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Design Space Exploration
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Result of an Exploration

*Making the proper trade-offs
*Knee points
*Quantifying design choices
*Multi variable optimization problem

(negative utilization values are the result of interpolation)
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Summary of the Y-Chart
approach

It permits designer to quantify design choices in the
architecture, the algorithms, and the mapping.

It permits the systematic exploration of the design
space of a system.

* It allows for the consideration of trade-off between
various metrics for an system that obeys set-wide
design objectives.

 Itis invariant to a specific design level.

* It requires an explicit definition of a platform and the
applications. This fosters reuse.
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Historical Perspective:
Separating Architecture from Applications

» The Y-chart is a methodological representation stressing the need of
separating applications from architecture at higher levels of abstraction.
To couple applications and architecture, the Y-chart introduces an
explicit mapping step.

* In computer architecture design, the separation between architecture
and application has already been in use for quite some time even
though the term “architecture” in that domain reflects typically the
Instruction Set Architecture that is not normally viewed as an
architecture in embedded system applications.

* In the design of programmable embedded systems, the importance of
separation between architecture and application and its methodological
consequences have been examined in:

— F. Balarin, et al., Hardware-Software Co-Design of Embedded Systems:
The Polis Approach, Kluwer Academic Publishing, 1997

— Kienhuis et al. “An Approach for Quantitative Analysis of Application-specific
Dataflow Architectures”, Conf. on Application-specific Systems,
Architectures and Processors (ASAP), Zurich 1997.
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Historical Perspective:
Gajski and Kuhn’s Y-chart

« In Gajski and Kuhn's Y- Arehiectural
chart,each axis represents a
view of a model: behavioral,
structural, or physical view.

¢ Moving down an axis represents
moving down in level of
abstraction, from the
architectural level to the logical
level to, finally, the geometrical
level.

e The Gajski and Kuhn'’s Y-chart
expresses the manual design
process of refinement. A

Physical/Geometry
(p. Gaski, “Silicon Compilers”, Addison-Wesley, 1987).

'Physical Partitions
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Both described a network of components that perform
a particular function and that communication in a
particular way

Architecture: Application:
*Resources * Computations
*ALUs, CORDICS, PEs *IDCT, SQRT, Quantizer
*Registers, SRAM, DRAM « Communication
*Busses, Switches «Pixels, Blocks
«Communication
«Bits, Signals
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Can we formalize the description of these networks?
“Models of Architecture” and “Models of Computation”
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Model of Computation

A Model of computation is a formal representation
of the operational semantics of networks of
functional blocks describing the computations.
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Model of Computation
Terminology

Actor

Actor
— describes the functionality
* Relation
— The actors are connected
with each other using relations.
* Token

— the exchange of a quantum
of information.

— It presents is a signal

token

fire {

t.<.).ken = get();

. Firing Port send(token); Port
— a computation }
— interaction with other actors (Active/Passive)

P - System) Levellbesign i N .
DAC  with Embedded Platforn Tiuiorizl

Active/Passive Actors

l

fire{ fire{
token = get(); while(1) {
token = get();
send(token); send(token);
}
} Exit Two kinds of Actors: }
Passive Actor: Active Actor:
*Scheduler needed. *Schedules itself
*Schedule ABBCD *A firing typically doesn’t terminate
*A firing needs to terminate *Endless while loop
*Fire-and-exit behavior *Process behavior
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Communication between
Actors

fire { fire {
Token
send(); @ O >@ oet();
port port | ..
}

}

Actor 1. Actor 2.

ommunication
Semantics)

Data Type of the Token Way exchange takes place

sInteger, Double, Complex *Buffered
*Matrix, Vector *Timed
*Record *Synchronized
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Different Semantics

continuous time: discrete time:
¢ Analog computers (ODES)

« Discrete time (difference
equations)

« Discrete-event systems (DE)
¢ Process networks (Kahn)

discrete events:

¢ Sequential processes with | | I |
rendezvous (CSP) ' >
 Dataflow (Dennis) synchronous/
. reactive: l |l
¢ Synchronous-reactive | >
systems (SR) partially-ordered
« Codesign Finite State | IR events:
Machines (CFSM) I E—>E,>E,
J_l J_ll . eLreE,
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Synchronous/Reactive Models

» Network of concurrent executing actors X fA(l)
— passive Actors —
P oS y|=| %3
— Communication is unbuffered
e Computation and Communication is instantaneous. z fc(X, Y)
» A model progresses as a sequence of “ticks.” Fixed point equation

* Atatick, the signals are defined by a fixed point equation:

fire { fire {
Token
send(); .—.—’. get();

} port port | 4

» Characteristics of SR Models
— Tightly Synchronized
— Control intensive systems

System) Levellbesign i N .
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Process Network

» Network of concurrent executing processes
— active Actors
— Communicate over unbounded FIFOs
» Performing some operation, a blocking read or a non-blocking write

fire { Token | fie
send); @O @ gel(;
y port port | 4 ™

* Characteristics of Process Networks
— Deterministic Execution
— Doesn't impose a particular schedule
— (Dynamic) Dataflow

Ny - System) Levellbesign
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Synchronous Dataflow

« Network of concurrent executing actors
— passive Actors
— Communication is buffered
« A model progresses as a sequence of “iterations.”
« A“firing rule” determines the firing condition of an actor.
¢ Ateach firing, a fixed number of tokens is consumes and produces.

fire { Tokens fire {
send(); .—»EIE’—». get();
= oort port |,

¢ Characteristics of SDF
— Compile time analyzable.

