System Design Paradigms

Alberto Sangiovanni Vincentelli
The Edgar L. and Harold H. Buttner Chair of Electr. Eng. and Comp. Science
University of California at Berkeley
Co-Founder, Chief Technology Advisor and Board Member
Cadence Design System
Founder and Scientific Director
PARADES (Cadence, Magneti-Marelli, ST)

PARADES

System Level Design _
with EmbeddediPlationrms: szl

Electronics and the Car

*Morethan 30% of the cost of a car isnow in Electronics
*90% of all innovationswill be based on electronic systems

FUI-RDS
FV-SWIFT

Device
Interface

= bi
~———===p Application . 1

[ey S .
ata-Bus

June 9, 2000 2

Qutline

We are on the edge of a revolution in the way
electronics systems are designed.

oElectronic Systems
<Platform-based Design

¢Embedded Software

June 9, 2000 3

Chips Everywhere!

Chips that Fly?

SmartPen

June 9, 2000 4

Computing Revolution: Devices in the eXtreme

Information Appliances:
Scaled down desktops,
e.g., CarPC, PdaPC, etc.

‘ Evolved Desktops

Information Appliances:
Many computers per person,
MEMs, CCDs, LCDs, connectivity

Revolution

Servers: Integrated with

Evolution

Servers:
Scaled-up Desktops,

June 9, 2000

comms infrastructure;
Lots of computing in
small footprint

Smart Spaces

Camera

Information
Utilty (L
Server, Mem,
Disk C i
omputin
WAN puting
Revolution
5

June 9, 2000

The Distributed Approach to Information Processing

Productivity Gap

Potential Design Complexity and Designer Productivity o
10,000] 100,000 =
o - - Equivalent Added Complexi
E 1,000 LDQIC Tr.’Ch\p quivalent Addes omplexity 10,000 l:’:h al:
=] TriS.M. 5w
= 8
lﬂg- 100 58%Mr. compounded / 1,000 g 9.
@ 10 g grewhrate . 100 T @
2= * o £
2= 1);(10 a E
1] /
g LS M Ed 21%Nr. compound | | g
- X growth rate.
- 0.01 0.1
o 1 L
B M e T e e e s s s
5 g 22x8zaggegzsesett
- v T v v + + + + = ©of ™M ™ ™o o
3 Yr. Design
Year Technology Chip Complexity Frequency Staff Staff Cost*
1997 250 nm 13 M Tr. 400 210 90 M
1998 250 nm 20M Tr. 500 270 120 M
1999 180 nm 32M Tr. 600 360 160 M
2002 130 nm 130 M Tr. 800 800 360 M

* @ $150K / StaffYr. (In 1997 Dollars)

June 9, 2000

How are we going to solve the challenge of

Design?
+ Design Science

< Collaboration!

June 9, 2000

Challenges

Fact

¢ Total Number
of Design
Starts will
decrease

¢ Complexity per
Design Start is
going up

Shift to
¢ Reuse Strategy
+ Higher Level of

- Cost of ownership is High

- Ci i ities limiting Til

microelectronics group

SoC Landscape 2000+

« Development cost of a high end ASSP can exceed $5M
« Cost of fabrication and mask making has

increased significantly ($500k+ for masks alone)
+ >15x design productivity gap (Spec to Verified Netlist)

P] to-Market,
cycle time reduction needed to meet Customer
expectations

« Chip design complexity

« Silicon process complexity

« Context complexity

* End-to-end verification

-New “System to Silicon” methodologies are required

that recognize > 50% of the system development is
software

cent g|
BellLabs Inovations "

Abstractions

¢ Software !!!

