT creates a new daton that is its argument stream from
that daton on. Datons that do not satisfy the predicate result in a unit hiaton.
For example,

spawnT odd {1,4, 3, 4,42, 7}4
→ {{1,4, 3, 4,42, 7}4,4, {3, 4,42, 7}4,4,42, {7}4}4

Each stream within the top-level stream can produce new processes. Let
us define a function which produces, for each odd daton in a timed stream, a
synchronous stream containing 3 copies of that daton:

odder :: Num α ⇒ Timed α → Timed (Stream α)
odder xs = mapT proc (spawnT odd xs)

where
proc (Daton x :-: xs) = takeS 3 (repeatS x) doneS

For example,

odder {1,4, 3, 4,42, 7}4 → {{1, 1, 1},4, {3, 3, 3},4,42, {7, 7, 7}}4

If we line these streams up to show the times at which elements are produced,
we get

Time 1 2 3 4 5 6 7 8 9

Values 1 1 1
3 3 3

7 7 7

A nested stream of synchronous streams can be combined into a single syn-
chronous stream with combineT. combineT accepts a function which is applied

152 CHAPTER 6. DYNAMIC PROCESS NETWORKS

to a vector of values produced in that tick by all existing synchronous sub-
streams; if there are no streams producing data at that time, this function will
be applied to an empty vector. For example,

combineT sumV {{1, 1, 1},4, {3, 3, 3},4,42, {7, 7, 7}}4
→ {1, 1, 4, 3, 3, 0, 7, 7, 7}

6.5 A digital music synthesiser

This section illustrates the use of dynamic process creation to generate musical
tones. The synthesiser receives a timed stream of tokens that represent “note-
on” and “note-off” events; on each note-on event, it creates new processes to
generate a note of the specified frequency. Eventually, the note decays to noth-
ing, and the processes producing that note disappear.

There is a great deal of dynamism in this example, and readers familiar with
the strict real-time constraints of DSP may doubt that it is possible to imple-
ment a program like this in real time. That it is possible has been shown by
the implementation of a polyphonic synthesiser in C on a single TMS320C30,
by Michael Colefax [36]. Colefax’ program implements a synthesiser with a
similar (although simpler) structure to that of the following Haskell program.
It can generate up to 17 notes when generating sine waves, but only two with
formant-wave-function (FWF) synthesis (section 6.5.4). With re-coding of se-
lected parts of the FWF algorithm in assembler, considerably more notes should
be achievable.

6.5.1 Notes

The input to the synthesiser is a timed stream of notes. The NoteEvent type
and associated types and functions are listed in figure 6.6. This stream is typ-
ically produced by an interface to a music keyboard: when a key is pressed, a
NoteOn daton is generated, containing the note ID, its frequency, and an am-
plitude value reflecting how hard the key was struck; when the note is released,
a NoteOff daton is generated, containing the note ID. Some time after the note-
off event, the note decays to nothing; a note thus exists from the time that
its note-on event occurs until some time a corresponding note-off event occurs.
This is a polyphonic synthesiser, so an arbitrary number of notes can be active
simultaneously.

The note event stream I will use in this example is:

notes = {44, NoteOn 7 3000.0 0.25, 415, NoteOn 3 5000.0 0.4,

414, NoteOff 3, 425, NoteOff 7,

418, NoteOn 11 6000.0 0.1, 49, NoteOff 11, 424}4

The sample rate of the synthesiser is 32,000 Hz.

6.5. A DIGITAL MUSIC SYNTHESISER 153

type Frequency = Float
type Amplitude = Float
type NoteID = Int
type Envelope = [(Float, Float)]

data NoteEvent = NoteOn NoteID Frequency Amplitude
| NoteOff NoteID

isNoteOn (NoteOn _ _ _) = True
isNoteOn (NoteOff _) = False

isNoteOff noteid (NoteOff nid)
| noteid == nid = True
| otherwise = False

isNoteOff noteid _ = False

sampleRate :: Float
sampleRate = 32000.0

Figure 6.6: Note events and associated code

6.5.2 Envelopes

When a note-on event is received, the synthesiser starts generating a note of the
appropriate frequency. The amplitude of the note is controlled by an “envelope,”
which is a series of straight-line segments, sampled at 1/T . An envelope is
specified as a list of (slope, target) pairs; when each segment is started, it
proceeds towards the target value at the value indicated by the slope. A slope
of zero indicates that the current value is to be held indefinitely. The function
rampTo of figure 6.7 generates a synchronous stream for a single segment of the
envelope; the function ramps recursively processes a list of (slope,target) pairs
to join a series of segment streams end-to-end.

A typical note-on envelope is an “attack-decay-sustain” envelope, such as

attack = [(6400.0, 1.01), (−3200.0, 0.49), (0.0, 0.0)]

When a note-off event is received, the note envelope decays from its current
value to zero:

decay = [(−1000.0, 0.0)]

The complete note envelope is its attack envelope followed by its decay en-
velope. Function envelope of figure 6.7 generates the complete note envelope:
it starts an envelope on a note-on event, and uses takeAsLongS to switch to
the decay envelope when the corresponding note-off event occurs in the note
event stream. The amplitude of each note’s envelope is scaled by the ampli-
tude parameter in the note-on event. The dashed line in figure 6.10 shows the
superimposed envelopes of the above note event stream.

154 CHAPTER 6. DYNAMIC PROCESS NETWORKS

ramp :: Float -> Generator Float
ramp slope = tailS . iterateS (+ (slope/sampleRate))

rampTo :: Float -> Float -> Float -> Generator Float -> Stream Float
rampTo start slope target cont

| slope < 0.0 = takeWhileS (>= target) start (ramp slope start) cont
| slope > 0.0 = takeWhileS (<= target) start (ramp slope start) cont
| otherwise = repeatS start

ramps :: Envelope -> Generator Float
ramps ((slope, target) : rest) start = rampTo start slope target (ramps rest)
ramps _ _ = NullS

envelope :: Timed NoteEvent -> Envelope -> Envelope -> Stream Float
envelope notes@((Daton (NoteOn noteid _ _)):-:_) a d

= attack decay
where
attack = takeAsLongS (not . isNoteOff noteid)

notes
(0.0 :- ramps a 0.0)

decay x = ramps d x

Figure 6.7: Ramp and envelope generators

6.5.3 Note generation

Figure 6.8 lists the code associated with the generation of a single note. siner
is a sine wave generator: given a frequency parameter, it generates an infinite
sine wave of that frequency. flatline is used for testing envelope generators: it
generates an infinite stream of ones.

The notegen function accepts an attack and decay envelope, a waveform
generator (such as siner), and the note-event stream that starts with the current
note. It uses envelope to generate the note envelope, the waveform generator to
generate the note’s waveform, and multiplies the two. It also scales the waveform
by the note’s amplitude. The note terminates when the envelope terminates.

The complete synthesiser is a pipeline of three stages—its code is given in
figure 6.9. Its structure is identical to the dynamic process example on page 151.
Each note-on event produces a new timed stream; for each of these, a note
generator process is created to produce the synchronous stream corresponding
to that note; finally, all of these synchronous streams are summed into a single
synchronous stream.

The waveform generator used by the synthesiser is passed to it as the argu-
ment generate. Figure 6.10 shows the result of evaluating the expression

synthesiser attack decay siner notes

6.5. A DIGITAL MUSIC SYNTHESISER 155

siner :: Generator Float
siner freq = mapS sin (phaser 0.0 freq)

phaser :: Float -> Float -> Stream Float
phaser init freq = iterateS next init

where
next phase = fmod (phase + phinc) (2.0 * pi)
fmod x m = if x > m then x - m else x
phinc = (2.0 * pi * freq) / sampleRate

flatline :: Generator Float
flatline freq = repeatS one

notegen :: Envelope -> Envelope -> Generator Float
-> Timed NoteEvent
-> Stream Float

notegen on off gen notes@((Daton (NoteOn _ freq ampl)) :-: ns)
= mapS (* ampl) (zipWithS (*)

(envelope notes on off)
(gen freq))

Figure 6.8: Note generators

synthesiser :: Envelope -> Envelope -> Generator Float
-> Timed NoteEvent -> Stream Float

synthesiser on off generate = combineT sumV
. mapT (notegen on off generate)
. spawnT isNoteOn

Figure 6.9: The top-level synthesiser

The dashed line in the figure is the sum of the note envelopes, produced by

synthesiser attack decay flatline notes

6.5.4 A formant-wave-function note generator

Although useful for testing, sine waves are musically uninteresting. Formant-
wave function (FWF) synthesis is a time-domain method for simulating the
excitation-pulse + resonant-filter model of sound synthesis [124]. For music
synthesis, the FWF algorithm is relatively simple to implement, as demon-
strated by the implementation of a monophonic synthesiser in assembler on
a TMS320C25 fixed-point DSP chip [119]. Parameters of the algorithm have
a direct relation to the shape of the frequency spectrum, which is helpful for
programming musical sounds, and it can produce rich and interesting sounds.

