
Y-chart methodology
and Models of Computation

and Architecture
Bart Kienhuis, Ed Deprettere, Kees Vissers,

Pieter van der Wolf, Paul Lieverse
Edward Lee.

By Bart Kienhuis

Berkeley USA, University of California,

Berkeley, Dept EECS

Cory Hall

Platform

General
Purpose

Processor

Programmable Communication Network

PE
1

PE
2

PE
3

Controller

Video
Out

High Bandwidth
Memory

Video
In

High Performance DSP Architecture

Design Choices
•Functionality PEs
•Packet Length
•Control Protocol

Constraints
•throughput
•flexibility
•silicon cost
•power

What Methodology
to use to solve this

problem?

Set of Application
•Multi function
•Multi standard

Y-chart Approach

ApplicationsApplicationsArchitecture
Instance

Mapping

Applications

Performance
Analysis

Performance
Numbers

Y-chart Approach

Different ways to improve a system.

ApplicationsApplicationsArchitecture
Instance

Mapping

Applications

Performance
Analysis

Performance
Numbers

Suggest architectural
improvements

Rewrite the
applications

Use different
Mapping strategies

Abstraction Pyramid

Back of the Envelope

Estimation Models

Abstract
Executable Models

Cycle Accurate
Models

VHDL
Models

O
pp

or
tu

ni
tie

s

C
os

t o
f M

od
el

in
g Explore

High Low

HighLow

Stepwise Exploration of the
Design Space

Stepwise refinement of the Design Space
of an Architecture

High

Medium

Low

Traditional approach Y-chart approach

Stack of Y-chart Environments
ApplicationsApplicationsEstimation

Models
Mapping

Applications

Matlab/
Mathematica

Performance
Numbers

ApplicationsApplicationsCycle Acc.
Models

Mapping

Applications

Cycle Acc.
Simulator

Performance
Numbers

ApplicationsApplicationsVHDL
Models

Mapping

Applications

VHDL
Simulator

Performance
Numbers

Move Down into
Lower Abstractions

Levels of
Abstraction

Stepwise Exploration of the
Design Space

High

Medium

Low

Requires a smooth
trajectory from one
level to the other.

Design Space Exploration

ApplicationsApplicationsArchitecture
Instance

Mapping

Applications

Performance
Analysis

Performance
Numbers

Parameters
Performance

Numbers

The Acquisition of Insight

Design Space Exploration

ApplicationsApplicationsArchitecture
Instance

Mapping

Applications

Performance
Analysis

Performance
NumbersParameters

Performance
Numbers

•CPU=arm

•Packet
Size=100

•Control =
Round Robing

•PE1= {fa,fb,fc}

Set up a number
 of Experiments

•Throughput=10

•utilization=45%

•energy=0.1w

Result of an Exploration

•Making the proper trade-offs
•Knee points

•Quantifying design choices
•Multi variable optimization problem

(negative utilization values are the result of interpolation)

Summary of the Y-Chart
approach

• It permits designer to quantify design choices in the
architecture, the algorithms, and the mapping.

• It permits the systematic exploration of the design
space of a system.

• It allows for the consideration of trade-off between
various metrics for an system that obeys set-wide
design objectives.

• It is invariant to a specific design level.
• It requires an explicit definition of a platform and the

applications. This fosters reuse.

Historical Perspective:

Separating Architecture from Applications
• The Y-chart is a methodological representation stressing the need of

separating applications from architecture at higher levels of abstraction.
To couple applications and architecture, the Y-chart introduces an
explicit mapping step.

• In computer architecture design, the separation between architecture
and application has already been in use for quite some time even
though the term “architecture” in that domain reflects typically the
Instruction Set Architecture that is not normally viewed as an
architecture in embedded system applications.

• In the design of programmable embedded systems, the importance of
separation between architecture and application and its methodological
consequences have been examined in:
– F. Balarin, et al., Hardware-Software Co-Design of Embedded Systems:

The Polis Approach, Kluwer Academic Publishing, 1997
– Kienhuis et al. “An Approach for Quantitative Analysis of Application-specific

Dataflow Architectures”, Conf. on Application-specific Systems,
Architectures and Processors (ASAP), Zurich 1997.

Historical Perspective:
Gajski and Kuhn’s Y-chart

• In Gajski and Kuhn's Y-
chart,each axis represents a
view of a model: behavioral,
structural, or physical view.

• Moving down an axis represents
moving down in level of
abstraction, from the
architectural level to the logical
level to, finally, the geometrical
level.