— Memory/Schedule/Speed
— Static Dataflow Schedule: ABBBC
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Codesign Finite State
Machine (CFSM)

» Network of concurrent executing actors
— Passive Actors
— Synchronous locally
— Asynchronous globally
* An “event” causes the evaluation (firing) of a FSM.

Token

FSM @——O0—>»@® FSM

port port

» Characteristics of CFSM
— Compile time analyzable.
— Reactive systems
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Finite State Machine (FSM)

KEY=0N => START

Port KEY @

KEY=OFF or BELT=ON =>

ALARM=OFF @ Port_START

Port BELT @
@ Port_ALARM

END=10 or
BELT=ON or
KEY=OFF =>
ALARM=0OFF

ND=5 =>

Port END @ e

*FSM may only have one state active at the time
*FSM has only a finite number of states.

*More efficient way to describe sequential control.
«Formal semantics which allows for verifying various properties like
safety, liveness, and fairness.
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Model of Architecture

A Model of architecture is a formal representation
of the operational semantics of networks of
functional blocks describing architectures.

A,B,C and D are now
hardware resources like
CPUs, busses, Memory,

and dedicated coprocessors.

Model of Architecture is similar to
Model of Computation, but the focus is on
the architecture instead of on the applications.
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Examples

CPU

Control Dominated Tasks

Sequential Low

Control/ Data Tasks

CPU

*Sequential
*Centralized computation

Complexity

Data Dominated Tasks
*Concurrent / DMA v
-Df;lta_ flow _ High
«Distributed computation

Less mature then MoC
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Conclusion:
Matching Models

Architecture <:> Application

Data Type

Model of Architecture <,:> Model of Computation

When the MoC and MoA match, a simple
mapping results
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Application

We will look fori=1:1:10
at two platforms for j=1:1:10
for the same application A(i,j)=FIR( ...);
discussed here. end
end
for i=1:1:10,
for j=1:1:10,
A(i,j) =SRC(A(i,)) );
end
end
for i=1:2:10,
for j=1:1:10,
... =Transpose( A(i,j) );
end
end

The Algorithm

Tucorizil

Putting it together
example 1.

» Platform: Microprocessor “VYon-Neumann architecture”

The benchmarks

Platform

Pentidim/Arm
MIPS/Alpha

Architecture Instances

Tuiorizl




Putting it together
example 1.

Micro Processor Picture in Picture
fori=1:1:10
for j=1:1:10
A(i]) =FIR();
end
end
e—— i for i=.1:1:10,
Counter Decoder for ]=111110,
A1) =SRC(A(i.)) );
end
end
Model of Architecture: Simulator Model of Computation:
*Sequential (Program Counter) *Sequential

*one item over the bus
at the time.
*Shared Memory

*Shared Memory
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o) Plziefe) s Tuiorizl

But Embedded Systems...

* But Embedded System are typically
— Concurrent
— Real-time
— Heterogeneous
— Application Specific

Your C/GCC compiler is not going to help you
to solve the mapping problem in these
embedded systems!
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Putting it together
example 2.

» Platform: Coprocessor Array

Coprocessor

-+ %
|
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fori=1:1:10

for j=1:1:10
A(i,)=FIR(...);

end

end

fori=1:1:10,
for j=1:1:10,

A(i,)) =SRC(A(L]) );
fire { end
fire { for i=1:1:10 end
for i=1:1:10 for j=1:1:10
for j=1:1:10 Token t = get();
Token t = FIR(..) Tokeny = SRC(t)
send(t); " ‘ send(y); .—'
end end
i Process Z”d
! Network } en
Actor FIR
Actor SRC
System LevellDesign

with Embedded Platforms  JULGNId)




Application Modeling

FIR SRC Transpose
. mm . .
get » get » get
» execute execute execute
send send send

*Explicitly describes Communication and Computation
*Explicitly describes concurrency
*Doesn’t impose a particular schedule

evel Design -
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Architecture Modeling (FIFO)

CoProcessor _CoProcessor
Fire
get
Implements the Send and Get Implements the

Actor functionality

Abstract Architecture Modeling
*Cycle Accurate description
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Architecture Modeling (BUS)

Computation

CoProcessor CoProcessor
Fire Fire
send get

Interface ™ Nt e
_— Bus

* Set-up time >
« Optimal transfer size —
« Transfer time Communication

* Master/Slave

Exploiting the separation between Communication and Computation

1 Cevellbesignn:
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Measure CoProcessor CoProcessor
«Contention
*Power
«Utilization
Fifo
Matching
Architecture Bus Models
Application fire { Token 1
send(); Simple
- Mapping
Actor 1. Actor 2.
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Once again: the Y-chart
approach is about...

Quantifying
— Relentlessly quantifying design choices at each design level.
» Abstraction
— Models of Computation / Models of Architectures
— Exploiting Performance Trade-off
— Stepwise exploration of design space
* Reuse
— Reuse of applications
— Reuse of platforms
— Reuse of IP
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