156 CHAPTER 6. DYNAMIC PROCESS NETWORKS

Figure 6.10: Sine-wave synthesiser output

A formant is a peak in the spectrum of a musical note, and is typical of
instruments based on an excitation pulse and a resonant cavity, including brass,
woodwind, organ, and the human voice. An impulse passed through a resonant
cavity with a single spectral peak produces a sine wave with an exponentially
decaying envelope; in the FWF algorithm, this waveform is produced directly
in the time domain. Typical instruments have three or four resonant peaks,
the shape of which, and the time-variation in the shape of which, give the
instrument its characteristic timbre. In this example, I will produce only a
single, non-time-varying, formant.

Each formant-wave function (FWF) is the product of a sine wave at the
resonant frequency, and an envelope, which determines the shape of the spectral
peak [124]. The envelope is given by:

e(t) =

0, t ≤ 0
1
2 (1− cos(βt))e−αt, 0 < t ≤ π

β

e−αt, t > π
β

(6.1)

The parameters α and β control the shape of the spectral peak. The expo-
nential e−αt never terminates, so, to minimise the computational burden, the
envelope is changed to a linear decay when the rate of decay drops below some
slope δ [119]. The modified envelope is then:

e(t) =

0, t ≤ 0
1
2 (1− cos(βt))e−αt, 0 < t ≤ π

β

e−αt, π
β < t ≤ τ

e−ατ − (t− τ)δ, t > τ

(6.2)

where δ = αe−αt. Thus, τ = 1
α ln(δ

α) is the time at which the exponential decay
changes to a linear decay.

6.5. A DIGITAL MUSIC SYNTHESISER 157

fwfEnvelope :: Float -> Float -> Float -> Stream Float
fwfEnvelope alpha beta delta = zipWithS (*) attack decay

where
attack = mapWhileS (<= pi)

(\p -> 0.5 - 0.5 * cos p)
0.0 (phaser 0.0 (beta/(2.0*pi)))
repeatS

decay = takeWhileDeltaS
(< (-delta/sampleRate))
1.0 (1.0 :- mapS exp (ramp (-alpha) 0.0))
(\x -> rampTo x (-delta) 0.0 doneS)

fwf :: [Float] -> Generator Float
fwf [alpha, beta, delta, fc] freq

= zipWithS (*) (fwfEnvelope alpha beta delta) (siner fc)

periods :: Float -> Timed Float
periods freq = timed (cycle [Daton 0.0, Hiaton ((truncate period) - 1)])

where
period = sampleRate / freq

formanter :: [Float] -> Generator Float
formanter parms = combineT sumV . mapT (fwf parms) . periods

Figure 6.11: Formant-wave-function tone generation

Figure 6.11 lists the code for FWF tone generation. fwfEnvelope generates
the envelope of a single formant-wave-function. The attack stream is the rising
half-cosine wave until time π/β, followed by the last of those values repeated
forever. The decay stream is the exponential decay until time τ , followed by a
linear decay. The total envelope is the point-wise product of the two.

A single format-wave function is generated by fwf, which accepts a list of
FWF parameters, and produces the point-wise product of the envelope and a
sine wave at the resonant frequency, fc.

An FWF waveform generator is a series of possibly-overlapping formant-
wave-functions. A timed stream containing datons only at the times at which
a new FWF is to start is generated by the periods generator. (periods is quite
coarse: it just truncates the period to the nearest integer number of ticks. This
will result in incorrect tuning at higher frequencies, but it is adequate for this
example.) The formanter function mimics the structure of the top level of the
synthesiser: it produces a single FWF for each daton in periods, then sums
them together into a single waveform.

Figure 6.12 shows a portion of the output of the FWF waveform genera-
tor. The dotted line is the envelope of a single FWF. Note that this waveform

158 CHAPTER 6. DYNAMIC PROCESS NETWORKS

Figure 6.12: Formant-wave-function output

will be multiplied by the note’s envelope. Thus, the FWF synthesiser exhibits
asynchronicity both in the times at which notes are produced, and within each
note, at the note’s pitch period. To produce a single FWF, several processes
are created; for each note, hundreds or thousands are created. This dynamism
is inherent in the algorithm; it remains to be seen whether this degree of dy-
namism can be implemented in real time, or whether algorithms like this can
only be implemented by removing some of this dynamism.

6.6 Summary

This chapter demonstrated the use of stream processing functions for writing
dynamic process networks. The approach hinges on a particular choice of time
representation suitable for real-time implementation: hiatons that represent an
integral number of ticks of a base clock. Because of the complexity of this
representation, I have been unable to produce a complete set of primitive func-
tions (section 6.3), as I did for synchronous streams. Nonetheless, many useful
examples were shown.

The functions that generate dynamic process networks (section 6.4) are even
harder to limit to a few key functions. Those I defined and demonstrated in
that section were suited to the kinds of network structure used in the example
application (section 6.5), but other applications will likely require additional
functions. It is not clear yet whether it will be possible to provide a sufficient
set of primitive functions, or whether it will be necessary to allow programmers
to define their own recursive functions. More work on other applications of
dynamic process networks will be necessary to make further assessment of the
validity of this approach.

Chapter 7

Summary

This thesis has covered a lot of ground, not all to the depth individual topics
deserve. In this final chapter, I summarise the particular contributions made by
the thesis, and indicate specific directions in which further work can proceed.
Finally, I conclude with my thoughts on the value of the framework introduced
in chapter 1 and expounded in remaining chapters.

7.1 Contributions

In chapter 1, I introduced a new framework for signal processing development,
in which a high-level textual language, a visual language, and an efficient low-
level execution model (dataflow process networks) combine to form an extremely
powerful tool. Although there is no implementation of the complete framework,
I believe I have laid much of the groundwork for further implementation. Apart
from the working Haskell prototype code (appendix A and in the text), portions
of the framework have been implemented: Dawson’s prototype Visual Haskell
editor [41]; the two implementations of SPOOK—Signal Processing Object-
Oriented Kernel—described in [117] and [95] (see also page 8); and some portions
of a compiler for modern digital signal processors [118].

Key to the framework is an efficient implementation model. The model,
dataflow process networks, although widely used in signal processing develop-
ment environments, lacks a formal description of its semantics. In chapter 3, I
presented a formal syntax and semantics of dataflow actors and processes. As
far as I know, this is the first attempt to present a formal semantics of dataflow
actors and processes in this way. In the final portion of the chapter, I presented
a new form of actor, phased-form actors. Although early in its development, this
kind of actor offers new insights into the behaviour of dataflow actors, and shows
promise as a path to improved semantic descriptions of dataflow networks.

Chapter 4 presented the Visual Haskell language. Visual Haskell is a sub-
stantial design for a visual language; it builds on the work in the functional
programming community that has lead to the establishment of Haskell as the

159

160 CHAPTER 7. SUMMARY

de facto functional programming language. It conforms to the most successful
model of visual languages, pipeline dataflow. The formal syntax presented in
chapter 4 covers a substantial portion of standard Haskell. I used Visual Haskell
extensively in chapter 5 to illustrate functional programs; I believe these exam-
ples demonstrate that the language is usable and (within its stated limitations)
complete. When used to draw functions on streams, it closely resembles block
diagrams (see, for example, figure 5.11). Dawson’s prototype implementation
of the language [41] demonstrates the feasibility of constructing an editor for it.

