Y-chart methodology
and Models of Computation
and Architecture

Bart Kienhuis, Ed Deprettere, Kees Vissers,
Pieter van der Wolf, Paul Lieverse
Edward Lee.

By Bart Kienhuis

Berkeley USA, University of California,

oo 2

@y Berkeley, Dept EECS e
TU Delft Cory Hall PHILIPS
Tutorizl
Platform
.SN?;;) Lﬁ\][‘):fi)(l)ir(]:ation High Bandwidth
Multi standard Memory
—= Video Video
= N T Out ™

General
Purpose
Processor

Controller

High Performance DSP Architecture

Design Choices What Methodology Constraints
*Functionality PEs to use to solve this sthroughput
*Packet Length problem? -flg?(lblllty
«Control Protocol esilicon cost
*power

LLevellbesigr .
edded PIatrorms N LYY}

MEE---- -

DAC

Y-chart Approach

Performance
Analysis

System) Levellbesy gn

with Embedded Platror Tutorizl

ME)

Suggest architectural
improvements

Y-chart Approach

i Use different
Performance | Mapping stratégies

Analysis

‘
==

Rewrite the
applications

Different ways to improve a system.

DAC

System) Levellbesy gn

with Embedded|Platrorn Tutorizil

Abstraction Pyramid

High Low Y
“__Back of the Envelope
Explor
2 Estimation Models
n |.£
L2 o
c 18 Abstract
= s Executable Models
S |«
2 |2
8‘ 8 Cycle Accurate
O Models
VHDL
Models
Low High

System| Level'Desighn _ =
with EmbeddediPlatiorms, Tuiorizl

Stepwise Exploration of the
Design Space

7\ High
s Medium
G\ Low
A A

Traditional approach Y-chart approach

Stepwise refinement of the Design Space
of an Architecture

System Level Design _
with EmbeddediPlationrms: szl

Stack of Y-chart Environments

Cycle Acc.
Models

Levels of
Abstraction

Move Down into
Lower Abstractions

Performancg
Numbers

elfbesign| i
ediPlatioms: Tuiorizl

Stepwise Exploration of the
Design Space

Requires a smooth .
trajectory from one ngh

o AN ~g-
% e

Low

elfbesign| i
edPIatiorns) Tuiorizl

Design Space Exploration

&

(m 7

Performance
Parameters Numbers

- Performance -
Analysis

The Acquisition of Insight

System LeveliDesign .
with Embedded Platforms WUorady)

Design Space Exploration

Set up a number
of Experiments

:
*CPU=arm

*Packet
Size=100

*Throughput=10

sutilization=45%
«Control =

Round Robing

*PE1={fa,fb,fc} ‘
= Performance

Analysis

eenergy=0.1w

Performance
Numbers

Parameters

System LeveliDesign .
with Embedded PlIatrorms) W Uor)|

Result of an Exploration

*Making the proper trade-offs
*Knee points
*Quantifying design choices
*Multi variable optimization problem

(negative utilization values are the result of interpolation)

Sy stem Level Design s
DAC with EmbeddediPlatiorms Siiorizil

Summary of the Y-Chart
approach

It permits designer to quantify design choices in the
architecture, the algorithms, and the mapping.

It permits the systematic exploration of the design
space of a system.

* It allows for the consideration of trade-off between
various metrics for an system that obeys set-wide
design objectives.

 Itis invariant to a specific design level.

* It requires an explicit definition of a platform and the
applications. This fosters reuse.

System Level Design .
th Embedded Platforms Tiorizil

DAC wi

Historical Perspective:
Separating Architecture from Applications

» The Y-chart is a methodological representation stressing the need of
separating applications from architecture at higher levels of abstraction.
To couple applications and architecture, the Y-chart introduces an
explicit mapping step.

* In computer architecture design, the separation between architecture
and application has already been in use for quite some time even
though the term “architecture” in that domain reflects typically the
Instruction Set Architecture that is not normally viewed as an
architecture in embedded system applications.

* In the design of programmable embedded systems, the importance of
separation between architecture and application and its methodological
consequences have been examined in:

— F. Balarin, et al., Hardware-Software Co-Design of Embedded Systems:
The Polis Approach, Kluwer Academic Publishing, 1997

— Kienhuis et al. “An Approach for Quantitative Analysis of Application-specific
Dataflow Architectures”, Conf. on Application-specific Systems,
Architectures and Processors (ASAP), Zurich 1997.

Sy stem Level Design .
DAC with EmbeddediPlatiorms Siiorizil

Historical Perspective:
Gajski and Kuhn’s Y-chart

« In Gajski and Kuhn's Y- Arehiectural
chart,each axis represents a
view of a model: behavioral,
structural, or physical view.

