
Storage Management in Process Networks using the
Lexicographically Maximal Preimage

Alexandru Turjan Bart Kienhuis
Leiden Institute of Advanced Computer Science (LIACS),

Leiden, The Netherlands
e-mail: �aturjan,kienhuis�@liacs.nl

Abstract

At the Leiden Embedded Research Center, we are developing a compiler called Compaan that automat-
ically translates signal processing applications written in Matlab into Kahn Process Networks (KPNs). In
general, these signal processing applications are data-flow intensive, requiring large storage capacities,
usually represented by matrices. An important issue in Compaan is the derivation of a memory manage-
ment mechanism that allows for efficient inter-process communication. This mechanism has previously
been published and is called the Extended Linearization Model (ELM). The controller needed in the ELM
is derived using the Ehrhart theory, leading to a computational intensive procedure. In this paper, we
present a new approach to derive the ELM controller, based on the notion of Lexicographically Maximal
Preimage. Using polytope manipulations and parametric integer linear programming techniques, we get
less computational intensive and easier to be derived controller implementation for the ELM.

� ���������	��

The Compaan tool-chain [9] automatically transforms digital signal processing applications, written in
a subset of Matlab, into Kahn Process Networks [8]. These KPNs represent the input applications in a
parallel distributed way, making them suitable for mapping onto parallel architectures. These networks
can be converted to VHDL and quickly synthesized to FPGAs [7] or mapped onto some parallel signal
processing architecture [11] at a high level of abstraction to obtain first-order performance numbers.

The process of converting a signal processing application to a Kahn Process Network is done in three
steps. The first tool, i.e., MatParser, performs an array data-flow analysis that transforms Matlab code
into single assignment code (SAC). The second tool, i.e., DgParser, converts the SAC into a mathematical
model based on polytopes called polyhedral reduced dependence graphs (PRDG). Using polytope manip-
ulations, the third tool, i.e., Panda, converts the PRDG into a process network (PN).

Given the three steps, Compaan abstracts a Matlab program into concurrent processes that communicate
with each other via �-dimensional arrays. Each occurrence of this communication can be abstracted to an
instance of the classical Producer/Consumer pair. If the Producer process writes data (into the array) and
the Consumer process reads data (from the array) in the same order, then a FIFO between Producer and
Consumer is enough in order to ensure a correct translation form Matlab to a Kahn Process Network.
There can, however, be a problem when a token is needed more than once by the Consumer. As soon
as a token is read from a FIFO by the Consumer process, it cannot be read by another iteration of the
Consumer. Therefore, if another iteration needs the same information, it has to be send either another time
by the Producer, or it has to be stored temporarily by the Consumer until all iterations that need to read the
same token have taken place. This means that the token can be released from the local memory such that
the corresponding location can be reused. If such situation occurs, we say that the Producer iteration has
multiplicity; the token produced by that iteration is consumed by more than one Consumer iteration.
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1.1 Multiplicity

To illustrate the concept of multiplicity, consider the simple Matlab program from the left part of Fig-
ure 1. In this program, the value a(x) is initialized with a particular value as given by the function Fp().
Next, the function Fc() reads the value of a(j). In the first iteration, it reads a(1), a single time. In
the second iteration, it reads a(2) two times, in the third iteration it reads a(3) three times, and finally,
it reads a(4) four times.
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end
end

for x = 1:1:4,

end

for j = 1:1:4,
for i = 1:1:j,

Fc ( token );

token = Controller.getFrom(j,i);

fifo.Put( Fp(x));

Figure 1. Matlab program with multiplicity large than one of variable a

This program can be abstracted to a simple Producer/Consumer pair that communicate variable a. The
producer consists of the first for-loop with iterator x. The Consumer consists of the two for-loops with
iterators i and j. If function Fc would read value a(1), a(2), a(3), and a(4) only once, the array
a could have been replaced by a FIFO. But, because variable a has a multiplicity larger than one, a FIFO
no longer is enough. A read from the FIFO is destructive and therefore, as soon as it has been read,
another iteration cannot read it again. This problem is specific to a Process Network; it does not exist in
the original Matlab program in which function Fc can read the value a(i) from main memory as many
times as needed as the read does not destruct the value in memory.