Throughout the thesis, I have maintained that a functional programming
language is an excellent vehicle for expressing dataflow and “block-diagram”
style systems. Although this realisation is not new, I believe that, in chapters 5
and 6, I have explored this relation in the context of signal processing to a depth
not considered previously. A key realisation during this work is the fact that any
SDF network can be built from only delays and five actors (section 3.2.5). Be-
cause of this, just six functions are all that is required to represent any first-order
SDF network in a functional programming language (section 5.3). This enables
us to employ SDF scheduling techniques as an implementation technology for
this restricted class of functional programs.

Having identified the utility of functional programming for dataflow, I ex-
plored the implications of two key facets of functional programming: higher-
order functions, and program transformation (sections 5.4 and 5.5). Although
well-developed in the functional programming community, these concepts were
foreign to the signal processing community. The use of higher-order functions
in signal processing has been implemented in the Ptolemy system [85], based on
my work on this topic.

Finally, I have proposed and explored a novel representation of timed streams
(chapter 6). A realistic and complete example illustrates how this representation
can be used to express dynamically-changing process networks. Although this
work is still evolving, it nonetheless illustrates a complex dynamic network.

7.2 Further work

There are several key directions in which further work can proceed.
The semantic description of dataflow actors in chapter 3 could benefit from

a more concise notation. Additional sugaring on the syntax of standard-form
actors would make it easier to write actors. For example, refutable state patterns
would make it possible to write actors like iota as a standard-form actor—in
other words, the state becomes part of the rule-selection process. Further work is
needed on the relationship of phased-form actors and dynamic process networks.
Because of the difficulty of finding a complete set of primitive functions over
timed streams, the best approach would, I think, be to translate recursively
defined functions on timed streams into phased-form actors. Further work is
also need on phased-form actors—in particular, an algorithm that derives the
phased form of a network of phased-form actors.

Although Visual Haskell (chapter 4) has proved to be an invaluable visual-

7.3. CONCLUDING REMARKS 161

isation tool, and there has been a prototype implementation, there is still no
complete implementation. It would be an interesting effort to construct a com-
plete editor; an interesting approach may be build a complete Visual Haskell
domain into the Ptolemy system for use in signal processing exploration and
simulation, using say Tcl/Tk [102] as the graphical environment. Further work
is also needed on iconic representations and type annotations, to find useful
representations of the dynamic process networks of chapter 6.

Some of the features described in chapter 5 could be incrementally added
to existing signal processing development systems: higher-order functions, and
a simple catalogue of program transformations, for example. Still, the most ef-
fective means of implementing the dataflow-network-in-Haskell approach would
be to add a new domain to the Ptolemy system. By doing so, there is no need
to adapt functional I/O mechanisms (page 75) to real-time streams; instead,
Haskell expressions represent dataflow networks, which are then embedded into
an existing dataflow environment.

The work in chapter 6 is a first attempt at identifying the minimal set of
functions needed to support timed dataflow. Further work is needed to make this
set of functions complete, and to relate these functions to phased-form dataflow
actors. Also, the relation of this work to synchronous languages [13] needs
to be clarified. The exploration of dynamic process networks in sections 6.4
and 6.5 is intriguing, but further examples need to be developed. An important
ingredient in further work along this line will be development of a formal model
for dynamically-evolving dataflow networks.

7.3 Concluding Remarks

The complete framework presented in this thesis is somewhat idealistic. Given
that users of such a framework are likely to be engineers, requiring that they
learn a functional programming language is unlikely to be a welcome learning
overhead. Lazy evaluation is probably out-of-place in a production signal pro-
cessing environment, despite its utility in exploration and prototyping. And the
complexities of modern DSP devices are such that generating assembler code
efficient enough to meet performance expectations from high-level code (such as
standard-form actors) requires analysis and optimisation technology that does
not yet exist.

The real value of the framework lies perhaps in its use as an ideal model and
as a framework within which specific areas of work can proceed (as I have done in
the body of this thesis). I see two key directions in which practical development
based on the framework can proceed: i) to use it to identify limitations in
existing systems, and new features that can be added to them; and ii) to design
a Haskell-like visual dataflow language that has an appropriate mix of strict and
non-strict evaluation. I hope to be able to pursue both of these directions within
the Ptolemy system, by extending it to support aspects of my ideal model, and
by implementing the new dataflow language as a Ptolemy domain.

162 CHAPTER 7. SUMMARY

Bibliography

[1] William B. Ackerman. Data flow languages. IEEE Computer, pages 15–24,
February 1982.

[2] A.V. Aho, R. Sethi, and J.D. Ullman. Compilers: Principles, Techniques,
and Tools. Addison-Wesley, Reading, MA, 1986.

[3] Sudhir Ahuja, Nicholas Carriero, and David Gelernter. Linda and friends.
IEEE Computer, pages 26–34, August 1986.

[4] Alan L. Ambler, Margaret M. Burnett, and Betsy A. Zimmerman. Op-
erational versus definitional: A perspective on programming paradigms.
IEEE Computer, 25(9):28–43, September 1992.

[5] Analog Devices. ADSP-21020 User’s Manual, 1991.

[6] Analog Devices. ADSP-21060 SHARC Super Harvard Architecture Com-
puter, October 1993. Preliminary datasheet.

[7] Arvind and David E. Culler. Dataflow architectures. Annual Reviews in
Computer Science, 1:225–253, 1986.

[8] Arvind and Kattamuri Ekanadham. Future scientific programming on
parallel machines. Journal of Parallel and Distributed Computing, 5:460–
493, 1988.

[9] E. A. Ashcroft. Eazyflow architecture. SRI Technical Report CSL-147,
SRI International, 333 Ravenswood Ave, Menlo Park, CA 94025, April
1985.

[10] Tom Axford and Mike Joy. List processing primitives for parallel compu-
tation. Computer Language, 19(1):1–17, 1993.

[11] John Backus. Can programming be liberated from the Von Neumann
style? Communications of the ACM, 21(8):613–641, 1978.

[12] Brian Barrera and Edward A. Lee. Multirate signal processing in
Comdisco’s SPW. In ICASSP 91, pages 1113–1116, May 1991.

163

164 BIBLIOGRAPHY

[13] Albert Benveniste, Paul Caspi, Paul Le Guernic, and Nicolas Halbwachs.
Data-flow synchronous languages. In A Decade of Concurrency: Reflec-
tions and Perspective, pages 1–45. Springer-Verlag, June 1993.

[14] Albert Benveniste, Paul Le Guernic, and Christian Jacquenot. Syn-
chronous programming with events and relations: the SIGNAL language
and its semantics. Science of Computer Programming, 16(2):103–149,
September 1991.

[15] Gerard Berry and Georges Gonthier. The ESTEREL synchronous pro-
gramming language. Science of Computer Programming, 19:87–152, 1992.

[16] Shuvra S. Bhattacharyya and Edward A. Lee. Scheduling synchronous
dataflow graphs for efficient looping. Journal of VLSI Signal Processing,
6, 1993.

[17] J. C. Bier, E. E. Goei, W. H. Ho, P. D. Lapsley, M. P. O’Reilly, G. C.
Sih, and E. A. Lee. Gabriel: A design environment for DSP. IEEE Micro,
pages 28–45, October 1990.

[18] Richard Bird and Philip Wadler. Introduction to Functional Programming.
Prentice Hall, 1988.

[19] R.S. Bird. Using circular programs to eliminate multiple traversals of
data. Acta Informatica, 21(3):239–250, 1984.

[20] R.S. Bird. Lectures on constructive functional programming. Techni-
cal Report Technical Monograph PRG-69, Oxford University Computing
Laboratory, Programming Research Group, Oxford, 1988.

[21] R.S. Bird. Algebraic identities for program calculation. The Computer
Journal, 32(2):122–126, 1989.

[22] Tore A. Bratvold. Skeleton-Based Parallelisation of Functiona Programs.
PhD thesis, Dept. of Computing and Electrical Engineering, Heriot-Watt
University, Edinburgh, UK, November 1994.