June 9, 2000

10

Challenge: Design Flow Predictability

June 9, 2000

% Errors found

% Errors found

Objective
A Find bugs and critical

bottlenecks at the earliest
possible time
A Avoid error propagation
A Shorter time to market

Design
Time
37% 20% | 31% 12% | pesign
System Specification | HW.&SW Prototype Debug | System Time
& Design [Design/Debug Test

51%

11

Challenge: Productivity

Derivative Designs
Software Configurable
Derivative

H 0/- 0,

P
HW/SW L |] @ﬁ
Co-Development H .

3x - 5x

Wait on | Driver SW
System Definition Prototype.__Dev | Integrate
& Partitioning HW Development HW/SW
< ’ ' T
T H H |
37% [20% | 31% 12%
System Specification & HW & SW Prototype Debug System Test
Design Design & Debug
June 9, 2000 12

Manufacturing Cost and Design Cost

+ Manufacturing costs skyrocketing
AMask set cost alone predicted to be $1.5M to $10M

+ Design cost increasing exponentially with size of design
10% Decrease in ASIC starts for 1999 w.r.t. 1998.

Must re-consider how design is carried out: re-use is
main concern at all levels:

Platform-based Design
(H. Chang et al., A. Ferrari and ASV, K. McMillan and ASV)

June 9, 2000 13

Integration Platforms...
... the next step in the Evolution of Design Reuse

sRaM

uP Core -
ROM

pata cacne

ET)
Inetace

PEG [RoM .
Lo

ASIC Complex ASIC Plug and Play
with afew IP’s System-On-Chip
Timing Driven =» Block Based = Platform-Based
Design (TDD) Design (BBD) SOC Design

< In TDD, Reuse in ASIC design is of Cell-level Libraries
< In BBD, Reuse in hierarchical design is of major IP Blocks (e.qg., digital blocks

built out of standard cells)
< In SOC, Reuse is of Collections of IP blocks organized into HW-SW

architectures: also known as Integration Platforms

14

June 9, 2000

Platform-based Design

+ Build upon tools, methods and abstractions

“We rest on the shoulders of the past. We are midgets on the
shoulders of giants”, Francis Bacon, Novum Organum

15

June 9, 2000

Platform-based Design

+ Abstractions are layers upon layers

R i fihe
June 9, 2000 16

Platform-based Design

< The mapping between layers are the pillars of the platform

June 9, 2000 17

Platform-based Design

< The mapping between layers are the pillars of the platform

June 9, 2000 18

Platform-based Design

A platform is the combination of abstraction layers and
(manual, partially or fully automated) methods for the

mapping

June 9, 2000 19

Hardware Platforms

Hardware Platform: not only a fully specified SoC but a
family of architectures that share some common feature:

A Hardware Platform is a family of architectures that satisfy
a set of architectural constraints imposed to allow the re-
use of hardware and software components.

The stronger the constraints the more component re-use
but

& stronger constraints imply fewer architectures to choose
from!

June 9, 2000 20

Architecture Family: PC platform

+ PC hardware platform most successful application of
platform concept for re-use

A X86 ISA (makes it possible to re-use OS and software applications
at binary level)

Afully specified set of busses (ISA, USB, PCI)
Afully specified set of I/O devices
+ Too rigid (and expensive) for embedded system
applications!!!

June 9, 2000 21

Application-Specific SOC Integration Platforms

Application-Specific IP* Fixed Hardware Kernel

Scaleable

-\

HW-SW Architectures:
Processors
On-Chip Buses

-

Test, Power, 10,Clock
RTOS's
SW Architecture

-/-
O—

|:'/’

P
HW: Digital, AMS
Hard, Firm, Soft
SW: Source, Object

June 9, 2000

Foundry-Specific
Pre-Qualification

Reconfigurable
Hardware Region
(FPGA, LPGA, ...)