To handle the communication involving multiplicity, we have proposed in [15] the Extended Lineariza-
tion Model (ELM) which adds to the Consumer process a piece of memory and a controller as visualized
in the right part of Figure 1. Depending on the type of memory and on the functionality of the controller,
four different realizations of the ELM have been proposed [17]. As soon as a token is read from the FIFO,
it is stored in the local memory. All the iterations inside the consumer that require this token, can read this
token as many times as needed from local memory. When no other iteration requires the token anymore,
the memory location can be relinquished and reused by another token.

In this paper, we present an approach based on the Lexicographically Maximal Preimage to determine
when to release the reordering memory or to read from the FIFO in a Compaan derived KPN. This approach
allows the use of a simpler realization of the linearization model (LM or ELM) when handling multiplicity
that is easier to be derived compared to the approach described in [15]. The usage of the adequate lin-
earization model when linearizing a given P/C pair can be seen as a starting point in deriving the memory
lower bound involved in communicating data over a KPN. The releasement of the memory was also ad-
dressed by the parallelizing compilers community when doing life time analysis for memory compression.
There are several papers that are dealing with compile-time analysis of memory reuse in static nested loop
programs. In [18], an approach is presented for a fixed linearization of the memory array. In [20, 13], a
constructive approach is given in context of the single assignment language ALPHA, for finding the max-
imum lifetime of an array, based on which can be derived an optimal memory projection. In [10], in the
process of parallelizing a static algorithm by removing output dependences, the authors propose a method
of partial array expansion. In [3], an approach is presented to compute the bounding box for the elements
that are simultaneously in use. The size of the original array is reduced to the bounding box and accessed
by using modulo operations, improving in this way the memory usage. Although their techniques have
similarities with the work presented in this paper, i.e., relay on polytope manipulations and integer linear
programming, a new approach specific to the KPN involving distributed memory management had to be
derived. The formulation of our problem consist of solving two parametric integer linear programming
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(PIP) problems, formulated after solving the classical PIP problem used by Feautrier for doing array data
flow analysis [6].


 �	�� �� 
�����	���	���

Consider an arbitrary P/C pair as derived by Compaan. According to the data dependencies that exists in
the single assignment code, an affine transformation � exists that maps the polyhedral Consumer domain
into the Producer domain. If restricted to the Consumer domain, the mapping� is not injective, then there
are at least two Consumer iterations that consume the same token. Therefore, we say that the token was
produced at an iteration that has the multiplicity bigger than one. Here we give the formal definition of the
multiplicity:

Definition 1 Consider a parameterized polyhedral domain ���� � �� mapped through an affine transfor-
mation� into a parameterized polyhedral domain���� � �������, where ���� � ��. The multiplicity
is a function � � ����� � ��� � �� that associates to each integral point � � ���� the number of the
integral points in ���� that are mapped through � into the same point �.

According to the previous definition, for an integral point � � ���������, its multiplicity depends on the
mapping function � and on the ���� domain.

We define the multiplicity of a produced token � as the multiplicity of the iteration point (IP) which
produces �. Let � � ����� � ��� be a producer IP that produces the token �. Assume the Consumer
domain being represented by the parameterized polytope ���� � � �, then the set of the consumer’s IPs
that consume � is represented by the integer points inside the next parameterized polytope:

���� �� � �� � �� � � � ���� 	 � �������� 	 � �����
� (1)

such that the multiplicity of � is given by:

���� �� � �	
������ �� � ��
� (2)

which is a pseudo-polynomial expression, as given by the Ehrhart theory [4, 1].
Depending on � , and on the schedule of producing and consuming data, four different kinds of P/C

pairs (dependence-graphs) can be distinguished:

� in-order: A P/C pair is in-order if and only if every two consecutive Consumer iteration points � �������
are mapped onto two consecutive Producer iteration points �� � � ���� and ��� � ���� such that
��������.

� out-of-order: A P/C pair is out-of-order if and only if restricted to the Consumer domain the mapping�
is injective and there are at least two consecutive Consumer iteration points �������� that are mapped
onto two Producer iteration points ��� ����� and ��� ����� such that ��������.

� in-order with multiplicity: A P/C pair is in-order with multiplicity if and only if restricted to the Con-
sumer domain the mapping � is not injective and every two consecutive Consumer iteration points
�������� are mapped onto the consecutive Producer iteration points �� � � ���� and ��� � ����
such that ��������.