[23] K. P. Brooks. Lilac: A two-view document editor. IEEE Computer, pages
7–19, June 1991.

[24] Manfred Broy. Applicative real-time programming. In R. E. A. Mason,
editor, Information Processing 83, 1983.

[25] Joseph Buck, Soonhoi Ha, Edward A. Lee, and David G. Messerschmitt.
Ptolemy: A framework for simulating and prototyping heterogenous sys-
tems. International Journal of Computer Simulation, 1992. Special issue
on “Simulation Software Development”.

[26] Joseph T. Buck. Scheduling Dynamic Dataflow Graphs with Bounded
Memory Using the Token Flow Model. PhD thesis, Electrical Engineering
and Computer Sciences, University of California Berkeley, 1993.

BIBLIOGRAPHY 165

[27] Joseph T. Buck. Static scheduling and code generation from dynamic
dataflow graphs with integer-valued control streams. In 28th Asilomar
Conference on Circuits, Signals and Systems, November 1994.

[28] W. H. Burge. Stream processing functions. IBM Journal of Research and
Development, 19(1):12–25, January 1975.

[29] Margaret Burnett and Benjamin Summers. Some real-world uses of vi-
sual programming systems. Technical Report TR 94-60-7, Oregon State
University, 1994.

[30] David Busvine. Implementing recursive functions as proceeor farms. Par-
allel Computing, 19:1141–1153, 1993.

[31] Luca Cardelli. Two-dimensional syntax for functional languages. In Proc.
Integrated Interactive Computing Systems, pages 107–119, 1983.

[32] Nicholas Carriero and David Gelernter. How to Write Parallel Programs:
A First Course. MIT Press, 1990.

[33] P. Caspi, D. Pilaud, N. Halbwachs, and J. A. Plaice. LUSTRE: A declara-
tion language for programming synchronous systems. In 14th ACM Symp.
on Principles of Programming Languages, Munich, West Germany, pages
178–188, January 1987.

[34] Rulph Chassaing. Digital Signal Processing with C and the TMS320C30.
Topics in Digital Signal Processing. John Wiley and Sons, 1992.

[35] Murray I. Cole. Algorithmic Skeletons: Structured Management of Parallel
Computation. Pitman Publishing, 1989.

[36] Michael Colefax. A realtime polyphonic music synthesiser. Technical
report, School of Electrical Engineering, University of Technology, Sydney,
November 1993. Undergraduate thesis report.

[37] Gennaro Costagliola, Genoveffa Tortora, Sergio Orefice, and Andrea
de Lucia. Automatic generation of visual programming environments.
IEEE Computer, 28(3):56–66, March 1995.

[38] Stuart Cox, Shell-Ying Huang, Paul Kelly, Junxian Liu, and Frank Taylor.
An implementation of static functional process networks. In PARLE’92—
Parallel Architectures and Languages Europe, pages 497–512. Springer
Verlag, 1992. LNCS 605.

[39] Alan D. Culloch. Porting the 3L Parallel C environment to the Texas
Instruments TMS320C40. In A. Veronis and Y. Paker, editors, Transputer
Research and Applications 5. IOS Press, 1992.

166 BIBLIOGRAPHY

[40] J. Darlington, A. J. Field, P. G. Harrison, P. H. J. Kelly, D. W. N. Sharp,
Q. Wu, and R. L. While. Parallel programming using skeleton functions.
In PARLE’93—Parallel Architectures and Languages Europe, pages 146–
160. Springer Verlag, June 1993.

[41] Ken Dawson. Visual Haskell editor and parser. Technical report, School of
Electrical Engineering, University of Technology, Sydney, November 1993.
Undergraduate thesis report.

[42] Electronics Research Laboratory, University of California Berkeley. The
Almagest: Ptolemy User’s Manual Version 0.5, 1994.

[43] Marc Engels, Greet Bilson, Rudy Lauwereins, and Jean Peperstrate.
Cyclo-static dataflow: Model and implementation. In 28th Asilomar Con-
ference on Circuits, Signals and Systems, November 1994.

[44] Paul Hudak et al. Report on the functional programming language
Haskell, a non-strict purely-functional language, version 1.2. SIGPLAN
Notices, May 1992.

[45] Antony A. Faustini and Edgar B. Lewis. Toward a real-time dataflow
language. IEEE Software, pages 29–35, January 1986.

[46] John T. Feo, David C. Cann, and Rodney R. Oldehoeft. A report on the
SISAL language project. Journal of Parallel and Distributed Computing,
10:349–366, 1990.

[47] Antony J. Field and Peter G. Harrison. Functional Programming.
Addison-Wesley, 1988.

[48] Markus Freericks and Alaois Knoll. Formally correct translation of DSP
algorithms specified in an asynchronous applicative language. In ICASSP
93, Minneapolis, USA, pages I–417–I–420, April 1993.

[49] Daniel D. Gajski, David A. Padua, David J. Kuck, and Robert H. Kuhn.
A second opinion on data flow machines and languages. IEEE Computer,
pages 58–69, February 1982.

[50] H. Garsden and A. L. Wendelborn. Experiments with pipelining paral-
lelism in SISAL. In 25th Intl. Hawaii Conf. on System Sciences, January
1992.

[51] Andrew Gill, John Launchbury, and Simon L. Peyton Jones. A short
cut to deforestation. In Functional Languages and Computer Architecture
(FPCA) 93, 1993.

[52] David M. Globirsch. An introduction to Haskell with applications to
digital signal processing. Technical report, The MITRE Corporation, 7525
Colshire Drive, McLean, Virginia 22102-3481, September 1993.

BIBLIOGRAPHY 167

[53] Eric J. Golin and Steven P. Reiss. The specification of visual language
syntax. In Proc. 1989 IEEE Workshop on Visual Languages, pages 105–
110, Rome, Italy, 1989.

[54] Kevin Hammond. Parallel functional programming: An introduction. In
Proc. 1st Intl. Symp. on Parallel Symbolic Computation (PASCO ’94),
pages 181–193, Hagenburg, Austria, 1994. World Scientific.

[55] Philip J. Hatcher and Michael J. Quinn. Data-Parallel Programming on
MIMD Computers. MIT Press, 1991.

[56] P. Henderson. Purely functional operating systems. In Functional Pro-
gramming and its Applications. Cambridge University Press, 1982.

[57] P. Hilfinger, J. Rabaey, D. Genin, C. Scheers, and H. De Man. DSP
specification using the Silage language. In ICASSP 90, Alburqurque, New
Mexico, April 1990.

[58] Daniel D. Hils. DataVis: A visual programming language for scientific
visualisation. In Proc. 1991 ACM Computer Science Conference, pages
439–448, San Antonio, Texas, March 1991.

[59] Daniel D. Hils. Visual languages and computing survey: Data flow visual
programming languages. Journal of Visual Languages and Computing,
3:69–101, 1992.

[60] Charles Antony Richard Hoare. Communicating Sequential Processes.
Prentice-Hall, 1985.

[61] Paul Hudak. Para-functional programming. IEEE Computer, pages 60–
70, August 1986.

[62] Paul Hudak. Conception, evolution, and application of functional pro-
gramming languages. ACM Computing Surveys, 21(3):359–411, Septem-
ber 1989.

[63] Paul Hudak and Mark Jones. Haskell vs Ada vs C++ vs Awk vs ...: An
experiment in software prototyping productivity. Research report, Dept.
of Computer Science, Yale University, July 1994.

[64] John Hughes. Why functional programming matters. The Computer Jour-
nal, 32(2):98–107, 1989.

[65] R. Jagannathan. Dataflow models. In E. Y. Zomaya, editor, Parallel and
Distributed Computing Handbook. McGraw-Hill, 1995.

[66] Thomas Johnsson. Attribute grammars as a functional programming
paradigm. In Functional Programming Languages and Computer Archi-
tecture, pages 154–173, Portland, Oregon, 1987. Springer-Verlag. LNCS
274.

