
A Hierarchical Classification Scheme to Derive Interprocess
Communication in Process Networks

Alexandru Turjan Bart Kienhuis Ed Deprettere
Leiden Institute of Advanced Computer Science (LIACS),

Leiden, The Netherlands
e-mail:

�
aturjan,kienhuis,edd � @liacs.nl

Abstract

The Compaan compiler automatically derives a Process Network (PN) description from an application written
in Matlab. The basic element of a PN is a Producer/Consumer (P/C) pair. Four different communication patterns
for a P/C pair have been identified and the complexity of communication structure differs depending on the commu-
nication pattern involved. Therefore, in order to obtain cost-efficient process networks our compiler automatically
identifies the communication pattern of each P/C pair. This problem is equivalent to integer linear programming
and thus in general can not be solved efficiently. In this paper we present simpler techniques that allow to classify
the interprocess communication in a PN. However, in some cases those techniques do not allow to find an answer
and therefore, an ILP test has still to be applied. Thus, we introduce a hierarchical classification scheme that
correctly classifies the interprocess communication, but uses dramatically less integer linear programming. In only
5% of the cases to classify, we still relay on integer linear programming while in the remaining 95%, the techniques
presented in this paper are able to classify a case correctly.

� �������
	�������
��	��
The aim of the Compaan compiler [3, 7] is to automatically derive Process Networks (PN) descriptions from

applications written in a standard language like C or Matlab. A PN expresses the application in terms of distributed
memory and distributed control [7]. The distributed memory and control are essential when programming a het-
erogeneous multiprocessor architecture like the Virtex-Pro from Xilinx [12], the Picochip from PicoChip [5], or
the SpaceCAKE architecture from Philips [8]. Distributed memory means that not all components read and write
to the same memory causing memory bottlenecks. Instead, components exchange locally only data that other com-
ponents require. Distributed control means that each component can make progress on its own; it is not under the
control of some global controller, which fits the loosely coupled components.

In this paper, we investigate a particular problem in the Compaan compiler regarding the ability to classify the
interprocess communication in a PN. Within Compaan, we map the static arrays not onto some shared memory
structure, but onto a distributed communication structure taking care of the interprocess communication. We have
already shown that four types of communication exists, each exhibiting different requirements when realizing them
in hardware of software [10]. Within the Compaan compiler, we need to establish certain characteristics of each
communication between a Producer and Consumer process. For this purpose, we have already developed and pre-
sented in [11] two integer linear programming (ILP) tests i.e., Multiplicity Test (MT) and Reordering Test (RT).
These tests correctly classify each communication structure to one of four possible types. Due to the NP-Complete
character of ILP, MT and RT are usually time consuming and memory intensive. Therefore, in this paper we present
techniques based on polynomial algorithms (like Smith and Hermite normal form [4]) that allow to do the classi-
fication of the interprocess communication. However, in some cases those techniques do not allow to find correct
answer and therefore, an ILP test has still to be applied. Thus, we introduce a hierarchical classification scheme
that correctly classifies the interprocess communication, but uses dramatically less integer linear programming. In
only 5% of the cases, we still relay on integer linear programming while in the remaining 95%, the tests presented
in this paper are able to make a correct classification.

� ����������������� �!��	"�
In the original Matlab program, data is being communicating between assignment statements over static mem-

ory arrays. To obtain a PN the Matlab code is partitioned into a number of processes that are accessing those
static arrays. Therefore, we need to map the static arrays onto some distributed communication structure. We do
not want to map the static arrays onto shared memory, which is the typical approach, as it contradicts with the
desirable notion of distributed memory. Instead, we would like to replace the static arrays by a truly distributed
communication structure. This transformation step in Compaan is called Linearization [6].

2.1 Producer/Consumer Model

Compaan creates from the Matlab program a Polyhedral Reduced Dependence Graph (PRDG). In this graph,
each edge represents communication between a producer and a consumer node that needs to be linearized. Each
such edge can be abstracted to a simple Producer/Consumer (P/C) pair, where the Producer and the Consumer have
parameterized polyhedral iteration domains that are related through an affine transformation. Depending on this
transformation, described by a mapping matrix # and the structure of the for-loops as represented in the original
Matlab program, we have found that four different kinds of communication can be distinguished in PNs. For a
more detailed description of P/C pairs, their iteration domains and mapping functions the reader is referred to [9].

3

2

1

4

3

2

1

4

3

2

1

4

3

2

1

4

3

2

1

4

3

2

1

4

3

2

1

4

3

2

1

4

1 2 3 4 5 i

jx

1 2 3 4 5 i

jx

data dependecy

loop schedule

1 2 3 4 5 i

j

1 2 3 4 5 i

jx x

Consumer Consumer

Producer ConsumerConsumerProducer

ProducerProducer

Out−of−order with multiplicity (OOM+)

(a)

(b) (d)

(c)

In−order with multiplicity (IOM+)In−order without multiplicity (IOM−)

Out−of−order without multiplicity (OOM−)

O
rd

er
in

g

Multiplicity

Figure 1. The four types of communication of a static array in a Pro-
ducer/Consumer pairs.