¢ Moving down an axis represents
moving down in level of
abstraction, from the
architectural level to the logical
level to, finally, the geometrical
level.

e The Gajski and Kuhn'’s Y-chart
expresses the manual design
process of refinement. A

Physical/Geometry
(p. Gaski, “Silicon Compilers”, Addison-Wesley, 1987).

'Physical Partitions

Sy stem Level Design .
DAC with Embedded PIatioriis Siiorizl

—

Architecture
Instance

| Performance]

Analysis

Performancel
Numbers

Mapping

sj High Bandwidth
Memory

—= Video

T Out ™

General
Purpose
Processor

Controller

IThesign| i
Blatiorm’s) Tyuiorizl

Mapping

| quantization control

MPEG
Demux Reorder
bus ‘ —» VLD I=Er '(:) P ordering [
Coded Decoded

l I video T video

motion vectors

coproc| coproc. &mode Motion

Buffer

MPEG Decoding

Both described a network of components that perform
a particular function and that communication in a
particular way

Architecture: Application:
*Resources * Computations
*ALUs, CORDICS, PEs *IDCT, SQRT, Quantizer
*Registers, SRAM, DRAM « Communication
*Busses, Switches «Pixels, Blocks
«Communication
«Bits, Signals

Tuiorizl

Mapping

Architecture Application
Mapping

—

quantization control
CPU MPEG
Demux Reorder
—» VLD Qt IDCT %@—b ordering >
C%ded Decoded
video — T

video
bus
motion vectors

I I & mode Motion

P Buffer
MPEG Decoding
coproc coproc.

Can we formalize the description of these networks?
“Models of Architecture” and “Models of Computation”

System Level Design

with EmbeddediPIatio Tuiorizl

Model of Computation

A Model of computation is a formal representation
of the operational semantics of networks of
functional blocks describing the computations.

Tuiorizl

Model of Computation
Terminology

Actor

Actor
— describes the functionality
* Relation
— The actors are connected
with each other using relations.
* Token

— the exchange of a quantum
of information.

— It presents is a signal

token

fire {

t.<.).ken = get();

. Firing Port send(token); Port
— a computation }
— interaction with other actors (Active/Passive)

P - System) Levellbesign i N .
DAC with Embedded Platforn Tiuiorizl

Active/Passive Actors

l

fire{ fire{
token = get(); while(1) {
token = get();
send(token); send(token);
}
} Exit Two kinds of Actors: }
Passive Actor: Active Actor:
*Scheduler needed. *Schedules itself
*Schedule ABBCD *A firing typically doesn’t terminate
*A firing needs to terminate *Endless while loop
*Fire-and-exit behavior *Process behavior

e System) Levellbesign -
DAC ' with Embedded Platform Tutorgdyl

Communication between
Actors

fire { fire {
Token
send(); @ O >@ oet();
port port | ..
}

}

Actor 1. Actor 2.

ommunication
Semantics)

Data Type of the Token Way exchange takes place

sInteger, Double, Complex *Buffered
*Matrix, Vector *Timed
*Record *Synchronized

icd| PIatrorms i oI N}

Different Semantics

continuous time: discrete time:
¢ Analog computers (ODES)

« Discrete time (difference
equations)

« Discrete-event systems (DE)
¢ Process networks (Kahn)

discrete events:

¢ Sequential processes with | | I |
rendezvous (CSP) ' >
 Dataflow (Dennis) synchronous/
. reactive: l |l
¢ Synchronous-reactive | >
systems (SR) partially-ordered
« Codesign Finite State | IR events:
Machines (CFSM) I E—>E,>E,
J_l J_ll . eLreE,

'm Levellbesign .
yedded| PIStronms I LTIl

Synchronous/Reactive Models

» Network of concurrent executing actors X fA(l)
— passive Actors —
P oS y|=| %3
— Communication is unbuffered
e Computation and Communication is instantaneous. z fc(X, Y)
» A model progresses as a sequence of “ticks.” Fixed point equation

* Atatick, the signals are defined by a fixed point equation:

fire { fire {
Token
send(); .—.—’. get();

} port port | 4

» Characteristics of SR Models
— Tightly Synchronized
— Control intensive systems

System) Levellbesign i N .
with Embedded Platror Szorizl

Process Network

» Network of concurrent executing processes
— active Actors
— Communicate over unbounded FIFOs
» Performing some operation, a blocking read or a non-blocking write

fire { Token | fie
send); @O @ gel(;
y port port | 4 ™

* Characteristics of Process Networks
— Deterministic Execution
— Doesn't impose a particular schedule
— (Dynamic) Dataflow

Ny - System) Levellbesign
DAC ‘=5 with EmbeddedPIatiorn

Tucorizl

Synchronous Dataflow

« Network of concurrent executing actors
— passive Actors
— Communication is buffered
« A model progresses as a sequence of “iterations.”
« A“firing rule” determines the firing condition of an actor.
¢ Ateach firing, a fixed number of tokens is consumes and produces.

fire { Tokens fire {
send(); .—»EIE’—». get();
= oort port |,

¢ Characteristics of SDF
— Compile time analyzable.