� out-of-order with multiplicity: A P/C pair is out-of-order with multiplicity if and only if restricted to
the Consumer domain the mapping � is not injective and it exist two consecutive Consumer iteration
points �������� that are mapped onto the Producer iteration points ��� ����� and ��� � ���� such
that ��������.

In Figure 2, the four different kinds of P/C pairs are given by showing the Producer and Consumer iteration
spaces and the order of their iterations. From this picture, it is clear that the program given in Figure 1
corresponds to an instance of the in-order with multiplicity P/C pair. If we would have exchanged the
indices of the j and i, it would become an instance of the out-of-order with multiplicity. Each P/C pair
belongs to one of the four categories; each category replaces the �-dimensional array in the original Matlab
program with an optimal linearization model:
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Figure 2. The four kinds of Producer/Consumer pairs

� Model 1. An in-order P/C pair is linearized using only a FIFO buffer.

� Model 2. An in-order with multiplicity P/C pair is linearized using a FIFO buffer and additional control
statements. No Controller and reordering memory is needed.

� Model 3. An out-of-order P/C pair is linearized using a FIFO buffer, reordering memory, and a controller.
In this model, each time when the controller addresses the reordering memory for reading data, the
corresponding memory location can be released.

� Model 4. An out-of-order with multiplicity P/C pair is linearized using a FIFO buffer, a reordering
memory, and a reordering controller.

To give a feeling how often a particular kind of communication occurs, we looked at the set of bench-
mark programs used in the development of Compaan. Looking at 26 algorithms containing in total 1435
P/C pairs, we found that 80% of the pairs represent in-order communication that can be handled by a FIFO
(Model 1). In 17% of the cases, we found that the communication represent out-of-order communication
(Model 3). In 3% of the cases, the communication involves a multiplicity larger then one. In 2.7% of the
cases, the communication is in-order with multiplicity (Model 2) and in .6% of the cases. the communica-
tion is out-of-order with multiplicity (Model 4).

We remark that the implementations of the linearization models described above increase in their com-
plexity, from Model 1 to Model 4. Model 1 and Model 2 are closely related, except that some control
logic is needed to know when to release data in Model 2. Model 3 and 4 requires additional reordering
memory. Of the four models identified, Model 4 is the most expensive linearization to be realized, being
able to linearize all four possible P/C pairs. As we see from the data, this model is used quite rarely.

To reduce implementation cost it is very important to select adequate linearization model for each P/C
pair. Such a selection procedure has been presented in [16] and is realized in Compaan. The general design
of ELMs has been presented in [17], but in this paper we indicate that such an ELM can be optimized
according to the four linearization models given. In the remainder of this paper, we focus on a technique to
determine the control needed to handle multiplicity.

� ������� ����	�	��

Consider again a P/C pair, but now with multiplicity. This implies that the mapping is not injective, i.e.,
there exists a token � produced by an iteration point � of the Producer process which is consumed by more
than one iteration point of the Consumer process. Therefore, the problem we address in this article, can be
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stated as follows:

� Find a procedure that determines for each Consumer’s IP whether the token that it uses will be needed by
any of the IPs executed afterwards. If such moment can be found, we know when to release the memory
location taken by the token.

This problem can be solved using the Ehrhart theory by computing the multiplicity of a token (See
Equation 2). For example, the multiplicity for the P/C pair given in Figure 1, is a simple polynomial
���� � �. In general, however, the multiplicity function can be rather complex and hard to compute as the
following example taken from [14] shows:

Example of deriving the multiplicity: Assume a parameterized Producer iteration space given by the
integer polyhedral image � � ����������, where the parameterized Consumer iteration space is given
by ���� � ��
�� 
�� � �� � � 
 
� 
 � 	 
� 
 
� 
 �
 and ��
� � �
� 	 
� 	 
. Figure 3 shows
the Producer and the Consumer iteration spaces. To find the multiplicity of the Producer IPs we have to
count the number of integer points inside the parameterized polyhedron ���� �� � ��
 �� 
�� � �� � � 


� 
 � 	 
� 
 
� 
 � 	 � � �
� 	 
� 	 

. Using the Ehrhart theory, the multiplicity is given by the
next parameterized pseudo-polynomial expression:

���� �� �
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�

�
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�
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�
� �
�
� �
�
� �
�
�� ��
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�
� 	 � �

�
� �
�
� �
�
� 
� �

�
� �
�
�� �� if � 	 
 
 � 
 
� 	 
�

� ����
�����

(3)
In this case, when a token is read from a FIFO, a counter in the Controller is set to the value of the multi-
plicity of the token. This value is obtained by evaluating the pseudo-polynomial that gives the multiplicity.
Now, each time this token is read by a Consumer’s IP, the counter is decremented by one. When the value
of the counter reaches zero, the memory entry can be released by the Controller. �
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Figure 3. Producer/Consumer pair with non-dense Producer domain

We relay on the PolyLib library [2, 19] for computing the multiplicity using Ehrhart. This library is
still under development and as a consequence, there are still cases for which PolyLib cannot derive an
enclosed expression for the multiplicity function. Therefore, we present a new approach that provides a
more efficient solution to the problem stated above and a solution that can be used in many more occasions.
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� �����	��

The problem we face, is to find when a token can be released from the local memory or FIFO, so that
it can be reused to store the next token. We now make the following observation. In Figure 1, we notice
that all iterations where a token is used last are represented by the next set: � � � ���� �� � �� � � 
 � 

�	� � �
. So, given we can find � �, we can test whether an iteration is in � � or not. If an iteration is in � �,
it means the memory location associated ith that iteration can be released, otherwise other iterations still
require the data at the memory location. As we will show, by computing the lexicographically maximal
preimage (LMP), we are able to find � �. We will explain now the notion of the LMP in a more systematic
way.

Consider a parameterized polytope ���� � �� and an integral affine transformation ��� represented
by a �� � matrix � and an offset vector �. The integral image of � through the function � represents a
linearly bounded lattice (LBL):

� � ��� � ��� � �� � � � �
 	 � 	 
 � �� � ���
 (4)

For each � � ��� � ��� consider the set ������ � �� � � � ������� � �
. Let ���� denote the
lexicographically maximal element in the set � �����. This element will be referred to as the lexicograph-
ically maximal preimage of �. Consider the sub-domain� � � � which consists of all maximal preimages:
� � � ������� ���� � ���
. We say that � � is the Lexicographically Maximal Preimage of polytope �
through affine mapping � , which is a LBL.

If � represents the consumer domain and � is the mapping of the P/C pair, the set � � has the following
meaning. Let � be a token produce by the producer IP � � ��� � ���. Then � � contains ����, the
lexicographically maximal consumer IP that consumes �. This means that ���� is the last IP consuming �.
� � contains all such last consuming IPs, and only them. Hence, if a consumer IP belongs to � �, then the
memory location holding the token it uses can be released after the token is read by this IP.

If the current IP is in � �, the memory can be released, otherwise not. The problem of finding the � �

domain is a parametric integer linear programming (PILP) problem that can be solved using tools like
PipLib [5] or Omega [12]. We define the polytope � as the image of � through the mapping � :

� � ���� � �� � � ��
 	 � 	 
 � �
� (5)

Let � be an arbitrarily integer point: � � �	��. Consider � � � � as the image of � through the mapping
matrix � into the � domain. Therefore, � � � . Now we formulate the next PILP problem. Consider x
variable and � parameter determine, x� that:

subject to: x � ��

� � � ������

� �� x�

objective: x� � �	�����x���
�

(6)

The solution of this PILP problem is parameterized in � and is represented by a multistage conditional
expression:

if (y � ����

then x � �����,

if (y � ����

then x � �����,

:

if (y � ����

then x � �����.

(7)

where ��� ������ are parameterized polytopes and ��� ���� �� are affine transformations. Some function
can be nil (or empty), represented as � � ��, which corresponds to the case when integer points of � have
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no corespondent points in �, i.e., � is not surjective. Such case is given for example in Figure 3, by the
Producer IP equal to � � 
�. Consider now �� as the union of polytopes �� for which functions �� are
defined:

�� �

��
���

��� where �� ��� �

By mapping �� through the correspondent mapping � �, we get the next LBL domain restricted to the �
polytope:

�� � � � ����� � ��� � �� � � � � � ����� 	 � � ��� � ���
� (8)

Then the union of those LBLs represents the lexicographically maximum preimage of � through the func-
tion � :

� � �
��
���

��� (9)

Now the problem is how one can represent in a systematic way an arbitrary LBL. Basically, one has to
formulate a PILP problem similar to the previous one (see relation 6) which has a solution represented by
a multistage conditional from which only the non-empty branches play role:

subject to: t � ���

� � � � �������

� � ��� t��

objective: t� � �	�����t���
�

(10)

Therefore, if a Consumer iteration point satisfies one of the non-empty branches corresponding to one of
the PILP problems derived above, then the correspondent memory location from where the data is read can
be released.