These four types (patterns) of communicating data between Producer and Consumer are represented graphically
in Figure 1. They are determined by the ordering of the iterations at the Producer and the Consumer processes (in
order/out of order) and whether a token has multiplicity, which means that a token that is sent, is read more then
once at the Consumer side. In Figure 1, we show iterations as small circles. These iterations are ordered as indicated
by the small arrows representing the loop schedule of the for-loops in the original Matlab program. According to
the existent P/C data-dependency, we also show the relationship between the production of data at an iteration and
the consumption of that data at one or more iterations. Each communication type has been given a name. For
example, the In-order without multiplicity case is given the abbreviated name IOM-.

When communication takes place in order, the distributed communication structure is a FIFO channel. In case of
communication out of order, the Extended Linearization Mechanism (ELM) is required, which has been introduced
in [10]. In that paper, we give the components of the ELM, that are a controller and reordering memory and show
how to derive the control used to perform the reordering. In [9], we explain how to derive the life-time control of

a token, needed to determine when to release a token when multiplicity is involved. This control can be added to
the ELM or to a FIFO channel. The ELM is needed for the models OOM- and OOM+. The other two models,
IOM- and IOM+, use a FIFO channel. The implementations of the linearization models described above increase
in their complexity (both Hardware and Software), from IOM- to OOM+. Of the four models identified, OOM+ is
the most expensive linearization to be realized. It is also the generic linearization since it subsumes all the other
three linearization.

2.2 Definition of Multiplicity and Re-ordering

We now give a formal definition of a P/C pair, multiplicity and reordering.

Definition 1 A P/C pair is a tuple $�%
&('*),+.-/+10"&('2),+�354 , where %
&('*)�68759 is a parameterized polytope, -�:;7 9�<7 = is an affine function, 0"&('*)
>?-@&A%
&('*)*B�C 9) , and 3 is the lexicographical order.

The set of the integer points inside the parameterized polytope %
&('*) is called the Consumer domain, or the Con-
sumer iteration space. The affine function - is specified according to the data dependencies, which is represented
by an &EDGF�HI) integral matrix # , and an D -dimensional offset vector J , i.e., -@&EK*)�>L#MKON8J . To simplify the
further presentation, we assume that JP>LQ such that - is represented only the matrix # . Depending on # , and
on the schedule of producing and consuming data as given by the lexicographical order, four different kinds of P/C
pairs can be distinguished based on the following two definitions:

Definition 2 A P/C pair is in-order iff the mapping preserves the order, i.e. every two Consumer iteration pointsKSRT3UK2V are mapped onto two Producer iteration points &EWXRY>?#?KSRZ) and &EW[V5>?#MK2VT) such that W\R[]�WTV . If the P/C
pair is not in order it is called out-of-order.

Definition 3 A P/C pair is without multiplicity iff the mapping #^:/&`_"B�CY9S)
<a0 (i.e., the mapping M restricted
to the Consumer domain) is injective. Otherwise we say that the P/C pair is with multiplicity.

According to the previous definitions, any arbitrary P/C pair in a static nested loop program belongs to one
of the four types given in Figure 1. This is not specific to the Compaan compiler, but to any static nested loop
program.

b cd�Ye�� ���f�hgi	j�
k
We have already presented a solution to determine the type of linearization in [10]. In that paper, we presented

a technique based on the Ehrhart theory [1] to determine the ordering and multiplicity as pseudo polynomial ex-
pressions. By comparing the pseudo polynomial expressions, we could determine if the schedule of producing and
consuming data are respectively the same, indicating in-order behavior. We could also determine if the pseudo
polynomial was larger than one, indicating that multiplicity was involved. Although the presented procedure gives
a definitive answer for the type of linearization, the complexity of the pseudo polynomial calculations, the compar-
ison of the pseudo polynomials, and the fact that the software implementing Ehrhart was not able to always derive
a pseudo polynomial, made the Ehrhart approach unsuitable for implementation in Compaan.

In [11], we presented two tests used to classify inter-process communication: the Reordering test and the Mul-
tiplicity test. Both tests are based on solving the problems given below using integer linear programming. If a
solution exists for the Multiplicity Problem (MP), it means that multiplicity is involved. If a solution exists for the
Reordering Problem (RP), it means that reordering is involved.

lnm :
opppq pppr
K�st&A%
&('*)*B�CU9S),+Wusv&A%
&('*)*B�C 9),+Ktw>MW2+#?Ku>x#?W2y

z�m :
opppq pppr
K�sv&A%
&('*)*B�C�9S),+Wus{&A%
&('*)*B�C 9),+K@3�W2+#?W23�#MK@y

(1)

Using both tests, we can always correctly classify a P/C pair, but at the expense of solving many integer linear pro-
gramming systems, which is time consuming and memory intensive. Although in principle suitable for Compaan,
a reduction in the number of systems to solve with integer linear programming is needed.

| }O	�e�u�
��	��h~������!	������
Instead of solving integer linear programing systems, we want to exploit certain characteristics of the mapping

matrix to classify a P/C pair to one of the four types. Just consider, as an example, the simple P/C pair given in
Figure 2. In this example, the order of producing and consuming data are exactly the same and the mapping matrix
is: #�>�� R�����fR��/� . Suppose now that we change the Consumer such that it consumes tokens in a different order than
they are produced. This can be achieved by interchanging the indices of the array � (from �*� K@+.W;� to �*� W2+�K��) at the
Consumer as shown in Figure 3. The Producer and the Consumer polytopes stay the same, while the index change
is reflected only in the affine mapping matrix that has become #�> � �fR��R����2� .