— Memory/Schedule/Speed
— Static Dataflow Schedule: ABBBC

System) Levellbesign i N .
with Embedded Platror Szorizl

Codesign Finite State
Machine (CFSM)

» Network of concurrent executing actors
— Passive Actors
— Synchronous locally
— Asynchronous globally
* An “event” causes the evaluation (firing) of a FSM.

Token

FSM @——O0—>»@® FSM

port port

» Characteristics of CFSM
— Compile time analyzable.
— Reactive systems

Ny - System) Levellbesign
DAC ‘=5 with EmbeddedPIatiorn

Tucorizl

Finite State Machine (FSM)

KEY=0N => START

Port KEY @

KEY=OFF or BELT=ON =>

ALARM=OFF @ Port_START

Port BELT @
@ Port_ALARM

END=10 or
BELT=ON or
KEY=OFF =>
ALARM=0OFF

ND=5 =>

Port END @ e

*FSM may only have one state active at the time
*FSM has only a finite number of states.

*More efficient way to describe sequential control.
«Formal semantics which allows for verifying various properties like
safety, liveness, and fairness.

'm Levellbesign .
with Embedded Platforms O d)]

Model of Architecture

A Model of architecture is a formal representation
of the operational semantics of networks of
functional blocks describing architectures.

A,B,C and D are now
hardware resources like
CPUs, busses, Memory,

and dedicated coprocessors.

Model of Architecture is similar to
Model of Computation, but the focus is on
the architecture instead of on the applications.

'm Levellbesign .
with Embedded Platforms JULGNId)

Examples

CPU

Control Dominated Tasks

Sequential Low

Control/ Data Tasks

CPU

*Sequential
*Centralized computation

Complexity

Data Dominated Tasks
*Concurrent / DMA v
-Df;lta_ flow _ High
«Distributed computation

Less mature then MoC

System LeveliDesign .
with Embedded Platforms WUorady)

Conclusion:
Matching Models

Architecture <:> Application

Data Type

Model of Architecture <,:> Model of Computation

When the MoC and MoA match, a simple
mapping results

System LeveliDesign .
with Embedded PlIatrorms) W Uor)|

Application

We will look fori=1:1:10
at two platforms for j=1:1:10
for the same application A(i,j)=FIR(...);
discussed here. end
end
for i=1:1:10,
for j=1:1:10,
A(i,j) =SRC(A(i,)));
end
end
for i=1:2:10,
for j=1:1:10,
... =Transpose(A(i,j));
end
end

The Algorithm

Tucorizil

Putting it together
example 1.

» Platform: Microprocessor “VYon-Neumann architecture”

The benchmarks

Platform

Pentidim/Arm
MIPS/Alpha

Architecture Instances

Tuiorizl

Putting it together
example 1.

Micro Processor Picture in Picture
fori=1:1:10
for j=1:1:10
A(i]) =FIR();
end
end
e—— i for i=.1:1:10,
Counter Decoder for]=111110,
A1) =SRC(A(i.)));
end
end
Model of Architecture: Simulator Model of Computation:
*Sequential (Program Counter) *Sequential

*one item over the bus
at the time.
*Shared Memory

*Shared Memory

elfesign| i
o) Plziefe) s Tuiorizl

But Embedded Systems...

* But Embedded System are typically
— Concurrent
— Real-time
— Heterogeneous
— Application Specific

Your C/GCC compiler is not going to help you
to solve the mapping problem in these
embedded systems!

X Systembevellbesigr,
DAC ' with Embedded| Platrorms) UGN

Putting it together
example 2.