� ����	�	�� ������	���	�� �	�� ����	 �	�	�!

In this section we show how the presented technique can be used to simplify the controller for two ELM
models: Model 2 and Model 4.

5.1 Out-of-order with multiplicity - linearization Model 4

Consider now a general out-of-order with multiplicity example with the iteration spaces of the producer
and consumer as given in Figure 3:

for j = 0 : 1 : 3*N+3,
a[j] = Fp();

end
for k1 = 0 : 1 : N,

for k2 = k1 : 1 : N,
Fc( a[2*k1+k2+3] );

end
end

In this case, we have the Consumer domain that corresponds to the function �� described by the integer
points inside the next parameterized polytope:

���� � ��
�� 
�� � �� � � 
 
� 
 � 	 
� 
 
� 
 �
� (11)

such that by mapping through the affine transformation ��
 �� 
�� � �
�	
�	
, the next domain1 results:

� � �� � � � 
 
 � 
 
� 	 

 (12)

1Note that � does not represent the Producer domain which is in this case a LBL bounded by �
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Therefore we have to solve the next PILP problem:

subject to: � 
 
� 
 ��


� 
 
� 
 ��


 
 j 
 
� 	 
�

j � �
� 	 
� 	 
�

objective: �	�����(
�� 
��
�

(13)

The solution of this PILP problem is given by the next solution tree that has only one non-empty branch:

1. if (0 <= j-3),
2. if(0 <= -j+3*N+3),
3. _d18 = div(2*j,6),
4. if(0 <= -j+N+2*_d18+1),
5. (k1,k2)=(_d18-1,j-2*_d18-1);
6. else
7. Nil;
8. end
9. else
10. Nil;
11. end
12. else
13. Nil
14. end.

This solution tree is the one-dimensional LBL that represents the Producer domain as a two dimensional
polytope with coordinates � and ���. As you can observe in Figure 4, for � � � the Producer iteration
� � 
� is filtered out such that the data is not sent to the FIFO channel:

���� ���� � ���� ���� � �� � 
 
 � 
 
�	
 	 � 
 ������� 
 � 	 � 
 ��	����	�	

� (14)

Hole (E(j=17)=0) corresponding to the empty
branch from the PILP solution tree (see line 7.)

  

Producer Iteration Space

Consumer ProcessConsumer Iteration Space

end
end

for ( k1 : 1 : 5 ),
for ( k2 : k1 : 5 ),

if ( 0 <= 2k1 − 2k2 + 5 ),
Controller.MemoryRelease();

end

token = Controller.getFrom(i,j);

The Controller.MemoryRelease() is guarded by
an if−statement given by the Consumer LMP

���
� � �� 
��
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� � � � � �� �� �� �� �� �����	�������	���
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Figure 4. Linearization based on the Lexicographically Maximal Preimage for an out-
of-order with multiplicity Producer/Consumer pair

As can be seen in the pseudo-code, line 5 indicates the mapping function ���� � ��� � ���� � 
� � �
���� � 
�. By mapping � through � we get the lexicographically maximum preimage domain which is
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represented by the next polytope parameterized in � as can be seen in Figure 4:

����� � ��
�� 
�� � �� � � 
 �
� 	 
� 	 
� 
 � 	 � 
 �
� � �
� 	� 	 � 
 �
� 	 
�
 (15)

In general the � � domains is not included in � ,i.e. � � � �, but as you can see in Figure 4 the domain
difference between � � and � does not contain any integer points. Hence, although � � is defined by four
inequalities, three out of four are redundant with the boundaries of the Consumer for-loops and only one
inequalities results to determine the release moment. It is interesting to compare the difference between the
solution using the Ehrhart theory and the solution found using the LMP. In the latter, a simple if-statement
with a linear-expression results.