168 BIBLIOGRAPHY

[67] Geraint Jones and Mary Sheeran. Circuit design in ruby. In J. Staunstrup,
editor, Formal Methods for VLSI Design, pages 13–70. North-Holland,
1990.

[68] Mark Jones. A system of constructor classes: Overloading and implicit
higher-order polymorphism. In Proc. ACM Conf. on Functional Program-
ming Languages and Computer Architecture, pages 52–61, Copenhagen,
Denmark, June 1993.

[69] S. B. Jones and A. F. Sinclair. Functional programming and operating
systems. The Computer Journal, 32(2):162–174, February 1989.

[70] Simon B. Jones. A range of operating systems written in a purely func-
tional style. Technical Monograph PRG-42, Oxford University Computing
Laboratory, September 1984.

[71] Simon L. Peyton Jones. The Implementation of Functional Programming
Languages. Prentice-Hall, 1987.

[72] Simon Peyton Jones and Philip Wadler. Imperative functional program-
ming. In ACM Principles of Programming Languages 93, pages 71–84,
January 1993.

[73] John L. Kelly Jr., Carol Lochbaum, and V. A. Vyssotsky. A block diagram
compiler. The Bell System Technical Journal, pages 669–678, May 1961.

[74] Gilles Kahn. The semantics of a simple language for parallel processing.
In Information Processing 74, pages 471–475. North-Holland, 1974.

[75] Gilles Kahn and David MacQueen. Coroutines and networks of paral-
lel processes. In B. Gilchrist, editor, Information Processing 77. North-
Holland, 1977.

[76] Richard M. Karp and Raymond E. Miller. Properties of a model for
parallel computations, determinacy, termination, and queueing. SIAM
Journal of Applied Mathematics, 14(6):1390–1411, November 1966.

[77] Paul Kelly. Functional Programming for Loosely-coupled Multiprocessors.
Research Monographs in Parallel and Distributed Computing. Pitman,
1989.

[78] Joel Kelso. A visual representation for functional programs. Technical
Report CS-95/01, Murdoch University, Australia, December 1994.

[79] Takayuki Dan Kimura, Ajay Apte, Samudra Sengupta, and Julie W. Chan.
Form/formula: A visual programming paradigm for user-definable user
interfaces. IEEE Computer, 28(3):27–35, March 1995.

[80] Alois Knoll and Markus Freericks. An applicative real-time language for
DSP programming supporting asynchronous data-flow concepts. Micro-
processing and Microprogramming, 32:541–548, August 1991.

BIBLIOGRAPHY 169

[81] Jeffrey Kodosky, Jack MacCrisken, and Gary Rymar. Visual programming
using structured data flow. In Proc. 1991 IEEE Workshop on Visual
Languages, pages 34–39, Kobe, Japan, October 1991.

[82] Konstantinos Konstantinides and John R. Rasure. The Khoros software
development environment for image and signal processing. IEEE Trans-
actions on Image Processing, 3(3):243–252, May 1994.

[83] P.J. Landin. A correspondence between ALGOL60 and Church’s lambda-
notation: Part I. Communications of the ACM, 8:89–101, 1965.

[84] Rudy Lauwereins, Piet Wauters, Merleen Ade, and J. A. Peperstraete.
Geometric parallelism and cyclo-static data flow in GRAPE-II. In 5th Intl
Workshop on Rapid System Prototyping, Grenoble, France, June 1994.

[85] Edward A. Lee. Private communication, 1993.

[86] Edward A. Lee. Dataflow process networks. Memorandum UCB/ERL
M94/53, Electronics Reserach Laboratory, July 1994.

[87] Edward A. Lee and David G. Messerschmitt et al. An overview of the
Ptolemy project. Anonymous ftp from ptolemy.eecs.berkeley.edu, March
1994.

[88] Edward A. Lee and David G. Messerschmitt. Static scheduling of syn-
chronous data flow programs for digital signal processing. IEEE Trans.
on Computers, 36(1):24–35, January 1987.

[89] Edward A. Lee and David G. Messerschmitt. Synchronous data flow.
Proceedings of the IEEE, 75(9):1235–1245, September 1987.

[90] Allen Leung and Prateek Mishra. Reasoning about simple and exhaus-
tive demand in higher-order lazy languages. In 5th ACM Conf. on Func-
tional Programming Languages and Computer Architecture, pages 328–
351, Cambridge, MA, August 1991.

[91] Andreas Maasen. Parallel programming with data structures and higher-
order functions. Science of Computer Programming, 18:1–38, 1992.

[92] G. P. McKeown and A. P. Revitt. Specification and simulation of systolic
systems functional programming. In Proc. 6th Intl. Workshop on Imple-
mentation of Functional Languages, University of East Anglia, Norwich,
UK, September 1994.

[93] David G. Messerschmitt. A tool for structured functional simulation.
IEEE Trans. on Special Topics in Communications, January 1984.

[94] Bertrand Meyer. Applying ‘design by contract’. IEEE Computer,
25(10):40–51, October 1992.

170 BIBLIOGRAPHY

[95] Matthias Meyer. A pilot implementation of the host-engine software
architecture for parallel digital signal processing. Technical report,
School of Electrical Engineering, University of Technology Sydney, and
Technical University Hamburg-Harburg, November 1994. FTP from
ftp.ee.uts.edu.au as /pub/DSP/papers/spook.ps.gz.

[96] G. J. Michaelson, N. R. Scaife, and A. M. Wallace. Prototyping parallel
algorithms using Standard ML. In Proc. British Machine Vision Confer-
ence, 1995.

[97] Motorola Inc. DSP96002 IEEE Floating-Point Dual-Port Processor User’s
Manual, 1989.

[98] Marc A. Najork and Eric Golin. Enhancing Show-and-Tell with a poly-
morphic type system and higher-order functions. In Proc. 1990 IEEE
Workshop on Visual Languages, Skokie, Illinois, pages 215–220, October
1990.

[99] Marc A. Najork and Simon M. Kaplan. The CUBE language. In Proc.
1991 IEEE Workshop on Visual Languages, pages 218–224, Kobe, Japan,
October 1991.

[100] Marc A. Najork and Simon M. Kaplan. Specifying visual languages with
conditional set rewrite systems. In Proc. 1993 IEEE Symposium on Visual
Languages, pages 12–18, August 1993.

[101] Jeffrey V. Nickerson. Visual programming: Limits of graphical repre-
sentation. In Proc. 1994 IEEE Symposium on Visual Languages, pages
178–179, October 1994.

[102] John K. Ousterhout. Tcl and the Tk Toolkit. Addison-Wesley, 1994.

[103] Perihelion Software Ltd. The Helios Parallel Operating System. Prentice
Hall, 1991.

[104] Simon L. Peyton-Jones. Parallel implementations of functional program-
ming languages. The Computer Journal, 32(2):175–186, February 1989.

[105] Simon L. Peyton-Jones and David Lester. A modular fully-lazy lambda-
lifter in Haskell. Software – Practice and Experience, 21(5):479–506, May
1991.

[106] Keshav Pingali and Arvind. Efficient demand-driven evaluation, part
1. ACM Trans. on Programming Languages and Systems, 7(2):311–333,
April 1985.

[107] Jose Luis Pino, Thomas M. Parks, and Edward A. Lee. Mapping multiple
independent synchronous dataflow graphs onto heterogeneous multipro-
cessors. In 28th Asilomar Conference on Circuits, Signals and Systems,
November 1994.

BIBLIOGRAPHY 171

[108] John A. Plaice. RLucid, a general real-time dataflow language. In Proc.
Formal Techniques in Real-time and Fault-tolerant Systems, Nijmegan,
the Netherlands, January 1992. Springer-Verlag. LNCS 571.

[109] Jorg Poswig, Guido Vrankar, and Claudio Moraga. VisaVis—a higher-
order functional visual programming language. Journal of Visual Lan-
guages and Computing, 5:83–111, 1994.

[110] Douglas B. Powell, Edward A. Lee, and William C. Newman. Direct
synthesis of optimized DSP assembly code from signal flow block diagrams.
In ICASSP 92, pages V–553–V–556, 1992.