Apparently, the order change from an in-order case to an out-of-order case is completely reflected in the mapping
matrix. Therefore, by analyzing the mapping between Producer and Consumer, we want to decide whether out-
of-order communication appears or not. Similarly, we want to say whether multiplicity is involved based on the
structure of the mapping matrix. For that purpose, we present in the remainder of this paper three properties that
needs to be checked to classify a P/C pair.

for i=1:1:N, for x=1:1:N,
for j=1:1:N, for y=1:1:N,
a[i,j] = fp(); fc(a[x,y]);

end end
end end

Figure 2. An In-order P/C pair

for i=1:1:N, for x=1:1:N,
for j=1:1:N, for y=1:1:N,

a[i,j] = fp(); fc(a[y,x]);
end end

end end

Figure 3. An Out-of-order P/C pair

Although we can classify most of the P/C pairs using the properties only, there are some cases that cannot be
detected correctly. In those cases, we still require the use of the Multiplicity or Reordering test. These tests, together
with the tests that check the presented properties, will lead to a hierarchical classification scheme. This scheme
classifies correctly each P/C pair, but uses only in a fraction of the time integer linear programming compared to
when we would use only the Reordering or Multiplicity tests.

� ���
���f�d�������i�e,�
����e����U�,�2�������@�Y���!��	"����!�������!��������� ������¡���u�
Using only the mapping matrix, we want to know if re-ordering takes place or whether multiplicity is involved.

We first look at properties that determine if multiplicity is involved, followed by properties that indicate whether
re-ordering is involved. When taking about the mapping, we referring to the mapping matrix of P/C pair, but with
the offset vector J removed (last column) as a translation does not effect the order or multiplicity of a P/C pair.

5.1 Multiplicity

A necessary condition for avoiding multiplicity is that the mapping should be injective, i.e., a one-to-one rela-
tionship exists between the iteration points from the Producer and a Consumer. Otherwise the mapping is bijective,
and multiplicity is involved as a produced token can be consumed by more than one Consumer iterations. This
condition is not conclusive, as there are particular cases where the mapping is not injective, but multiplicity does
not appear. To determine whether or not the mapping defined by a matrix is injective can be done easily; the matrix
should be full column rank, a condition we check using the Smith Normal Form [4].

5.2 Reordering

A necessary condition for avoiding re-ordering is that the mapping is a lower triangular matrix with positive
entries on the diagonal. This leads to the definition of Property1 as follows:

Property 1 Consider a P/C pair with a mapping described by the matrix # . If # is an integral &EH¢F¡HI) lower
triangular matrix, with positive diagonal elements, then the P/C pair is in-order.

If this property holds, we call a mapping matrix an in-order transformation. If a transformation does not respect
this property, we say it is an out-of-order transformation.

Proof: Firstly, we prove that any two Consumer points £ and ¤ , where point £ is lexicographically smaller
than point ¤ (represented as £¥3x¤), are mapped by # into two Producer points £5¦ and ¤�¦ such that £Y¦�3x¤j¦ .
We take two Consumer points £§>P&EKIR¨+�y©y©yª+«K 9) and ¤¥>P&EW;R[+�y©y©y©+«W 9) such that £¬3?¤ ; i.e., there exists an
s{C
where ®5¯°!$°H such that ±S² s³C such that ®5¯M²�¯° it follows that KS´Y>MW;´ and K/µª¶ R $°W¨µ·¶ R . Assume that the
mapping matrix has the shape:

l >
¸¹¹¹
º
��R�R 0 y�y�y 0� V�R � V,V y�y�y 0

...
...

. . .
...� 9 R»� 9 V¼y�y�y½� 9\9

¾ ¿¿¿
À y

Two points will by mapped through the mapping matrix # into the next distinct Producer points as the mapping
is bijective: £Y¦!>§#x£?>¬&('SR[+A'2V\+�yªy©y©+Á'/µ�+1Â�N��\µª¶ R�Ã µª¶ R�Ä K/µª¶ R +�y©y©y) and ¤�¦
>Å#?¤¬>¬&('*R[+E'/V\+�y©y©y©+Á'/µ�+1Â�N��\µ·¶ R�Ã µ·¶ R�ÄWTµª¶ R +�y©yªy) , where '/Æ�>?Ç ÆÈÊÉ R � Æ È Ä K È , and Â³>?Ç µÈ·É R �Xµª¶ R�Ã È Ä K È . Because K/µª¶ R $ËWTµª¶ R and �\µ·¶ R�Ã µ·¶ R 48Q it follows

