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HW Micro-controller Architecture basic componentsHW Micro-controller Architecture basic components

�� Processing Units (CPU)Processing Units (CPU)

�� MemoriesMemories

�� I/O UnitsI/O Units

I/O sub system

CPU

Memory
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An Example of Platform space: Micro-controllersAn Example of Platform space: Micro-controllers
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The criteria for selection are manyThe criteria for selection are many......

�� CostCost

�� PerformancePerformance

�� FlexibilityFlexibility

�� ReliabilityReliability

�� SizeSize

�� PowerPower

�� Re-useRe-use

�� ……
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Power-Train Control SystemPower-Train Control System

�� Electronic device controlling an internal combustion engine  and aElectronic device controlling an internal combustion engine  and a

gearboxgearbox

�� The goalThe goal

�� offer appropriate driving performance (e.g. torque, comfort, safety)offer appropriate driving performance (e.g. torque, comfort, safety)

�� minimize fuel consumption and emissionsminimize fuel consumption and emissions

�� Relevant characteristicsRelevant characteristics
�� strictly coupled with mechanical partsstrictly coupled with mechanical parts

�� hard real-time constraintshard real-time constraints

�� complex algorithms for controlling fuel injection, spark ignition, throttlecomplex algorithms for controlling fuel injection, spark ignition, throttle
position, gear shift …position, gear shift …
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Engine Management: BehaviorEngine Management: Behavior

�� Failure detection and recovery of input sensors (6 CFSMs + 1Failure detection and recovery of input sensors (6 CFSMs + 1

Timer)Timer)

�� Computation ofComputation of
�� engine phase, status and angle (6 CFSMs + 6 Timers)engine phase, status and angle (6 CFSMs + 6 Timers)

�� crankshaft revolution speed and acceleration (3 CFSMs + 1 Timer)crankshaft revolution speed and acceleration (3 CFSMs + 1 Timer)

�� Injection and ignition control law (Injection and ignition control law (18 CFSMs)18 CFSMs)

�� Injection and ignition actuation drivers (Injection and ignition actuation drivers (56 CFSMs + 48 Timers)56 CFSMs + 48 Timers)



Page 4

June 9, 2000 7

Behavioral ValidationBehavioral Validation
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Single-Core Architectural ModelingSingle-Core Architectural Modeling

 Hitachi SH2 or ARM7TDMI  core based µ-controller
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Mapping to SH2: SW Execution timeMapping to SH2: SW Execution time
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Core Exploration: ARM7TDMICore Exploration: ARM7TDMI
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ARM7TDMI Code SizeARM7TDMI Code Size

Code Size (published, publicly available, benchmarks):Code Size (published, publicly available, benchmarks):

�� ARM7 (32 bit mode) is 25-35% larger than ARM7TDMIARM7 (32 bit mode) is 25-35% larger than ARM7TDMI

�� Hitachi SH2 is 20% larger than ARM7TDMIHitachi SH2 is 20% larger than ARM7TDMI

�� CPU32 (68K) is 30% larger than ARM7TDMICPU32 (68K) is 30% larger than ARM7TDMI

�� PPC is 60-100% larger than ARM7TDMIPPC is 60-100% larger than ARM7TDMI

�� ST10/C167 is 15-35% larger than ARM7TDMIST10/C167 is 15-35% larger than ARM7TDMI

�� M-Core same code sizeM-Core same code size
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I/O exploration (Sensor Management)I/O exploration (Sensor Management)

��  Mapping A Mapping A
�� maximize software re-use and portability (i.e. not maximize software re-use and portability (i.e. not optimizedoptimized for Hitachi for Hitachi

architecture, only “essential” timers included)architecture, only “essential” timers included)

�� 1313 CFSMs CFSMs + 5 timers + 5 timers

�� A1 two tasks, A2 three tasksA1 two tasks, A2 three tasks

��  Mapping B Mapping B
�� optimizeoptimize for the Hitachi architecture (I.e., utilize special purpose peripheral for the Hitachi architecture (I.e., utilize special purpose peripheral

called ATU that makes more timers available)called ATU that makes more timers available)

�� 1515 CFSMs CFSMs + 7 timers + 7 timers

�� B1 two tasks, B2 three tasksB1 two tasks, B2 three tasks

��  Mapping C Mapping C
�� minimize hw/minimize hw/swsw communication introducing a new virtual hardware component communication introducing a new virtual hardware component

(I.e. replaces ATU with additional functionality)(I.e. replaces ATU with additional functionality)

�� 1818 CFSMs CFSMs + 6 timers + 6 timers
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Mapping: performanceMapping: performance
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Flash and Code Size TrendFlash and Code Size Trend
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Flash SpeedFlash Speed
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Embedded: 60Mhz  (ISSCC@1999)
External:    20-30Mhz (AMD/STM/INTEL)
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Platform CostPlatform Cost

�� External FlashExternal Flash::
�� Cost = Cost(Flash IC) + Cost(MCU) + Cost = Cost(Flash IC) + Cost(MCU) + IntegrationCostIntegrationCost(Flash,MCU)(Flash,MCU)

�� Micro-controller likely to be I/O boundedMicro-controller likely to be I/O bounded

�� Embedded FlashEmbedded Flash::
�� Cost=Cost(MCU) + Cost=Cost(MCU) + IntegrationCostIntegrationCost(MCU)(MCU)

Other issues: speed, reliability, re-use, ...Other issues: speed, reliability, re-use, ...
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Embedded Flash SolutionEmbedded Flash Solution

Embedded Flash:Embedded Flash:

��Speed: embedded is fasterSpeed: embedded is faster

��Cost: embedded is cheaperCost: embedded is cheaper

��Size: micro-controllers with higher code density reduceSize: micro-controllers with higher code density reduce
system cost  since size is mostly dictated by Flashsystem cost  since size is mostly dictated by Flash
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Power-Train Control SystemPower-Train Control System

Solutions:Solutions:
�� Increase Clock FrequencyIncrease Clock Frequency

� Performance bounded by memory (FLASH)
� A cache memory must be introduced.
� Higher clock frequency (80Mhz) might have a worse  EMI impact.