Variable Region

System Level
Design and Verification
Environment:

HW and SW
Rapid Prototyping capability

22

Digital Wireless Platform

Dedicated L ogic uC core
and M emor (ARM)

,, -
>l‘A>.‘AE!
_—

Analog RF

e

EE
:

DSP core

Wem 1K FPGA

[
[nj

Merm 1K FRCA Mem 1K

0

|
{ac Bt L 1L
[} [}
[} Dl:lml:llj

Mem512n n Mem512

Mem512

Source: Berkeley Wireless Research Center

June 9, 2000

23

DataMern

Building a Platform Instance

Put it all together

De-configure: Remove
unwanted components

Extend: Add in
prototyped (FPGA)
components

T

PHILIPS

Application Space

Platforms
Application Instance
System
Design Space
Exploration

Specification

/
Architecture Instance

Architectural Space

June 9, 2000

25

Hardware Platforms Not Enough!

+ Hardware platform has to be “extended” upwards to be
really effective in time-to-market

+ Interface to the application software is AP!I

+ Software layer performs abstraction:
A Programmable cores and memory subsystem with (RT)OS
A/O subsystem via Device Drivers
AMicrosoft Windows OS and APl is an example!

June 9, 2000 26

Why the Software Productivity Concern??

+ In the end,; if we solve the HW design productivity and fail
to address the SW productivity we have accomplished
little.

Past Present Future

June 9, 2000 27

Software Platforms
Platform API

Software Platform
Hardware Platform Hardvyare

network

Software Platform

Communication

June 9, 2000 28

Platforms

Application Space

Application Instance

Platform
Specification
System
Platform
Platform
Design-Space
Exploration

Platform Instance

Architectural Space

June 9, 2000 29

Platform Definition

Application Space (Features)

Application Software

Application Instances

Platform
Specification

Platform Design Spact
Exploration

- Platform I nstance
[HiTAGH >

Architectural Space (Performance)
June 9, 2000 30

How is a platform chosen?

+ Needs extensive analysis to optimize among competing
criteria

< Performance vs. cost vs. re-use (time-to-market) vs.
flexibility

+ Millions of parts are needed to be profitable!

June 9, 2000 32

System Design: High Leverage Paradigms

< Orthogonalization of concerns: view designs along
axes that can be dealt with independently
ATiming and functionality

AFunction and Architecture

AComputation and COmmunication

June 9, 2000 33

Separate Behavior from Micro-architecture

+System Behavior +Implementation Architecture
AFunctional Specification of aHardware and Software
System. AOptimized Computer
ANo notion of hardware or
software! u
- B

13
s
te
Buffer[——m»| 3 [« Sensor]
12
Sync
(Control

(e J«—g oo
— Control

i Rate) ideo hrame ideo .
Front b | Transport Buffer Decode 6 [BUffe s |—> Peripheral |«€——»
Processor
Rate

Audio System
Decode RAM

Processor Bus

June 9, 2000 35

IP-Based Design of Implementation

Which Bus? PI1?
AMBA?

Which DSP
Processor? C50?

Can DSP be done on
Micro-controller?

Dedicated Bus for
DSP?

Can1Buy | €2External | _ — DSpP
anMPEG2 | =] VO [> Processor Which
Processor? 3 Micro-controller?
Which One? mpec |<—>T| | DSPRAM ARM? HC11?
2
@
Peripheral |<€ > §— Control
o Processor
Audio | > |_| System How fast will my
Decode L | RAM User Interface

Software run? How
Much can | fit on my
Micro-controller?

Do I need a dedicated Audio Decoder?
Can decode be done on Micro-controller?

June 9, 2000

36

Map Between Behavior from Architecture

Transport Decode Implemented
as Software Task Running
on Microcontroller

P -
Communication

DSP

/1

Over Bus > Processor
2]
a
S
S
7]
(%]
&

Peripheral |- o[— Control
o Processor

Audio System
Decode RAM

Audio Decode Behavior
Implemented on
Dedicated Hardware

June 9, 2000 37

Two Basic Questions ...
Question | - IP Authoring

Embedded System Requirements

IP Bloqk Definition l

Y 4

Executable Syétem Level l
Block Level Specification

Iterative Refinement

—

Block Implementation

IP Block Authoring

A ...t
Implementation Level Verification

How to design a system block?