that �\µª¶ R�Ã µª¶ R�Ä K/µª¶ R $Ë�\µ·¶ R�Ã µ·¶ R�Ä WTµª¶ R , and we conclude £ ¦ 3°¤ ¦ .
Now let us take 2 consecutive Consumer points £P3L¤ . As we showed, they will be mapped into £ ¦ and ¤ ¦

such that £ ¦ 3¬¤ ¦ . To stay in-order, we have to show that at the Producer side £ ¦ and ¤ ¦ are also consecutive.
Assuming that £ ¦ and ¤ ¦ are not consecutive, we will establish a contradiction here. We take a point _ ¦ at the
Consumer side such that £ ¦ 3¬_ ¦ 3n¤ ¦ . Because M is bijective, there exists a _ at the Producer side such that_ ¦ >x#§_ . Since £ and ¤ are consecutive, it follows that either _ ¦ 3°£ ¦ 3Ì¤ ¦ or £ ¦ 3Ì¤ ¦ 3Ì_ ¦ . Knowing that# preserves the order of the points, _ can not be between £ and ¤ . This contradicts the assumption we made;
thus £Y¦ and ¤j¦ are consecutive at the Producer side. Í

Property1 describes a necessary condition for in-order communication, under the assumption that the dimen-
sions of the Producer and Consumer iteration domains are equal. We can generalize this property to the case when
the dimension of the Producer is bigger or equal with the dimension of the Consumer.

Property 2 Consider a P/C pair with matrix # . Let D and H be the dimensions of the Producer and the Consumer
domain, respectively. Let DÏÎ°H and # be a D�F�H injective mapping matrix. From the independent rows of # ,
we construct the HtF�H matrix #§¦ in the order they appear in # . If #x¦ is an in-order transformation, then # is
also an in-order transformation.

Proof: Consider two arbitrary Consumer points £M>n&EK@R¨+«K2V[+�y©y©yª+1K 9) and ¤L>n&EW\RT+.WTV\+�y©y©y©+«W 9) such that £§38¤ .
By taking out the independent rows from the matrix # in the order they appear, we obtain the matrix #Å¦ . Since
the matrix # is injective, there are exactly H independent rows and, hence, the matrix #Å¦ is square (H°FtH).
Suppose it respects Property1. Let : &E��ÐR +.�XÐV +�y©yªy©+«�XÐ9)�>x# ¦ £ and &EÑ�Ð R +«Ñ�ÐV +�y©y©+«Ñ�Ð9)
>?# ¦ ¤ . Hence &E�XÐR +.�XÐV +�y©y©yª+«�XÐ9)�3&EÑ Ð R +.Ñ ÐV +�y©y©y©+1Ñ Ð9) . Since 3 is the lexicographical order, there exist Ò+�®"¯x�$?H�ÓÌ® such that � Ð R >ÅÑ Ð R +�y�y�y�+.� Ðµ >ÅÑ Ðµ
and � Ðµª¶ R $ÔÑ Ðµª¶ R . Let &E��R[+.�XV;+�y©y©+«� =)�>d#x£ and &EÑ�R[+�Ñ�VX+�yªy©y©+«Ñ =)j>d#x¤ . Suppose that the &ÁSNÅ®Z)�Ó�Õ.Ö row

of the matrix #x¦ is positioned as the ×�ÓËÕ.Ö row in the matrix # . Then �ØÆO>ÙÑ,Æ for each integer Õ such that®�¯ÅÕ�¯Ô&Á×"ÓM®�) . This follows immediately from the fact that each �ØÆ�+�®u¯ÅÕ5¯�&Á×�Ó°®Z) is a linear combination
of some �ØÐ´ , where ®t¯Ù²¢¯d . Moreover, �ØÚ8>Ù�XÐµª¶ R and Ñ�ÚË>�Ñ�Ðµª¶ R . Because �XÐµª¶ R $ÛÑ�Ðµª¶ R it follows that#?£ ¦ 3°#?¤ ¦ . Using the same technique like in the previous proof, it follows that whatever consecutive Consumer
points £ and ¤ are chosen, the corresponding Producer points #?£ and #?¤ are also consecutive. Í
Corollary 1 If #¢R is an in-order matrix transformation then #�RÜ#vV is in-order if and only if #tV is in-order. Í
5.2.1 In-order example

Consider a P/C pair with the mapping given by mapping matrix # . Since this matrix is not square, we use
Property2 and construct a matrix # ¦ from the independent rows of # using the Smith decomposition of # . Since# Ð satisfies Property1, we conclude that the mapping # is an in-order transformation.

l >
¸¹¹¹¹
º

1 0 0
-5 1 0
2 3 0
-1 6 0
0 0 1

¾ ¿¿¿¿
À�Ý
Þ�ß�à VÓ/< l Ð > ¸º 1 0 0

-5 1 0
0 0 1

¾À Ý
Þ�ß.à RÓ/< In Order

5.2.2 Out-of-order example

Consider a P/C pair with the mapping given by the non-square matrix # . As in the previous example, we
extract the independent rows of matrix # using Property2, such that we get # ¦ .Since # ¦ satisfies Property1, we
conclude that # is out-of-order. This result can be easily verified by taking two arbitrary iterations points at the
Consumer: £L>�&`á;+,á\+�®¨+«â;) and ¤�>�&`á\+«ã\+�®T+�®�) with £�3Å¤ . Applying to these two points the mapping # , the
next Producer points result: £ ¦ >G&EâX+1äX+«å\+,æT) and ¤ ¦ >G&EâØ+«å\+,æ\+1æ¨) , such that ¤ ¦ 3�£ ¦ . Thus, # is indeed an
out-of-order transformation.

