How to teach a billion transistor chip a new trick

Dr. ir. Bart Kienhuis University Leiden, LIACS Computer Systems Group http://www.liacs.nl

ICT-Kenniscongres 10 April 2006

Outline

- Focus is programming ICs for Stream based Applications
 FPGAs
- Stream Based Applications
 - Multi-media
 - Imaging
 - Bio-informatics
 - Classical DSP
- Increasing demand for highperformance, embedded compute performance
- We know how to build billion transistor FPGAs, but cannot program efficiently

Applications (C / Matlab / Java)

Stream Based Applications

10 - 1000 Million Samples per second

- Imaging
 - HDTV 1080x720 @ 100 Hz
 - 77 Million samples per seconds
 - Suppose 100 operations per sample
 - 8 Billion Operations per second
- Classical DSP
 - LOFAR One antenna
 - Sampling rate 200*2 = 400 Million Samples per second
 - 100 Operations per second (First stage)
 - 40 Billion Operations per second
 - There are 10.000 Antennas expected = 40*10^13 operations per second
 - Next beamforming is performed, statistics obtained, but on decimated signal

Compute Requirements ,

Source: TI, Xilinx -1 MAC = 8 bit Multiply-Accumulate

Trend: ferocious appetite for more *embedded* compute power

Intrinsic Computational Efficiency (ICE)

Communication Engineering Journal, vol13, No6, Dec 2001, pp 249-255.

Xilinx Virtex II Pro

- Heterogeneous Architecture
 - Multi CPUs
 - Distributed Memory Blocks
 - Programmable Logic (IP cores)
- Commercially Available Platform
 - □ Virtex-4 is released and available
 - □ Virtex-5 is on the drawing board
- FPGAs are becoming more important in Embedded System Design
 - Flexible since they can easily be re-programmed
 - □ More functionality at lower cost
 - replacing a larger part of the ASICs market

Heterogeneous Architecture

Reconfigurable logic PowerPCs

Building an FPGA: Logic First

F

- A 4-input lookup table (LUT) can implement any function of 4 inputs.
- For example, a 1-bit adder needs 2 LUTs:

Arithmetic, Distributed RAM

Add Interconnect

- Group logic cells to reduce overhead.
- Add H, V routing channels with switchboxes.
- Add input, output
 MUXing between
 logic and routing.

FPGA Technology

- Virtex-4 has already over a billion transistors!
- FPGA can take most advantage of Moore's law
 - More an more logic available on the same die
- CPUs in programmable logic
 - Hardcore = PowerPC
 - Softcore = MicroBlaze

FPGA, the last 10 years

Xilinx Research, Kees Vissers

Year

FPGA Programming

Virtex-II Pro FPGA

- FPGA is flexible in Hardware and Software...
 - How to teach a billion transistor chip a new trick
 - □ Solution Industry doesn't work
 - Programming means:
 - Write "C" programs for the Micro processors
 - Write "VHDL" programs for the IP cores and interconnection network
- "C" programs and "VHDL" programs need to work together
 - High performance
 - Error proof
 - Nightmare to debug
- Programming is currently done manually with lots of engineers ¹⁴

Software Productivity

We know how to build Billion transistor chips, but do not know how to program them efficiently

Research at LIACS (COMPAAN)

Matlab/C/Java

How ICT Research at LIACS tackles the Productivity Gap (Leiden University, STW PROGRESS)

Toolbox

- Toolbox to change the number of processes
 Unrolling (More Parallelism)
 Merging (Less Parallelism)
 Better use of Resources
 Re-timing
 - C-Slowing
- Exploration
- Track Technology changes

Results: Motion JPEG (1)

DATE04, 'System Design using Kahn Process Networks: The Compaan/Laura Approach'

Motion JPEG (2)

From Matlab to FPGA implementation

- Automatically derived a multi processor solution
- □ Free choice between Microprocessor (MicroBlaze) or Hardware (IPCore)
- Automatically generated
 - "C" program for all Microprocessors
 - VHDL program for interconnections and IP Core integration
 - Correct by Construction
 - Seamless integration into FPGA Development environment (EDK)

Results: QR Case study

Skew

Skew

+2st

Skew

+4st

Skew

+6st

- Compaan: 3 days

Skew

+10st

Skew

+7st

Multidisciplinary Work

Mathematical Modeling (Polyhedral Mathematics) Efficient Solvers (Parametric Integer Programming)

Compaan Project: 6 years, 6 PhDs, 2 Postdocs

Conclusions

- Stream Based Applications require Heterogeneous Multiprocessor architecture
 - □ Stream of 10 1000 million samples per second
 - □ 10 100 Giga operations per second
- Latest FPGAs are Heterogeneous Multiprocessor architectures

Over a Billion Transistor and still counting

- Problem is that we know how to build FPGAs, but programming them is very hard
- Programming/Compiler Technology is a strategic ICT component to reduce Productivity Gap
- Showed the Compaan Project at LIACS, which provides a solution for stream based applications.

Thanks to

- Prof. Ed Deprettere
- Dr. Todor Stefanov
- Dr. Sven Verdoolaege
- Alexandru Turjan
- Claudiu Zissulescu
- Hristo Nikolov
- Sjoerd Meijer
- Jerome Lemaitre
- Bin Jiang
- Wei Zhong

15 - 7