5.2 In-order with multiplicity - linearization Model 2

Consider the in-order P/C pair with the iteration spaces given in Figure 1. The Consumer domain is
represented by the integer points inside the polytope:

� � ���� �� � �� � 
 
 � 
 � 	 
 
 � 
 � 	 � 
 �
� (16)

The affine transformation ���� �� � � maps it onto the following polytope:

� � �� � � � 
 
 � 
 �
� (17)

Suppose that the P/C is linearized according to Model 2. Consider a producer’s iteration point �. If the

x

4

3

2

1

if−statement given by the Consumer LmP
The FIFO.get() primitive is guarded by an

end

for ( i : 1 : 4 ),

FIFO.put(
token = Fp();
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4

iteration space
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for ( j : 1 : 4 ),

if ( i == 1 ),

end
Fc(token);

end
end

token = FIFO.get();

unbounded for ( i : 1 : j ),FIFO

C’ − the LmP of the Consumer domain

Producer Process Consumer Process

Figure 5. Linearization based on the Lexicographically Minimal Preimage for an in-
order with multiplicity Producer/Consumer pair

proposed method is applied directly, we obtain the consumer IP which is the lexicographically maximal
preimage (LMP) of �: ��� �� � ��� ���, i.e., the last consumer IP ��� �� which consumes �. However,
the P/C pair is linearized according to Model 2 and, hence, no reordering memory locations are used
and have to be released. Instead, the tokens are consumed only from FIFO at certain moments. Instead of
calculating the LMP, we calculate the Lexicographically Minimal Preimage (LmP). We follow the approach
presented in Section 4, but we changed the objective function in Equation 6 into x � � �������x���
. The
meaning of Lexicographically Minimal Preimage is that each time a Consumer iteration arrives inside the
Lexicographically Minimal Preimage, data is read from the FIFO for the first time. For the considered P/C
pair, computing ��� ��� is equivalent to solving the following PILP problem:

subject to: � 
 i 
 ��

� 
 j 
 ��

i 
 j�

� � j�

objective: �������(�� ��
�

(18)

The solution of this PILP problem is given by the next solution tree:
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1. if(0 <= -x+4),
2. if( 0 <= x-1),
3. (i,j)=(1,x);
4. end
5. end

This solution tree is represented by a single context polytope � � � �� � � � 
 
 � 
 �
 and the
correspondent affine function ����� � �
� �� (see line 3 from the previous pseudo-code). By mapping � �

through the function �� we get the LmP domain given by the next polytope domain:

�� � ���� �� � ���
 
 � 
 � 	 � � 

� (19)

such that the second PILP problem (see relation 10) does not have to be solved. As can be seen in Figure
5, the moment when the data has to be read from the FIFO can be check with a single if-statement that
represents � � restricted to the Consumer domain.

" 
������	��� ��� #����� �	����	���

When deriving a KPN from a given Matlab program using Compaan, in about 10% of all the com-
munications between a Producer and a Consumer process, the communication involves multiplicity. That
is communication in which the token produced by an iteration is consumed by more than one Consumer
iterations. In these cases, an ELM is needed instead of a FIFO buffer to realize the correct communication.
The Controller of the ELM needs additional code to determine when a particular memory location can be
released, to use the local memory as efficient as possible.

To derive the additional control, we presented in this paper a novel technique that calculates a domain
that indicates that a token is used for the last time and therefore a memory location can be release. The
ELM Controller only needs to check if an iteration is in or out of the domain to make the correct decision.
The domain is represented by a linearly bounded lattice that is calculated by solving a parametric integer
linear program problem that gives the Lexicographically Maximal Preimage. This procedure is compared
to the approach based on computing the multiplicity using Ehrhart’s theory. We showed two cases in which
the Lexicographically Maximal Preimage was calculated; an in-order with multiplicity and an out-of-order
case with multiplicity. This shows the applicability of the new procedure.

The presented technique is used to solve the releasing of a token from memory. The technique can
also be used to do domain reconstruction of the output port in the single assignment code generated by
MatParser. This way, we know for sure that data send over a FIFO will be consumed, leading to efficient
communication. Furthermore, the approach to derive the Lexicographically Maximal Preimage can easily
be reformulated to get the Lexicographically Minimal Preimage. Using these two notion of the maximum
and minimum, one could find the first and last use of a token, thereby giving the life time of a token. This
fact could, for example, be exploited to minimize local memory usage at the consumer process. Finally,
we remark that the complete procedure is not yet fully implemented in Compaan, but, all infrastructure to
implement the presented procedure is available within Compaan as should be realized in the near future.
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