l >
¸¹¹¹¹
º

2 0 0 0
-5 1 0 1
2 3 0 0
-1 6 0 0
0 0 1 2

¾ ¿¿¿¿
À�Ý
Þ�ß.à VÓ/< l Ð >

¸¹¹
º 2 0 0 0

-5 1 0 1
2 3 0 0
0 0 1 2

¾ ¿¿
À Ý
Þ�ß.à RÓ/< Out Of Order

ç è¥�����¬	����!� ��f����	� ����������ué³��Y�����G�
�������j� 	j�����Y�
The two properties presented in the previous section check necessary condition for re-ordering, i.e., there are

certain cases where these conditions are not satisfied, while the Producer and the Consumer are actually in-order.
Consider, for example, The mapping matrix #ê> � ��RR��2� in the Figure 4. The matrix does not satisfy Property1,
but from the figure we can see that the mapping clearly defines an in-order transformation.

1

2

3

4

N=5

1

2

3

4

 5

Producer domain

Consumer domain

ip

jp jc

ic

No Reordering even if

1 2 3 4 1 2 3 4 N=5

1
1
0

0

is not satisfiedProperty1

Figure 4. An in-order example, even though the mapping does not satisfy the Prop-
erty1

When equalities are involved at the Consumer side, we cannot concluded from the mapping only whether or not
the correspondent P/C pair is in-order. To arrive at an accurate decision, we have to take also into consideration
specifics of the Consumer domain, in particular the equalities in the Consumer domain specification. This leads
to a procedure that is to be used when equalities are involved. This procedure is based on the use of the Hermite
Normal Form [4], which says that for any full row rank matrix ë of size &ED¥F H@) , there exists an unimodular matrix_ and a lower triangle matrix ì such that:ë Ä _í>�� ì�+«QÜ�Á+±!&Eî.+`ï;) such that î�>�ï[+!Ö È(ð 48Q\+±!&Eî.+`ï;) such that î�4vï[+�ñ Ö È(ð ñ\¯8Ö ÈÊÈ y (2)

Matrix ì has the property that ì¢ò R _ is an integer matrix. The matrix ì represents by definition an in-order
transformation, as it always satisfy Property1. The _ matrix in the HNF is not unique. Suppose that � ì�+.QZ� has ×
zero columns. Whatever column transformation is applied to these last × columns, another unimodular matrix _ Ð
can be generated such that ëË_ Ð >L� ì¡+�QÜ� .

Consider a Consumer domain containing a number of equalities, i.e., the domain has a lineality space. For
this case, we propose a procedure that is graphically depicted in Figure 5. It shows a Consumer domain ó that
lies on the hyper-plane described by the matrix ë that has a lineality space. The solution consists of mapping the
Consumer domain into a fully dimensional domain through a mapping matrix _ ò R given by the HNF of ë such
that _ respects Property1. According to this transformation, the equality in the Consumer domain does no longer
play a reordering role, as it is constant. We denote this special mapping as _�ô õ«ö . Once we have _�ô õ«ö , we will
show that if #§_�ô5õ.ö (See Figure 5) is an in-order transformation, it implies that the initial P/C pair is also in-order.

We will show how _�ô5õ.ö can be obtained from an arbitrary matrix _ , as given by the HNF of ë . Therefore,
instead of analyzing only the P/C mapping matrix # , we also have to take into consideration the equalities that
describe the Consumer domain. This approach is expressed by the next Lemma:

C
−1

C’k

i

P

P

P

j

k

M’= M C New

point of view) fully dimensional domain

Producer

M

mappes an equivalent (from reorder

i

k

C

C

C

j

i C’

C’j

Consumer’ D’

Consumer D
lies on the L plane

C
New

 mappes in−order from the
Consumer plane (jc’,kc’)
into the original Consumer

does not respect Property2

const

given by the HNF
of L

Figure 5. Out-of-order detection schema

Lemma 1 For any arbitrary domain ó described by a polytope that lies on a hyper-plane given by matrix ë , there
always exists an unimodular matrix that maps in-order the domain ó into a fully dimensional domain ó ¦ .