[111] John Rasure and Mark Young. Dataflow visual languages. IEEE Poten-
tials, 11(2):30–33, April 1992.

[112] Chris Reade. Elements of Functional Programming. Addison Wesley, 1989.

[113] H. John Reekie. Towards effective programming for parallel digital signal
processing. Technical Report 92.1, Key Centre for Advanced Computing
Sciences, University of Technology, Sydney, May 1992.

[114] H. John Reekie. Real-time DSP in C and assembler. FTP from
ftp.ee.uts.edu.au as /pub/prose/c30course.ps.gz, 1993.

[115] H. John Reekie. Modelling asynchronous streams in Haskell. Technical
Report 94.3, Key Centre for Advanced Computing Sciences, University
of Technology, Sydney, June 1994. FTP from ftp.ee.uts.edu.au as
/pub/prose/async-streams.ps.gz.

[116] H. John Reekie. Visual Haskell: A first attempt. Technical Re-
port 94.5, Key Centre for Advanced Computing Sciences, University of
Technology, Sydney, August 1994. FTP from ftp.ee.uts.edu.au as
/pub/prose/visual-haskell.ps.gz.

[117] H. John Reekie and Matthias Meyer. The host-engine software architec-
ture for parallel digital signal processing. In Proc. PART’94, Workshop
on Parallel and Real-time Systems, Melbourne, Australia, July 1994. FTP
from ftp.ee.uts.edu.au as /pub/prose/host-engine.ps.gz.

[118] H. John Reekie and John M. Potter. Generating efficient loop code for
programmable dsps. In ICASSP 94, pages II–469–II–472. IEEE, 1994.

[119] Hideki John Reekie. A real-time performance-oriented music synthesiser.
Technical report, School of Electrical Engineering, University of Technol-
ogy, Sydney, November 1987. Undergraduate thesis report.

[120] John Reekie. Integrating block-diagram and textual programming for
parallel DSP. In Proc. 3rd Intl. Symp. on Signal Processing and its Ap-
plications (ISSPA 92), pages 622–625, August 1992.

172 BIBLIOGRAPHY

[121] John Reekie and John Potter. Transforming process networks. In Proc.
MFPW’92, the Massey Functional Programming Workshop, Palmerston
North, New Zealand, August 1992. Massey University.

[122] John Reekie and John Potter. Process network transformation. In David
Arnold, editor, Parallel Computing and Transputers (PCAT-93), pages
376–383. IOS Press, November 1993.

[123] Steven P. Reiss. PECAN: Program development systems that support
multiple views. IEEE Trans. Software Engineering, 11(3):324–333, March
1985.

[124] Xavier Rodet. Time-domain formant-wave-function synthesis. Computer
Music Journal, 8(3):9–14, 1984.

[125] Paul Roe. Parallel Programming using Functional Languages. PhD thesis,
Dept. of Computing Science, University of Glasgow, 1991.

[126] Gary Sabot. The Paralation Model: Architecture-Independent Parallel
Programming. MIT Press, 1988.

[127] Mary Sheeran. Designing regular array architectures using higher order
functions. In J.-P. Jouannaud, editor, Functional Programming Languages
and Computer Architecture, pages 220–237, Nancy, France, September
1985. Springer-Verlag. LNCS 201.

[128] Jay M. Sipelstein and Guy E. Blelloch. Collection-oriented languages.
Proceedings of the IEEE, 79(4):504–523, April 1991.

[129] David Skillicorn. Stream languages and dataflow. In J.-L Gaudiot and
L. Bic, editors, Advanced Topics in Dataflow Computing, pages 439–454.
Prentice-Hall, 1991.

[130] David Skillicorn and Janice Glasgow. Real-time specification using Lucid.
IEEE Trans. on Software Engineering, 15(2):221–229, February 1989.

[131] D.B. Skillicorn. Parallelism and the Bird-Meertens formalism. FTP from
qucis.queensu.ca in /pub/skill, April 1992.

[132] John A. Stankovic and Krithi Ramamritham. Introduction. In John A.
Stankovic and Krithi Ramamritham, editors, Hard Real-Time Systems,
chapter 1. IEEE Computer Society Press, 1988.

[133] W. D. Stanley, G. R. Dougherty, and R. Dougherty. Digital Signal Pro-
cessing. Reston Publishing, 1984.

[134] William Stoye. Message-based functional operating systems. Science of
Computer Programming, 6(3):291–311, May 1986.

BIBLIOGRAPHY 173

[135] V. S. Sunderan, G. A. Geist, J. Dongarra, and R. Manchek. The PVM
concurrent computing system: Evolution, experience, and trends. Parallel
Computing, 1994. To appear.

[136] Texas Instruments Inc. TMS320C4x User’s Guide, 1991. Literature num-
ber SPRU063.

[137] Texas Instruments Inc. TMS320C3x User’s Guide, 1992. Literature num-
ber SPRU031C.

[138] D.A. Turner. The semantic elegance of applicative languages. Proc. ACM
Conf. on Functional Programming and Computer Architecture, pages 85–
92, 1981.

[139] David A. Turner. An approach to functional operating systems. In D.A.
Turner, editor, Research Topics in Functional Programming, pages 199–
218. Addison-Welsey, Reading, MA, 1990.

[140] Steven R. Vegdahl. A survey of proposed architectures for the execution of
functional languages. IEEE Transactions on Computers, C-23(12):1050–
1071, December 1984.

[141] Ingrid M. Verbauwhede, Chris J. Scheers, and Jan M. Rabaey. Specifi-
cation and support for multi-dimensional DSP in the Silage language. In
ICASSP 94, pages II–473–II–476, Adelaide, Australia, April 1994.

[142] Eric Verhulst. Meeting the parallel DSP challenge with the real-time
Virtuoso programming system. DSP Applications, pages 41–56, January
1994.

[143] W. W. Wadge and A. Ashcroft. Lucid—the Dataflow Programming Lan-
guage. Academic Press, 1985.

[144] P. Wadler. Applicative style programming, program transformation and
list operators. In Functional Programming Languages and Computer Ar-
chitecture, pages 25–32. ACM, 1981.

[145] Philip Wadler. Listlessness is better than laziness: Lazy evaluation and
garbage collection at compile time. In Proc. ACM Symp. on Lisp and
Functional Programming, 1984.

[146] Philip Wadler. How to replace failure by a list of successes—a method
for exception-handling, backtracking, and pattern-matching in lazy func-
tional languages. In J.-P. Jouannaud, editor, Functional Programming
Languages and Computer Architecture, pages 113–128. Springer-Verlag,
1985. LNCS 201.

[147] Philip Wadler. Deforestation: Transforming programs to eliminate trees.
Theoretical Computer Science, 73:231–248, 1990.

[148] Philip Wadler and Stephen Blott. How to make ad-hoc polymorphism less
ad-hoc. In ACM Symposium on Principles of Programming Languages,
pages 60–76, Austin, Texas, January 1989.

[149] Malcolm Wallace. Functional Programming and Embedded Systems. PhD
thesis, Dept. Of Computer Science, University of York, UK, January 1995.

[150] Malcolm Wallace and Colin Runciman. Type-checked message-passing
between functional processes. In Proc. Glasgow Functional Programming
Workshop. Springer-Verlag, September 1994. Workshops in Computer
Science Series.

[151] Kevin Waugh, Patrick McAndrew, and Greg Michaelson. Parallel imple-
mentations from functional prototypes—a case study. Technical Report
90/4, Heriot-Watt University, Edinburgh, UK, 1990.

[152] A. L. Wendelborn and H. Garsden. Exploring the stream data type in
SISAL and other languages. In M. Cosnard, K. Ebcioglu, and J.-L. Gau-
diot, editors, Architectures for Fine and Medium Grain Parallelism, pages
283–294. IFIP, Elsevier Science Publishers, 1993.

[153] Patrick Willekens, Dirk Devisch, Marc Van Canneyt, Paul Conflitti, and
Dominique Genin. Algorithm specification in DSP station using Data
Flow Language. DSP Applications, pages 8–16, January 1994.