A s

June 9, 2000

Synthesis / Place & Route etc.

AStarting from the system level
AWith a consistent test-bench

AGetting from the abstract, un-timed
system model to the clocked HW or
SW implementation model

Example

& Rake Receiver
AWhich are the optimal algorithms?
AHow does it work fixed point?
AHow is it best implemented?

ADoes the implementation work as
specified in the system level

Two Basic Questions ...

Question Il - IP Integration

How to integrate system blocks?
AStarting from the system level
AWith a consistent test-bench

AGetting from the abstract, un-timed
system model to the clocked HW or
SW implementation model

ACommunication between blocks
AAddressing Platform Based design

Example

+ 3G Cell phone
AWhich are the optimal algorithms?
ADo they work together functionally?
Als the architecture sufficient?

ADoes the implementation integration
work?

June 9, 2000

Embedded System Requirements

Platform I Platform I
Function Architecture
=4 Par——_4

4

Pa—

System Integration

Performance Analysis and I
Platform anf;gg' uration

Communication Refinement

S‘,ommunlcatlon Integration

= 4
Software

Hardware
Assembl;;_‘_éssembly

Implementation Level Verification
P e 4

Synthesis / Place & Route etc.

IP Block System Integration

40

The new approach

< Not the typical stepwise top-down refinement: we rest on
platforms!

< Explicit mapping of applications onto architecture
components

+ The higher the level of abstraction, the faster is the design
time

June 9, 2000 41

Functional IP Integration

-— o

. Yo —
3 . SPW, Doesthe & Executable
B Algorlthm Ct+.C, functionally Furoticel
=| | Integration integrated e
=l / SDL, Matlab ©) designwork? Specification 7

Question: How does the functional integrated design work?

+ VCC allows
A to import functional IP from different sources
A tointegrate functional IP from SPW, C++, C, SDL, Matlab etc.
A author C++, C or FSM based additional IP
A to assess the algorithmic integration aspects
A to create an unambiguous functional executable specification

June 9, 2000 43

Functional IP Integration

o Does the

g|| Algorithm SPUe functionally Execligi
Z|| Integration Cri g integrated Functional

= SDL, Matlab design work? Specification

Visualization

Zislxi

JZ=#m K[NooNE/ Quoo~a|
5o 1 | AxBREAMOSS| B8~ 05|
.0 00 & A o & |

b |

s of! FSM IP Authoring

June 9, 2000 44

Architectural IP Integration

Does the

E Algorithm cSErW(’: functionally IE:xeCLtj_tablei-
Z| Integration T integrated unctional

F SDL, Matlab design work? Specification
g : CPU,DSP __

g| Architecture . p s, Memory’

S| Performance RTOS. HW. SW

3 y AW,)

+ Question: What does the system architecture look like?

¢ VCC allows

A to model architectural IP at the system level
v CPU, DSP, RTOS, Bus, Memory and dedicated HW/SW

A tointegrate the architectural models defining the platform
A to present a system architecture to system customers
A to create an unambiguous architectural specification

June 9, 2000 45

Architectural IP Integration

e) —
r _ sow 1 | Doesthe a8 Executable
&l Algorithm Gt (': functionally ’ Functional
g| Integration | "t integratey Specification
Fy) . 2 4 /) designwork? B g

Performance

; CPU, DSP .)