Proof: Let the equalities in the Consumer domain be described as:

ëø÷"ù8>Mú,û¨HI²�Õ�y (3)

where ÷"ù�s°ó . ë is of full row rank, otherwise the domain is empty as the redundant equalities are removed.
Using the HNF, ë can be decomposed as: ë¢>n� ì�+.QÜ��_ ò R y (4)

where ì is a &('³FO'2) hermite matrix and _ is a &EHvF¡HI) unimodular matrix. By substituting ë in Equation 4, we
get � ì¡+.QÜ�S_jò R ÷�ùL>¬ú,û¨HI²�Õ . Since _jò R ÷"ùn>¬÷ Ðù , we may write � ì�+«QÜ�/÷ Ðù >¬ú,û¨HI²�Õ . Because ì is bijective,
independently on _ , ÷ Ðù is of the form:

÷ Ðù >
¸¹¹¹¹¹¹
º
ü R:ü àK Ðà ¶ R:K Ð9

¾ ¿¿¿¿¿¿
À + (5)

where the first ' elements ü are constants and the last &EH�Ó�'2) elements K Ð are variable.
Because the first ' elements of ÷øÐù are constants, only the last &EH{Ót'*) columns of _ play a role from the

reordering point of view. Consider the matrix ý_ made of the last &EH�Ó�'2) columns of C. Because _ is a full column
rank matrix, ý_ is full column rank. Let us note with _Uþ 9Xÿ õ à the matrix made of the first &EH�Ó�'2) independent rows
of ý_ . Therefore, _�þ 9Øÿ õ à is bijective (as full row/column rank) which implies that _ ò Rþ 9Øÿ õ à exists. Using Property1,

the matrix _ Ðô5õ.ö >½ý_Ì_ ò Rþ 9Xÿ õ à is an in-order transformation (_ Ðô5õ.ö is injective and has the first independent rows

represented by an identity matrix � 9 ò à). Attaching to the matrix _ Ðô5õ.ö the first ' columns of the original matrix_ , the matrix _�ô õ«ö is unimodular and ë�_�ô5õ.ö is a hermite form of ë (because _�ô õ«ö is obtained doing simple
column operations to the matrix _).

On the other hand, because of the in-order characteristics of the matrix _ Ðô5õ.ö ,then also _�ô õ«ö maps in-order

from ÷ ¦ù������ to ÷"ù (take into account that the first ' elements of a point from ÷ ¦ù������ are constant). Therefore,_�ô5õ.ö is a matrix that maps in-order a fully dimensional domain into. the original domain. Í
Based on Lemma1, we define the next property:

Property 3 If matrix # _�ô5õ.ö corresponds to an in-order P/C pair, then the original P/C pair (corresponding to
the matrix #) is also an in-order pair.

Proof: Because _ ô5õ.ö is bijective, there is an inverse matrix _ ò Rô5õ.ö . Consider two arbitrary consecutive Con-
sumer points £ and ¤ . They will be mapped in-order through the matrix _ ò Rô5õ.ö into the Consumer points £ Ð and¤ Ð . On the other hand, because £ Ð and ¤ Ð are consecutive, they are mapped by # _�ô5õ.ö into two consecutive
Producer points £ Ð Ð and ¤ Ð Ð . But £ Ð Ð and ¤ Ð Ð are also the Producer images of £ and ¤ through the mapping # .
Hence the P/C pair is in-order. Í
6.1 Example

−1

0
0

=M 0
00
1

1
0
0 01

k

C

C

jP

P

j

k

’

Producer Consumer

in−order mapping because only the
last two columns play role

the ic’ coordinate coresponding to
this column is constant = 0

C New
= 0

0

0

1
1
1

=M C 0
0

0

1
1
1

0
−1
0

i

C’

C’

C’

k

j

X’

Pi Ci

X

C’

D’B’

(1,1,1)(1,1,1)
A’

Consumer’

B

A

D

C

Figure 6. An in-order example

Consider the 3-dimensional Consumer domain ÷ that lies on the plane given by ï¨ùxÓ8×;ù�>ÛQ as shown in
Figure 6. This plane is described by the matrix: ë�>n� 0 1-1 � . Suppose the mapping matrix is� É �		
 1 0 0

0 0 1
0 1 0

� �� y (6)

According to Property1, the mapping represents an out-of-order transformation. However, as can be observed in
the top part of Figure 6, the Consumer points &Á£j&�®¨+�®T+�®�)u3�¤�&�®T+1á;+,áT)u3�_�&`á\+�®¨+�®Z)u3�ó�&`á;+1á\+,á¨).) are mapped
in-order through # into the Producer points &Á£ Ð`&�®T+�®¨+�®Z)�3Û¤�ÐÒ&�®T+«á\+,áT)�3d_ ÐÒ&`á\+�®¨+�®Z)�3ÛóOÐ &`á;+1á\+,á¨).) . Because
equalities are involved at the Consumer domain, we apply Property3.

Taking the HNF of ë which describes the equality plain, the unimodular matrix

_x> ¸º 0 -1 0
0 0 1
-1 0 1

¾À (7)

results. Since there is just one equality involved, the rank of ì is 1, and � ì�+«QZ�I>§ët_ ò R >P�(®UQYQÜ� . According to
the matrix _ , this domain will be mapped (see Figure 6) into a domain of the form

÷ Ð > ¸º constï�ù ¦×;ù ¦
¾À (8)

Because the first coordinate in the ÷ Ð domain (i.e., î`ù ¦) is constant, only the last 2 columns of _ play a role from
the reordering point of view when we map from ÷ Ð to ÷ . Using Property2, _ maps out-of-order from ÷ Ð to ÷"ù ,
so _ is not the matrix we are looking for. But using Lemma 1, we can apply simple transformations on _ such that
we will obtain the right matrix. We take out from _ the á nd and the ã rd column (since the first column corresponds
to a constant coordinate). The new matrix becomes:

ý_?> ¸º -1 0
0 1
0 1

¾À Ý
Þ�ß�à VÓ/< _�þ 9Xÿ õ à >�� -1 0
0 1 � Ó2<a_ ò Rþ 9Xÿ õ à >�� -1 0

0 1 ���ù��*ù��������� ���Ó/< _ Ðô5õ.ö > ¸º 1 0
0 1
0 1

¾À y
Now we attach to the matrix _ Ðô5õ.ö the first column of _ and we get the matrix _ ô5õ.ö , that is in fact obtained
from _ by doing simple matrix operations on the column that corresponds to the zero columns from the HNF of
the matrix ë . Therefore, by multiplying ë with _ ô5õ.ö we get the same hermite normal form:

� ì¡+.QÜ�*>Më{_ ô5õ.ö >n� 0 1-1 � ¸º 0 1 0
0 0 1
-1 0 1

¾À >L� 1 0 0 �Áy (9)

The difference is that now the matrix _�ô5õ.ö is an in-order mapping. Now we make the product between # and_ ô5õ.ö and it results that:

#í_ ô5õ.ö > ¸º 0 1 0
0 0 1
-1 0 1

¾À y (10)

From this new matrix we remove the first column (which corresponds to the constant coordinate î.ù ¦) and in this
way we get the matrix:

> ¸º 1 0
0 1
0 1

¾À + (11)

which is an in-order mapping as it satisfies Property1. This is precisely what we expect from observing Figure 6.! " ���f�!���
����������e°�Pe��������$#ø��� �
��	�� }������Y ��
The aim is to classify correctly a P/C pair to one of the four types given in Figure 1. We do not want to rely only

on the Multiplicity and Reordering tests defined in [11] as it requires solving integer linear programming systems.
Instead, we want to use as much as possible the three properties defined in this paper. Since these properties are
not able to give a 100% correct answer in all cases, we may still need to use the Multiplicity and Reordering test.
This leads to a hierarchical classification scheme as given in Figure 7. In the classification scheme, we provide
information about the P/C pair and at the bottom of the scheme, we see that the P/C pair is placed in one of the four
communication types (IOM-, OOM-, IOM+, or OOM+).

In the scheme, we see the Multiplicity and Reordering tests that are given as shaded boxes, but also the Full-
ColumnRank test and the InOrder test. The FullColumnRank test implements the Smith Normal Form to see if
multiplicity is involved or not. When the test determines that no multiplicity is involved, i.e., the matrix is not
injective, it might still be that multiplicity is involved. Therefore, we use the Multiplicity test to be sure. The other
way around, when the FullColumnRank test indicates that no multiplicity is involved, it is guaranteed to be the

case. The InOrder test uses the 3 properties defined in this paper to see if reordering is involved or not. This test
first checks if the Consumer has an lineality space. If that is the case, Property3 is applied (which implies the use
of Property2 and Property1). If no lineality space is involved, the tests checks if the matrix is square. If not, it
uses Property2 and Property1 to determine if reordering is involved. If the matrix is square, it uses only Property1
to determine if reordering is involved. There are cases for which the InOrder test indicates that the mapping is an
out-of-order transformation, while it is not. Therefore, we apply the Reordering test. The other way around, when
the InOrder test determines that the mapping is in-order, it is guaranteed to be the case.%'&�(�)'*$+ ,-)/.

�
(10$2�0$%30

� � � �

� � � � � 	 �

 	 � �

���� ����

465$7689�: ;3<>=@? A <>B A <DC E>F@C
465$768

� � � � � � 	 �
 � � �

 � � � � � � � � �

� � � � �
 	 � �465$768
� � � � � � � � � �
 � � � � � � � � � � � � � � �

���� ����

465$7G8
� � � � � � 	 �
 � � �

HJI�8
� �

� � � � � � � � � � � �
 	 � �
4K5L7

� 	 � � � 	 � � � �
 	 � �

H1I�8
�� � � �
 � � �
 � �
 � � �

� 	 � � � 	 � � � �
 	 � �

HJI�8
�� � � �
 � � �
 � �
 � � �H1I

465'7D891: ;3<@=>? A <@B A <@C E@F@C

� � � � � 	 �

 	 � �HJI

H1I�8
�� � � � 	
 � � � 	 � � � � �

�

Figure 7. The Hierarchical Classification Scheme

7.1 Experimental Results

In Table 1, we present the network configurations for ä image and signal processing algorithms. These are the
same example as used in [11]. In the table, we show how many times a Reordering Test (RT) and Multiplicity
Test (MT) is done in the hierarchical classification scheme. The values given between brackets are the number of
tests performed when only the RT and MT are used as done in [11]. The classification that uses only MT and RT,
solved 4516 systems for the Reordering test and 1780 systems for the Multiplicity test for the 8 examples. Using
the hierarchical classification scheme presented in Figure 7, which exploits the properties presented in this paper,
only 237 systems are solved for the Reordering test and 102 systems for the Multiplicity test. This means that
the hierarchical classification scheme reduces the number of system to solve by 95%. In only 5% integer linear
programming is still used. In 95% of the cases, the three properties presented are able to correctly classify a P/C
pair. This is a big reduction in compute time and memory requirements.