[154] Carla S. Williams and John R. Rasure. A visual language for image
processing. In Proc. 1990 IEEE Workshop on Visual Languages, pages
86–91, 1990.

174

Appendix A

Haskell Code

The Vector module

-- Types --

infixr 5 +++, :>

data Vector a = NullV

| a :> (Vector a)

vector :: [a] -> Vector a

vector [] = NullV

vector (x:xs) = strict (:>) x (vector xs) -- evaluate spine

nullV :: Vector a -> Bool

nullV NullV = True

nullV (_:>_) = False

unitV :: a -> Vector a

unitV x = x :> NullV

-- Iterators --

mapV :: (a -> b) -> Vector a -> Vector b

mapV f NullV = NullV

mapV f (x:>xs) = f x :> mapV f xs

generateV :: Int -> (a -> a) -> a -> Vector a

generateV 0 f a = NullV

generateV n f a = x :> generateV (n-1) f x where x = f a

iterateV :: Int -> (a -> a) -> a -> Vector a

iterateV 0 f a = NullV

iterateV n f a = a :> iterateV (n-1) f (f a)

foldlV :: (a -> b -> a) -> a -> Vector b -> a

foldlV f a NullV = a

foldlV f a (x:>xs) = foldlV f (f a x) xs

175

scanlV :: (a -> b -> a) -> a -> Vector b -> Vector a

scanlV f a NullV = NullV

scanlV f a (x:>xs) = q :> scanlV f q xs where q = f a x

meshlV :: (a -> b -> (a,c)) -> a -> Vector b -> (a, Vector c)

meshlV f a NullV = (a, NullV)

meshlV f a (x:>xs) = (a’’, y:>ys) where

(a’, y) = f a x

(a’’, ys) = meshlV f a’ xs

foldrV :: (b -> a -> a) -> a -> Vector b -> a

foldrV f a NullV = a

foldrV f a (x:>xs) = f x (foldrV f a xs)

scanrV :: (b -> a -> a) -> a -> Vector b -> Vector a

scanrV f a NullV = NullV

scanrV f a (x:>NullV) = f x a :> NullV

scanrV f a (x:>xs) = f x y :> ys where ys@(y:>_) = scanrV f a xs

meshrV :: (b -> a -> (c,a)) -> a -> Vector b -> (Vector c,a)

meshrV f a NullV = (NullV, a)

meshrV f a (x:>xs) = (y:>ys, a’’) where

(y, a’’) = f x a’

(ys, a’) = meshrV f a xs

-- Permutors --

(+++) :: Vector a -> Vector a -> Vector a

NullV +++ ys = ys

(x:>xs) +++ ys = x :> (xs +++ ys)

lengthV :: Vector a -> Int

lengthV NullV = 0

lengthV (x:>xs) = 1 + lengthV xs

atV :: Vector a -> Int -> a

(x:>xs) ‘atV‘ 0 = x

(x:>xs) ‘atV‘ (n+1) = xs ‘atV‘ n

selectV :: Int -> Int -> Int -> Vector a -> Vector a

selectV _ _ 0 xs = NullV

selectV o s n xs = xs ‘atV‘ o :> selectV (o+s) s (n-1) xs

groupV :: Int -> Vector a -> Vector (Vector a)

groupV n v

| lengthV v < n = NullV

| otherwise = selectV 0 1 n v :> groupV n (selectV n 1 (lengthV v - n) v)

concatV :: Vector (Vector a) -> Vector a

concatV = foldrV (+++) NullV

zipV :: Vector a -> Vector b -> Vector (a,b)

zipV (x:>xs) (y:>ys) = (x,y) :> zipV xs ys

zipV _ _ = NullV

unzipV :: Vector (a,b) -> (Vector a, Vector b)

unzipV NullV = (NullV, NullV)

176

unzipV ((x,y):>xys) = (x:>xs, y:>ys) where (xs,ys) = unzipV xys

-- permutors (using additional functions) --

infixr 5 >>

infixl 5 <:, <<

(<:) :: Vector a -> a -> Vector a

xs <: x = xs +++ unitV x

(<<) :: Vector a -> a -> Vector a

xs << x = tailV xs +++ unitV x

(>>) :: a -> Vector a -> Vector a

x >> xs = unitV x +++ initV xs

The Stream module

-- Types --

infixr 5 :-

data Stream a = NullS

| a :- (Stream a)

stream :: [a] -> Stream a

stream [] = NullS

stream (x:xs) = x :- stream xs

unitS :: a -> Stream a

unitS x = x :- NullS

nullS :: Stream a -> Bool

nullS NullS = True

nullS (_:-_) = False

headS :: Stream a -> a

headS (x:-_) = x

tailS :: Stream a -> Stream a

tailS (_:-xs) = xs

-- Primitives --

mapS :: (a -> b) -> Stream a -> Stream b

mapS f NullS = NullS

mapS f (x:-xs) = f x :- mapS f xs

groupS :: Int -> Stream a -> Stream (Vector a)

groupS n NullS = NullS

groupS 0 _ = NullS

groupS n xs

| nullV v = NullS

| otherwise = v :- groupS n (dropS n xs)

where v = takeSV n xs

177

concatS :: Stream (Vector a) -> Stream a

concatS NullS = NullS

concatS (v:-vs) = appendVS v (concatS vs)

zipS :: Stream a -> Stream b -> Stream (a,b)

zipS (x:-xs) (y:-ys) = (x,y) :- zipS xs ys

zipS _ _ = NullS

unzipS :: Stream (a,b) -> (Stream a, Stream b)

unzipS NullS = (NullS, NullS)

unzipS ((x,y):-xys) = (x:-xs, y:-ys) where (xs, ys) = unzipS xys

-- Useful functions --

appendVS :: Vector a -> Stream a -> Stream a

appendVS NullV s = s

appendVS (x:>xs) s = x :- appendVS xs s

takeSV :: Int -> Stream a -> Vector a

takeSV k = tk k NullV

where

tk 0 v s = v

tk k v NullS = NullV

tk k v (x:-xs) = tk (k-1) (v <: x) xs

dropS :: Int -> Stream a -> Stream a

dropS k NullS = NullS

dropS 0 s = s

dropS k (x:-xs) = dropS (k-1) xs

The Timed module

-- Types--

infixr 5 :-:

data Timed a = NullT

| Token a :-: (Timed a)

data Token a = Hiaton Int

| Daton a

| Datons (Vector (Token a))

| Block (Vector a)

-- Make timed stream from list --

timed :: [Token a] -> Timed a

timed [] = NullT

timed (x:xs) = x :-: timed xs

timeT :: Stream a -> Timed a

timeT NullS = NullT

timeT (x:-xs) = Daton x :-: timeT xs

unitT :: Token a -> Timed a

unitT t = t :-: NullT

178

-- Utilities need for "primitives" --

nullT :: Timed a -> Bool

nullT NullT = True

nullT _ = False

--Map on timed stream

tmapT :: (a -> Token b) -> (Int -> Token b) -> Timed a -> Timed b

tmapT f g (Daton x :-: xs) = f x :-: tmapT f g xs

tmapT f g (Hiaton n :-: xs) = g n :-: tmapT f g xs

tmapT f g _ = NullT

-- Zip two timed streams together --

zipT :: Timed a -> Timed b -> Timed (Token a, Token b)

zipT xs ys = zipT’ 0 0 xs ys

where

zipT’ 0 0 (Daton x :-: xs) (Daton y :-: ys)

= Daton (Daton x, Daton y) :-: zipT’ 0 0 xs ys

zipT’ 0 0 (Daton x :-: xs) (Hiaton n :-: ys)

= Daton (Daton x, Hiaton 1) :-: zipT’ 0 (n-1) xs ys

zipT’ 0 0 (Hiaton m :-: xs) (Daton y :-: ys)