: Architectural Integration

ngtg:remgﬁ;ee Bus, Memel™ CF e o
RTOS, Sl — e

5

DSP

w8
£
5
g
]
g
g
2
g
H
g

API for architectural components |lga=e 4| |
June 9, 2000

New Research Plan: Logical Infrastructure for
System Level Design and Verification

+ Models of computation: new theory that will make it
possible to link different models of computation

< Platform definition with rigorous formalism about levels of
abstraction and mapping

Three basic components of the framework
AProof manager
ADesign agent
A Verification Agent

K. McMillan and ASV, R. Passerone, A. Ferrari and ASV

June 9, 2000 47

System Design: High Leverage Paradigms

+ Orthogonalization of concerns: view designs along
axes that can be dealt with independently
ATiming and functionality
AFunction and Architecture

AComputation and COmmunication

June 9, 2000 48

Key Problem: Ad Hoc Integration

Conventional SOC & Bus structures inadequate for
e System . .
g’DMA‘CPU‘- psrr S global SOC quality of service
= 2 = Iy
i Galn s needs
g".Mem ,-E :;‘ R))
=5 o> + Excessive interdependency
G _||_ between blocks
Sl
AR \Y ¥V V + Incomplete information for front-
Custom :
Interfaces Peripheral end modeling
Bus
Control Wires < Verification and test

unmanageable

June 9, 2000 49

Sonics Integration Architecture (SonicslA~)
Features

Open Core
Protocol™ (OCP)

MultiChip
Backplane™

SiliconBackplane™
(patented)

SiliconBackplane
Agent™

* Provides critical decoupling
(latency, bandwidth, frequency, address map,
data width, protocol, control flow, etc.)

» Configures specifically to application
* Highly scalable bandwidth
* Fully observable and controllable

June 9, 2000 50

Bottom Line: Component Reuse

+ The Challenge Is Not in the IP Itself, but is in the
Component Integration Protocols
Alt's not just a “standard bus” problem

AThis is true for hardware, software, and so/rdware
components

+ Design Validation Remains the Key Bottleneck and
Is Likely to Get Even Harder

June 9, 2000 51

Communication-based Design

Pearls (the | P Processes)

MicroShells (the I P Requirements)

MacroShells (the Protocol Interface) ‘
Communication Channels e

June 9, 2000 52

COSY Communication Refinement

+ Abstract from the concerns of HW or SW implementation (multi-target VC)
+ Abstract from the concerns of a particular bus (bus-independent VC)

APP: Write, Read (port, vector of <ANY» data-type)

(=)

l SYS: set channel parameters to Tradeoff Speed versus Memory Size
Function p L_—”-H_) c
(zero-delay) il
l VCI: «<KANY BUS» Write, Read (address, data chunk)
~ \Z
Function p id }l c
mapped to B
HW or SW
(delay) PHY: Physical-Bus protocol, e.g.
1 gr
Interface Wrapper

June 9, 2000 53

Communication Refinement

from Tokens to Signals

SPW,

Does the

Executable

Iﬁ:gg:;tgg:] C+t+, C, flijr?tgg(r)ggcliy Functional
SDL, Matlab design o Specification

g Archil r; CPU, DSP '\ ; A &V‘ Executable
oo U | Bus, Memory, = P e Performance
s) rios,He) pariyen s Specification
o sufficient?
et ——
o Refined §§ g Does the
g Integrated g g refined design
o DeSIQn <Qommumcanon Reflneme:t work?

Communication Refinement

Abstract —> Abstract
>
Token — Token
Il
a—
>
June 9, 2000

54

Key Technology

Communication Refinement

Refinement from abstract tokens to articulated signals %\
Value

ADesign and simulate at the level of
abstraction at which designers
think (e.g. ATM cell, GSM frame)

Ahide implementation details of the
communication until it is required

ommumcauon
Rehne'nenl

(but simulate it's overhead!)
arefine from abstract token level
down to implementation of interface
signals
Aevaluate performance trade offs of
communication effects

June 9, 2000

Communication Synthesis

4 Does the

2|1 Algorithm CS+|:-W(’: functionally Eﬁi((::lzltgr?;?
g i L integrated e
> Integr:’atu’)/rr SDL, Matlayb’) dégigﬁwork? Specification »
- < < 3 - v 9