• The Gajski and Kuhn’s Y-chart
expresses the manual design
process of refinement.

Logic

Functional
Blocks

Algorithmic

Architectural

Cell, Module, Plans

Clusters

Physical Partitions

Circuit
Gates

Hardware Modules

Rectangles

Floor Plans

ALU, Register
Algorithm

Processor

Transistor
Logic

Transfer Functions

Register Transfer

Systems

Structural

Physical/Geometry

Behavioral

(D. Gajski, “Silicon Compilers”, Addison-Wesley, 1987).

Mapping
ApplicationsApplicationsArchitecture

Instance

Mapping

Applications

Performance
Analysis

Performance
Numbers

General
Purpose

Processor

Programmable Communication Network

PE
1

PE
2

PE
3

Controller

Video
Out

High Bandwidth
Memory

Video
In

SinkTransposeSRCFIR

FIR SRC TransposeSource

Mapping
bus

coproc

CPU

coproc.

Architecture:
•Resources

•ALUs, CORDICS, PEs
•Registers, SRAM, DRAM
•Busses, Switches

•Communication
•Bits, Signals

Application:
• Computations

•IDCT, SQRT, Quantizer
• Communication

•Pixels, Blocks

Both described a network of components that perform
a particular function and that communication in a

particular way

MPEG

Coded
video

Demux
VLD Q-1 IDCT

Motion
Buffer

Reorder
ordering

quantization control

motion vectors
& mode

Decoded
video

MPEG Decoding

+

Mapping
Architecture Application

bus

coproc

CPU

coproc.

Mapping

Can we formalize the description of these networks?
“Models of Architecture” and “Models of Computation”

MPEG

Coded
video

Demux
VLD Q-1 IDCT

Motion
Buffer

Reorder
ordering

quantization control

motion vectors
& mode

Decoded
video

MPEG Decoding

+

Model of Computation

A

C

D

B

A Model of computation is a formal representation
of the operational semantics of networks of

functional blocks describing the computations.

Model of Computation
Terminology

• Actor
– describes the functionality

• Relation
– The actors are connected

with each other using relations.

• Token
– the exchange of a quantum

of information.

– It presents is a signal

• Firing
– a computation

– interaction with other actors

fire {
 …
 token = get();
 …
 send(token);
 …
}

Port

(Active/Passive)

Port

A

C

D

B

Actor

Relation

token

Active/Passive Actors
A

C

D

B

Passive Actor:
•Scheduler needed.

•Schedule ABBCD
•A firing needs to terminate
•Fire-and-exit behavior

fire {
 token = get();
 …
 send(token);
 …
}

fire {
 while(1) {
 token = get();
 send(token);
 }
}

Active Actor:
•Schedules itself
•A firing typically doesn’t terminate

•Endless while loop
•Process behavior

Two kinds of Actors:Exit

Communication between
Actors

Data Type of the Token
•Integer, Double, Complex
•Matrix, Vector
•Record

Actor 2.

fire {
 …
 get();
 …
}

port port

Token
fire {
 …
 send();
 …
}

Actor 1.

Way exchange takes place
•Buffered
•Timed
•Synchronized

Communication
(Semantics)

Different Semantics
• Analog computers (ODEs)
• Discrete time (difference

equations)
• Discrete-event systems (DE)
• Process networks (Kahn)
• Sequential processes with

rendezvous (CSP)
• Dataflow (Dennis)
• Synchronous-reactive

systems (SR)
• Codesign Finite State

Machines (CFSM)

continuous time: discrete time:

discrete events:

E1 E2 E3

E4 E5 E6

partially-ordered
events:

synchronous/
reactive:

⊥

⊥

⊥

Synchronous/Reactive Models
• Network of concurrent executing actors

– passive Actors
– Communication is unbuffered

• Computation and Communication is instantaneous.

• A model progresses as a sequence of “ticks.”

• At a tick, the signals are defined by a fixed point equation:

• Characteristics of SR Models
– Tightly Synchronized

– Control intensive systems
















=

















),(

)(

)1(

yxf

zf

f

z

y

x

c

b

A

Fixed point equation

A

C

D

B

x

y

z

fire {
 …
 get();
 …
}port port

Token
fire {
 …
 send();
 …
}

Process Network
• Network of concurrent executing processes

– active Actors
– Communicate over unbounded FIFOs

• Performing some operation, a blocking read or a non-blocking write

• Characteristics of Process Networks
– Deterministic Execution

– Doesn’t impose a particular schedule
– (Dynamic) Dataflow

A

C

D

B

Process

Stream channel

fire {
 …
 get();
 …
}port port

Tokenfire {
 …
 send();
 …
}

Synchronous Dataflow
• Network of concurrent executing actors

– passive Actors

– Communication is buffered

• A model progresses as a sequence of “iterations.”