= Daton (Hiaton 1, Daton y) :-: zipT’ (m-1) 0 xs ys

zipT’ 0 0 (Hiaton m :-: xs) (Hiaton n :-: ys)

| m == n = Hiaton m :-: zipT’ 0 0 xs ys

| m < n = Hiaton m :-: zipT’ 0 (n-m) xs ys

| m > n = Hiaton n :-: zipT’ (m-n) 0 xs ys

zipT’ 0 n (Daton x :-: xs) ys

= Daton (Daton x, Hiaton 1) :-: zipT’ 0 (n-1) xs ys

zipT’ 0 n (Hiaton m :-: xs) ys

| m == n = Hiaton m :-: zipT’ 0 0 xs ys

| m < n = Hiaton m :-: zipT’ 0 (n-m) xs ys

| m > n = Hiaton n :-: zipT’ (m-n) 0 xs ys

zipT’ m 0 xs (Daton y :-: ys)

= Daton (Hiaton 1, Daton y) :-: zipT’ (m-1) 0 xs ys

zipT’ m 0 xs (Hiaton n :-: ys)

| m == n = Hiaton m :-: zipT’ 0 0 xs ys

| m < n = Hiaton m :-: zipT’ 0 (n-m) xs ys

| m > n = Hiaton n :-: zipT’ (m-n) 0 xs ys

zipT’ _ _ _ _ = NullT

-- Unzip a stream of pairs (not used!)

unzipT :: Timed (Token a, Token b) -> (Timed a, Timed b)

unzipT ((Daton (Daton x, Daton y)) :-: xys)

= (Daton x :-: xs, Daton y :-: ys) where (xs,ys) = unzipT xys

unzipT ((Daton (Daton x, Hiaton 1)) :-: xys)

= (Daton x :-: xs, Hiaton 1 :-: ys) where (xs,ys) = unzipT xys

unzipT ((Daton (Hiaton 1, Daton y)) :-: xys)

= (Hiaton 1 :-: xs, Daton y :-: ys) where (xs,ys) = unzipT xys

unzipT ((Hiaton n) :-: xys)

= (Hiaton n :-: xs, Hiaton n :-: ys)where (xs,ys) = unzipT xys

179

unzipT _ = (NullT,NullT)

-- State process on timed stream. Defined directly rather than --

-- in terms of tmapT, to get around ‘‘break-up’’ of hiatons. --

tstateT :: (a -> b -> (a, Token c)) -> (a -> Int -> (a, Token c)) -> a -> Timed b -> Timed c

tstateT f g a (Daton x :-: xs) = y :-: tstateT f g b xs where (b,y) = f a x

tstateT f g a (Hiaton n :-: xs) = y :-: tstateT f g b xs where (b,y) = g a n

tstateT _ _ _ _ = NullT

-- Concatenate a stream of tokens and token vectors --

concatT :: Timed a -> Timed a

concatT (Hiaton n :-: xs) = Hiaton n :-: concatT xs

concatT (Daton x :-: xs) = Daton x :-: concatT xs

concatT (Datons v :-: xs) = v ‘append‘ concatT xs

where

NullV ‘append‘ ys = ys

(x:>xs) ‘append‘ ys = x :-: (xs ‘append‘ ys)

concatT _ = NullT

--Group a stream into vectors (k greater than 1) --

groupT k xs = groupT’ 0 xs

where

groupT’ 0 NullT = NullT

groupT’ i NullT

| k == i = unitT (Hiaton k)

| k < i = Hiaton k :-: groupT’ (i-k) NullT

| k > i = unitT (Hiaton i)

groupT’ 0 xs = v :-: groupT’ j rest where (v,j,rest) = splitT k xs

groupT’ i xs

| k == i = Hiaton k :-: groupT’ 0 xs

| k < i = Hiaton k :-: groupT’ (i-k) xs

| k > i = (Hiaton i ‘consT‘ v) :-: groupT’ j rest where (v,j,rest) = splitT (k-i) xs

groupT _ _ = NullT

-- Take a vector off the front of a stream. Also returns the --

-- rest of the stream and an initial hiaton value for it. --

splitT :: Int -> Timed a -> (Token a, Int, Timed a)

splitT 1 (Daton x :-: xs) = (Datons (unitV (Daton x)), 0, xs)

splitT k (Daton x :-: xs) = (Daton x ‘consT‘ v, j, rest) where (v,j,rest) = splitT (k-1) xs

splitT m (Hiaton n :-: xs)

| m == n = (Hiaton n, 0, xs)

| m < n = (Hiaton m, n-m, xs)

| nullT xs = (Hiaton n, 0, NullT)

| m > n = (Hiaton n ‘consT‘ v, j, rest) where (v,j,rest) = splitT (m-n) xs

splitT _ _ = (Hiaton 0, 0, NullT)

-- (Join a token onto a token vector) --

consT :: Token a -> Token a -> Token a

consT x (Hiaton n) = Datons (x :> unitV (Hiaton n))

180

consT x (Datons v) = Datons (x :> v)

-- Join a vector of blocks back into sync stream. Hiatons not allowed. --

concatvT :: Timed a -> Stream a

concatvT (Daton x :-: xs) = x :- concatvT xs

concatvT (Block v :-: xs) = v ‘appendVS‘ concatvT xs

concatvT _ = NullS

-- ‘‘Spawn’’ new streams from a timed stream --

spawnT :: (a -> Bool) -> Timed a -> Timed (Timed a)

spawnT p NullT = NullT

spawnT p s@(Daton x :-: xs)

| p x = Daton s :-: spawnT p xs

| otherwise = Hiaton 1 :-: spawnT p xs

spawnT p (Hiaton n :-: xs) = Hiaton n :-: spawnT p xs

-- Combine timed sync streams into single top-level sync stream --

combineT :: (Vector a -> b) -> Timed (Stream a) -> Stream b

combineT c = concatvT . tstateT f g []

where

f ss s = (mdrop 1 (s:ss), Daton (c (vector (map headS (s:ss)))))

g ss k = (mdrop k ss, Block (takeSV k (mmap c ss)))

mdrop :: Int -> [Stream a] -> [Stream a]

mdrop n = filter (not . nullS) . map (dropS n)

mmap :: (Vector a -> b) -> [Stream a] -> Stream b

mmap f ss = f (vector (map headS ss)) :- mmap f (mdrop 1 ss)

{-

New functions for truncating streams...

-}

type Generator a = a -> Stream a

-- doneS:-: terminate a stream --

doneS :: Generator a

doneS = const NullS

-- truncate stream according to predicate and state.

takeFiniteS :: (s -> a -> s) -> (s -> a -> Bool)

-> s -> a -> Stream a -> Generator a -> Stream a

takeFiniteS f p s a t@~(x:-xs) c

| nullS t = c a

| p s x = x :- takeFiniteS’ (f s x) xs x

| otherwise = c a

where

takeFiniteS’ s NullS z = c z

takeFiniteS’ s (x:-xs) z

| p s x = x :- takeFiniteS’ (f s x) xs x

| otherwise = c z

-- takeAsLongS :-: take items until predicate on control --

181

-- stream satisfied. First daton must satisfy. --

takeAsLongS :: (a -> Bool) -> Timed a -> Stream b -> Generator b -> Stream b

takeAsLongS p (Daton y :-: ys) (x:-xs) c

| p y = x :- takeAsLongS’ p ys xs c x

| otherwise = error "takeAsLongS"

takeAsLongS p (Hiaton n :-: ys) (x:-xs) c

= x :- takeAsLongS’ p (Hiaton (n-1) :-: ys) xs c x

takeAsLongS’ p (Daton y :-: ys) (x:-xs) c a

| p y = x :- takeAsLongS’ p ys xs c x

| otherwise = c a

takeAsLongS’ p (Hiaton 1 :-: ys) (x:-xs) c a

= x :- takeAsLongS’ p ys xs c x

takeAsLongS’ p (Hiaton n :-: ys) (x:-xs) c a

= x :- takeAsLongS’ p (Hiaton (n-1) :-: ys) xs c x

takeAsLongS’ p _ _ c a = c a

-- Truncate a stream to the same length as another

truncateS :: Stream a -> Stream b -> Generator b -> Stream b

truncateS (x:-NullS) (y:-ys) c = y :- c y

truncateS (x:-xs) (y:-NullS) c = y :- c y

truncateS (x:-xs) (y:-ys) c = y :- truncateS xs ys c

182