é Architecture BSSPLIGeI?nSEW%\E performance & ‘) Pi):?c::rlrjlgzzlge
&| | Performance : : [y partitioning g
5 RTOS, HW, sW | =(ufticl Specification
>

3 Refined ﬁg % Does the

¢ Integrated g £ refined design

o DeSIQn Communication Pattern <Commumcanon Refinement work? '

Communication Pattern Synthesis

June 9, 2000 -

i/

Software Task:

1{0s Drivers
BUs I/F Drivers

Key Technology

Communication Interface Synthesis

Synthesize communication pattern through architecture

Value

AChoose from comprehensive set of
communication pattern

APattern for HW-SW, SW-HW, HW-HW
and SW-SW communication
available

Amove function between HW and SW
boundaries and re-synthesize the
communication interface

Acustomize platform communication
environment through JAVA scripts

June 9, 2000

ommuncation
Refinement
—g
Flow To Implementation

VCC Model
VCC Model to RTOS
Protocol Component
RTOS VCC Model
RTOS to CPU Bus Slave to VCC
Protocol Component Model Component
V] Bus Slave
CPU to Bus Protocol Bus to Bus Slave
Component Component
Bus Bus

Bus Model

57

Qutline

We are on the edge of a revolution in the way
electronics systems are designed.

#Electronic Systems for the car
+Platform-based Design

¢Embedded Software

June 9, 2000 58

Why the Software Productivity Concern??

+ In the end,; if we solve the HW design productivity and fail
to address the SW productivity we have accomplished
little.

Past Present Future

June 9, 2000 59

Software IP authoring

+ Key in providing flexibility

+ Software is consuming more and more time and
resources:
ATelecom: 70+% of engineering
A Automotive: more than 60%
AMost of malfunctioning comes from software

Life Threatening Errors

+ Cost of bug fixing

June 9, 2000 60

Embedded Software: The (recent) past

8-16 bit micros

+ Mostly undocumented assembly code

+ Layered, new functionalities added on top of existing code
+ Experimentally verified

< Rudimentary, very low-weight custom OS

+ Small foot-print (small amount of code)

June 9, 2000 61

Embedded Software: The present

+ 32-bit high performance micros

< 100,000-1,000,000 lines of code with shorter and
shorter time-to-market

+ Mostly low level C-code (Micro-controllers) or
assembly for DSPs

¢ Commercial RTOS (e.g., Wind River)
+ Verification is a real challenge

June 9, 2000 62

Embedded Software: Requirements

+ Safety

Afull (formal?) verification

+ Productivity

Asmaller number of software designers, much larger systems

v “new” designs from 60,000 man/days for automotive engine control to
20,000

¥ spins (e.g., new customer for same basic product) from 20,000 to 5,000

¢ Cost

Amax leverage of available architectures (being able to convert
quickly software from one platform to another!)

June 9, 2000 63

Embedded Software: Agenda

< Raise levels of abstraction
+ Formal models and techniques
< Simulation and Estimation for Platform Selection

+ Automatic “synthesis” and assembly of components

Ahighly optimized, correct by construction

+ Application-driven: Engine Control (e.g., Magneti-Marelli,
ST, Daimler and BMW) quite different from Digital Video
Decoder (Philips) and from Wireless (BWRC and Ericsson)

June 9, 2000 64

System Building Focus

< Provide background, methodology and experience in
system building.

< Designs will build on a variety of disciplines including
computer hardware, communications, DSP, IC design,
networks, operating systems and software.

+ Make use and understand the advantages and limitations
of CAD tools.

June 9, 2000 65

Conclusions

We are on the edge of a revolution in the way
electronics systems are designed

< Cars are important microcosms for new electronics

¢ New methodologies needed that leverage system design science

A correct-by-construction formally sound methodology for
embedded software design

& Mapping concurrent specification onto programmable platform

< Software Synthesis:
A Formal Specification and Optimization

A Emphasis on run-time: Verifiable scheduling
June 9, 2000 66