• A “firing rule” determines the firing condition of an actor.

• At each firing, a fixed number of tokens is consumes and produces.

• Characteristics of SDF
– Compile time analyzable.

– Memory/Schedule/Speed
– Static Dataflow Schedule: ABBBC

A

C

D

B

1

1

1 1

3

33

3

port

fire {
 …
 get();
 …
}port

Tokensfire {
 …
 send();
 …
}

Codesign Finite State
Machine (CFSM)

• Network of concurrent executing actors
– Passive Actors

– Synchronous locally

– Asynchronous globally

• An “event” causes the evaluation (firing) of a FSM.

• Characteristics of CFSM
– Compile time analyzable.

– Reactive systems

 FSM
port port

Token
 FSM

A

C

D

B

Timed Event

Finite State Machine (FSM)

•More efficient way to describe sequential control.
•Formal semantics which allows for verifying various properties like
safety, liveness, and fairness.

•FSM may only have one state active at the time
•FSM has only a finite number of states.

Port_BELT
OFF

WAIT

ALARM

KEY=0N => START

KEY=OFF or BELT=ON =>
ALARM=OFF

END=5 =>
ALARM=ON

END=10 or
BELT=ON or
KEY=OFF =>
ALARM=OFF

Port_KEY

Port_END

Port_START

Port_ALARM

Model of Architecture
A Model of architecture is a formal representation

of the operational semantics of networks of
functional blocks describing architectures.

Model of Architecture is similar to
Model of Computation, but the focus is on

the architecture instead of on the applications.

A,B,C and D are now
hardware resources like
CPUs, busses, Memory,

and dedicated coprocessors.

A

C

D

B

Examples

Programmable Communication Network

PE
2

PE
3

PE

Control Dominated Tasks
•Sequential

Control/ Data Tasks
•Sequential
•Centralized computation

Data Dominated Tasks
•Concurrent / DMA
•Data flow
•Distributed computation

Less mature then MoC

C
om

pl
ex

ity

High

LowCPU

Bus

Memory

CPU

Bus

Memory

CPU PE
1

Memory

Conclusion:
Matching Models

Data Type

Architecture

Model of Architecture

Application

Model of Computation

When the MoC and MoA match, a simple
mapping results

Application

SinkTransposeSRCFIR

FIR SRC TransposeSource

Picture in Picture (PIP)

for i=1:1:10
for j=1:1:10
 A(i,j)=FIR(…);
end

end
for i=1:1:10,

for j=1:1:10,
 A(i,j) =SRC(A(i,j));

end
end
for i=1:2:10,

for j=1:1:10,
 … =Transpose(A(i,j));

end
end

The Algorithm

We will look
at two platforms

for the same application
discussed here.

Putting it together
example 1.

• Platform: Microprocessor “Von-Neumann architecture”

S

Compiler
(GCC)

Performance
Numbers

Micro
Processor SPECint

Pentium/Arm
MIPS/Alpha

The benchmarksPlatform

Architecture Instances

Putting it together
example 1.

C-Compiler
(GCC)

Simulator

for i=1:1:10
for j=1:1:10
 A(i,j) =FIR();
end

end
for i=1:1:10,

for j=1:1:10,
 A(i,j) =SRC(A(i,j));

end
end

Program
Counter

Memory

ALU
Instruction
Decoder

(address)

Performance
Numbers

Model of Architecture:
•Sequential (Program Counter)
•one item over the bus
 at the time.
•Shared Memory

Model of Computation:
•Sequential
•Shared Memory

Picture in PictureMicro Processor

But Embedded Systems...

• But Embedded System are typically
– Concurrent
– Real-time
– Heterogeneous
– Application Specific

Your C/GCC compiler is not going to help you
to solve the mapping problem in these

embedded systems!

Putting it together
example 2.