It is interesting to mention that Table 1 clearly shows that most occurring type is IOM- (80%) and the least
occurring type is OOM+ (1%). This is important from an implementation point of view, as the IOM- requires
only a simple FIFO buffer. The OOM+ requires also re-ordering memory and a controller, but hardly appears in
networks. The second most occurring type is IOM+ (10%) which is also nice, as only a FIFO buffer is needed with
some simple additional control to keep track of the life time of a token. Together with type IOM-, we can say that
in 90% of the cases, a FIFO buffer can indeed be used to linearize a static array in a Matlab program. In the other
cases, the ELM is needed to linearize a static array.

Algorithm P/C pairs RT MT IOM- IOM+ OOM- OOM+

QR-Decomp 12 0 (73) 0 (30) 12 0 0 0
SVD 118 171 (1283) 51 (565) 84 4 30 0

Faddeev 28 4 (205) 7 (78) 24 3 1 0
Gauss-Elimin 11 17 (17) 6 (6) 7 0 1 3

DigBeamFormer 98 18 (408) 4 (196) 88 4 6 0
Motion Estim 98 0 (882) 0 (294) 98 0 0 0

M-JPEG 50 24 (178) 34 (93) 33 17 0 0
Stereo Vision 173 3 (1470) 0 (518) 172 0 1 0

Table 1. Classifying P/C pairs in real-life examples to the four communication
types using the Hierarchical Classification Scheme.M �¬	"���Ue���!��	��

Within Compaan, static arrays found in the original Matlab are replaced with a distributed communication struc-
ture that takes care of the interprocess communication. We have shown that four different types of communication
exists, each exhibiting different requirements when realizing them in hardware of software. As a consequence, we
need a technique to classify the interprocess communication to one of the four types. For this purpose we have
already developed the Multiplicity and the Reordering test, but they are memory and time inefficient . In this paper,
we presented additional tests based on polynomial algorithms like Smith and Hermite normal forms of an integer
matrix [2]. By combining these tests with the original Multiplicity and Reordering test, we defined a hierarchical
classification scheme that exactly classifies the interprocess communication. Hence, in only 5% of the cases to
classify, we still rely on integer linear programming; in the remaining 95%, the tests presented in this paper are
able to classify a case correctly. The hierarchical classification scheme is implemented within Compaan.cd�ONT�f�!� �����Y�

[1] Philippe Clauss. Counting solutions to linear and nonlinear constraints through ehrhart polynomials: Appli-
cations to analyse and transform scientific programs. In 10th International Conference on Supercomputing,
Philadelphia, May 1996.

[2] R. Kannan and A. Bachem. Polynomial algorithms for computing the Smith and Hermite normal forms of an
integer matrix. In SIAM J. Comput., 8 4, pages 499–507, 1979.

[3] Bart Kienhuis, Edwin Rypkema, and Ed Deprettere. Compaan: Deriving process networks from matlab
for embedded signal processing architectures. In Proceedings of the 8th International Workshop on Hard-
ware/Software Codesign (CODES), San Diego, USA, May 2000.

[4] G.L. Nemhauser and L.A. Wolsey. Integer and Combinatorial Optimization. Wiley-interscience, 1988.
[5] http://www.picochip.com.
[6] Edwin Rijpkema. From Piecewise Regular Algorithms to Dataflow Architectures. PhD thesis, Delft University

of Technology, 2001.
[7] Todor Stefanov, Claudiu Zissulescu, Alexandru Turjan, Bart Kienhuis, and Ed Deprettere. System Design

using Kahn Process Networks: The compaan/laura approach. In Proceedings of DATE2004, Paris, France,
Feb 16 – 20 2004.

[8] Paul Stravers and Jan Hoogerbrugge. Homogeneous multiprocessoring and the future of silicon design
paradigms. In Proceedings of the Int. Symposium on VLSI Technology, Systems, and Applications, April
2001.

[9] Alexandru Turjan and Bart Kienhuis. Storage management in process networks using the lexicographically
maximal preimage. In Proceedings of the IEEE 14th Int. Conf. on Application-specific Systems, Architectures
and Processors (ASAP’03), The Hague, The Netherlands, June 24 –26 2003.

[10] Alexandru Turjan, Bart Kienhuis, and Ed Deprettere. A compile time based approach for solving out-of-order
communication in Kahn Process Networks. In Proceedings of the IEEE 13th Int. Conf. on Application-specific
Systems, Architectures and Processors (ASAP’02), San Jose, USA, July 17 – 19 2002.

[11] Alexandru Turjan, Bart Kienhuis, and Ed Deprettere. An Integer Linear Programming Approach to Clas-
sify Communication in Process Networks. In 8th International Workshop on Software and Compilers for
Embedded Systems (SCOPES), Amsterdam, September 2–3 2004.

[12] http://www.xilinx.com.