» Platform: Coprocessor Array

Coprocessor

-+ %
|

System eve Design| .
with Embedded Platforms O d)]

fori=1:1:10

for j=1:1:10
A(i,)=FIR(...);

end

end

fori=1:1:10,
for j=1:1:10,

A(i,)) =SRC(A(L]));
fire { end
fire { for i=1:1:10 end
for i=1:1:10 for j=1:1:10
for j=1:1:10 Token t = get();
Token t = FIR(..) Tokeny = SRC(t)
send(t); " ‘ send(y); .—'
end end
i Process Z”d
! Network } en
Actor FIR
Actor SRC
System LevellDesign

with Embedded Platforms JULGNId)

Application Modeling

FIR SRC Transpose
. mm . .
get » get » get
» execute execute execute
send send send

*Explicitly describes Communication and Computation
*Explicitly describes concurrency
*Doesn’t impose a particular schedule

evel Design -
with EmbeddediPlationms Tuiorizil

Architecture Modeling (FIFO)

CoProcessor _CoProcessor
Fire
get
Implements the Send and Get Implements the

Actor functionality

Abstract Architecture Modeling
*Cycle Accurate description

elfbesign| i
edPIatiorns) Tuiorizl

Architecture Modeling (BUS)

Computation

CoProcessor CoProcessor
Fire Fire
send get

Interface ™ Nt e
_— Bus

* Set-up time >
« Optimal transfer size —
« Transfer time Communication

* Master/Slave

Exploiting the separation between Communication and Computation

1 Cevellbesignn:

with Embedded PIatiorms i Loy 1}
Measure CoProcessor CoProcessor
«Contention
*Power
«Utilization
Fifo
Matching
Architecture Bus Models
Application fire { Token 1
send(); Simple
- Mapping
Actor 1. Actor 2.
1 Level F"l"]{.JJ'J i .]
szl

with EmbeddediPlationms

Once again: the Y-chart
approach is about...

Quantifying
— Relentlessly quantifying design choices at each design level.
» Abstraction
— Models of Computation / Models of Architectures
— Exploiting Performance Trade-off
— Stepwise exploration of design space
* Reuse
— Reuse of applications
— Reuse of platforms
— Reuse of IP

m Levellbesigrn - s
1ibedded Platiornms) fL/foJ_EIJ

References
* Y-chart approach

— B. Kienhuis, E. Deprettere, K. Vissers and P. van der Wolf, "An Approach for
Quantitative Analysis of Application-Specific Dataflow Architectures”, In Proc. 11-th Int.
Conf. on Application-specific Systems, Architectures and Processors, Zurich,
Switzerland, July 14-16 1997.

— F. Balarin, et al., "Hardware-Software Co-Design of Embedded Systems:The Polis
Approach”, Kluwer Academic Publishing, 1997

— B. Kienhuis, E. Deprettere, K. Vissers and P. van der Wolf, ““The Construction of a
Retargetable Simulator for an Architecture Template", In Proc. 6-th Int. Workshop on
Hardware/Software Codesign (CODES'98), Seattle, Washington, March 15 - 18 1998.

— B. Kienhuis, “"Design Space Exploration of Stream-based Dataflow Architectures:
Methods and Tools", PhD thesis, Delft University of Technology, The Netherlands,
January 1999. (Http://ptolemy.eecs.berkeley.edu/~kienhuis)

— http://ptolemy.eecs.berkeley.edu/~kienhuis

. Model of Computation

Ptolemy web site (http://ptolemy.eecs.berkeley.edu)

— W.-T. Chang, S.-H. Ha, and E. A. Lee, “Heterogeneous Simulation -- Mixing Discrete-
Event Models with Dataflow,” invited paper, Journal on VLSI Signal Processing, Vol.
13, No. 1, January 1997.

em Level Design .
1ibedded PIatiorms f.L/f_’JfJ_EI./

References

» Mapping

Paul Lieverse, Pieter van der Wolf, Ed Deprettere, and Kees Vissers, "A Methodology
for Architecture Exploration of Heterogeneous Signal Processing Systems" In: Proc.
1999 Workshop on Signal Processing Systems (SiPS'99), pp. 181-190, Taipei, Taiwan,
Oct. 20-22 1999.

Ed F. Deprettere, Edwin Rijpkema, Paul Lieverse, Bart Kienhuis, “High Level Modeling
for Parallel Executions of Nested Loop Algorithms”, In Proc. Application-specific
Systems, Architectures and Processors ASAP2000, Boston, Massachusetts, July
2000.

Paul Lieverse, Pieter van der Wolf, Ed Deprettere, and Kees Vissers, "A Methodology
for Architecture Exploration of Heterogeneous Signal Processing Systems" To appear
in: Journal of VLSI Signal Processing for Signal, Image and Video Technology, special
issue on the 1999 IEEE Workshop on Signal Processing Systems (SiPS'99).

stem Levellbesigrn - s
with Embedded Platiorms) Iuiorizl