• Platform: Coprocessor Array

Mapping

Performance
Numbers

Coprocessor
Array

Video
Application

Simulator

Coprocessor A Coprocessor B

Bus

Fifo

SinkTransposeSRCFIR

FIR SRC TransposeSource

for i=1:1:10
for j=1:1:10
 A(i,j)=FIR(...);
end

end
for i=1:1:10,

for j=1:1:10,
 A(i,j) =SRC(A(i,j));

end
end

SinkTransposeSRCFIR

FIR SRC TransposeSource

fire {
 for i=1:1:10

 for j=1:1:10
 Token t = get();
 Token y = SRC(t)
 send(y);
 end
 end

end
}

fire {
 for i=1:1:10

 for j=1:1:10
 Token t = FIR(..)

 send(t);
 end

 end
}

Process
Network

Actor SRC
Actor FIR

Application Modeling

Application Modeling

FIFO

BA C

FIR SRC Transpose

get
4execute
send

4get
execute
send

4get
execute
send

•Explicitly describes Communication and Computation
•Explicitly describes concurrency
•Doesn’t impose a particular schedule

Architecture Modeling (FIFO)

Abstract Architecture Modeling
•Cycle Accurate description

Implements the Send and Get

CoProcessor

FIFO

Fifo

CoProcessor

send get

Implements the
Actor functionality

FireFire

Architecture Modeling (BUS)

Interface
• Set-up time
• Optimal transfer size
• Transfer time
• Master/Slave

CoProcessor

Bus

CoProcessor

Fire Fire

Computation

send

Communication

get

Exploiting the separation between Communication and Computation

Mapping
CoProcessor

FIFO

Bus

Fifo

CoProcessor

fire {
 …
 get();
 …
}

Actor 2.

fire {
 …
 send();
 …
}

Actor 1.

Token

Measure
•Contention
•Power
•Utilization

Matching
Models

Simple
Mapping

Architecture

Application

Once again: the Y-chart
approach is about...

• Quantifying
– Relentlessly quantifying design choices at each design level.

• Abstraction
– Models of Computation / Models of Architectures
– Exploiting Performance Trade-off
– Stepwise exploration of design space

• Reuse
– Reuse of applications
– Reuse of platforms
– Reuse of IP

References
• Y-chart approach

– B. Kienhuis, E. Deprettere, K. Vissers and P. van der Wolf, ``An Approach for
Quantitative Analysis of Application-Specific Dataflow Architectures'', In Proc. 11-th Int.
Conf. on Application-specific Systems, Architectures and Processors, Zurich,
Switzerland, July 14-16 1997.

– F. Balarin, et al., “Hardware-Software Co-Design of Embedded Systems:The Polis
Approach”, Kluwer Academic Publishing, 1997

– B. Kienhuis, E. Deprettere, K. Vissers and P. van der Wolf, ``The Construction of a
Retargetable Simulator for an Architecture Template'', In Proc. 6-th Int. Workshop on
Hardware/Software Codesign (CODES'98), Seattle, Washington, March 15 - 18 1998.

– B. Kienhuis, ``Design Space Exploration of Stream-based Dataflow Architectures:
Methods and Tools'', PhD thesis, Delft University of Technology, The Netherlands,
January 1999. (Http://ptolemy.eecs.berkeley.edu/~kienhuis)

– http://ptolemy.eecs.berkeley.edu/~kienhuis

• Model of Computation
– Ptolemy web site (http://ptolemy.eecs.berkeley.edu)
– W.-T. Chang, S.-H. Ha, and E. A. Lee, ``Heterogeneous Simulation -- Mixing Discrete-

Event Models with Dataflow,'’ invited paper, Journal on VLSI Signal Processing, Vol.
13, No. 1, January 1997.

References
• Mapping

– Paul Lieverse, Pieter van der Wolf, Ed Deprettere, and Kees Vissers, "A Methodology
for Architecture Exploration of Heterogeneous Signal Processing Systems" In: Proc.
1999 Workshop on Signal Processing Systems (SiPS'99), pp. 181-190, Taipei, Taiwan,
Oct. 20-22 1999.

– Ed F. Deprettere, Edwin Rijpkema, Paul Lieverse, Bart Kienhuis, “High Level Modeling
for Parallel Executions of Nested Loop Algorithms”, In Proc. Application-specific
Systems, Architectures and Processors ASAP2000, Boston, Massachusetts, July
2000.

– Paul Lieverse, Pieter van der Wolf, Ed Deprettere, and Kees Vissers, "A Methodology
for Architecture Exploration of Heterogeneous Signal Processing Systems" To appear
in: Journal of VLSI Signal Processing for Signal, Image and Video Technology, special
issue on the 1999 IEEE Workshop on Signal Processing Systems (SiPS'99).