�� Increase ParallelismIncrease Parallelism
� Instruction Level: VLIW  (larger code size)
� Processor Level: Multiprocessor

Extend behavior to gearbox control

ARM7/SH2 core overloaded
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The Dual-Arm ArchitectureThe Dual-Arm Architecture

      A symmetric dual processor architecture with a high-bandwidthA symmetric dual processor architecture with a high-bandwidth
interconnection network among processors, memory, and I/Ointerconnection network among processors, memory, and I/O
sub-systemssub-systems

The micro-controller has been designed as a collaborative effortThe micro-controller has been designed as a collaborative effort
among:among:

�� PARADES for architecture conceptsPARADES for architecture concepts

�� Magneti-Marelli for peripherals and requirementsMagneti-Marelli for peripherals and requirements

�� ST for detailed architecture and IC designST for detailed architecture and IC design

�� Accent for X-bar switch and Interrupt Controller detailed designAccent for X-bar switch and Interrupt Controller detailed design

�� Cadence for system exploration and evaluation tools and methodologyCadence for system exploration and evaluation tools and methodology

Excellent example of supply-chain integration in electronic system design forExcellent example of supply-chain integration in electronic system design for
next generation platforms!next generation platforms!
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Why dual-core ?Why dual-core ?

A simple back of the envelope calculationA simple back of the envelope calculation

�� Estimated size:Estimated size:
�� (32KB.RAM + 512KB.FLASH) ~ 5.8M (32KB.RAM + 512KB.FLASH) ~ 5.8M TrsTrs. equivalent to 65-75% of. equivalent to 65-75% of

chip areachip area

�� (ARM7TDMI+Debug+IC+...) < 200K (ARM7TDMI+Debug+IC+...) < 200K TrsTrs. equivalent to less than 4%. equivalent to less than 4%
of chip areaof chip area

�� The MCU size is driven by FLASH sizeThe MCU size is driven by FLASH size

Dual-core solution:Dual-core solution:
�� 4% increment of MCU cost4% increment of MCU cost

�� twofold performancetwofold performance

June 9, 2000 22

Dual-ARM VCC Architectural ModelDual-ARM VCC Architectural Model
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Interrupt LatencyInterrupt Latency

�� XBAR arbitration policy: round robin and 1 clock ownerXBAR arbitration policy: round robin and 1 clock owner

cyclecycle

�� Best Case: 15 Best Case: 15 clksclks

�� Worst Case with 1 master:  Worst Case with 1 master:     26  26 clksclks

�� Worst Case with 2 masters:  37 Worst Case with 2 masters:  37 clksclks

�� Worst Case with 3 masters:  42 Worst Case with 3 masters:  42 clksclks

�� A ‘typical ‘ value of 27 A ‘typical ‘ value of 27 clk clk (by simulation)(by simulation)
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Interrupt Latency (2)Interrupt Latency (2)
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Output DevicesInput devices
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ConclusionsConclusions

�� Complex application of system design methodology:Complex application of system design methodology:

automotive power-train controlautomotive power-train control

�� Several architectures (different CPU, different I/Os,Several architectures (different CPU, different I/Os,

different memory organization, e.g. external vs. internaldifferent memory organization, e.g. external vs. internal

flash) evaluatedflash) evaluated

�� New dual-core architecture developed and validated forNew dual-core architecture developed and validated for

Magneti Marelli applications by joint design teamsMagneti Marelli applications by joint design teams

(PARADES, Magneti-Marelli, ST)(PARADES, Magneti-Marelli, ST)
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The Past, the Present and the Future of the Dual-The Past, the Present and the Future of the Dual-
core Platformcore Platform

�� Architecture Conceived in PARADES in March 1999Architecture Conceived in PARADES in March 1999

�� First  Discussion with M.M. and ST in April 1999First  Discussion with M.M. and ST in April 1999

�� Specification Team with M.M. and ST started in Sept’99Specification Team with M.M. and ST started in Sept’99

�� Performance exploration started in Dec’99Performance exploration started in Dec’99

�� Close specification in Jan’00 (IRQ list)Close specification in Jan’00 (IRQ list)

�� FPGA Prototype in Oct ’00FPGA Prototype in Oct ’00

�� Tape out Jan ‘01 (0.18 Tape out Jan ‘01 (0.18 µµm)m)

�� First Silicon 2001First Silicon 2001

�� Architecture spins for different applications 2001-2002Architecture spins for different applications 2001-2002

�� MM power-train controller Start-Of-Production mid-end 2003MM power-train controller Start-Of-Production mid-end 2003


